Publications of the Department of Astronomy — Beograd, Ne 11, 1981

UDC 523.9-327 ) osp

DETAILED TREATMENT OF SYNODIC SOLAR ROTATION

Kubikela A.
Astronomical Observatory, Beograd

Karabin M.
Institute of Astronomy, Faculty of Sciences, Beograd

Received June 25, 1981

Summary. Begining with a previous vectorial result about the synodxc solar rotation depen-
dance on the mclmatxon of solar equator the classical definition of synodic solar rotation has been
reconsidered in some detail. The angular difference between one synodic and sidereal solar rota-
tion turn, A, as a function of the longitude of the Earth and the inclination of the solar equator,
B, indicates a substantially different nature of trigonometric and vectorial definition of synodic
solar rotation. Only a long-term mean value of A does not depend on 8. For the extréem case,
B = 90° Ax shows a purely geometrical discontinuity. On contrary, the sideral, apparent annual
and synodlc rotations of the solar globe are smooth and can be described by the corresponding
vectorial angular velocities.

Kubicela A. i Karabin M. DETALJNO RAZMATRAN]JE SINODICKE SUNCEVE
ROTACIJE — Polazeti od jednog ranije datog rezultata, po kome sinoditka Sunleva rotacija
zavm od nagiba Sundevog ekvatora, detaljno je razmotrena klasi¢na definicija sinoditke Sunéeve
rotacije. Uglovna razlika, A\, izmedu jednog sinoditkog i sideritkog Sungevog obrta, posmatrana
kao funkcx)a longttude Zemlje i nagxba Sunéevog ekvatora, 8, ukazuje na bitnu razliku izmedu
trigonometrijske i vektorske definicije Sun&eve sinoditke rotacije. Samo dugorotne srednje vred-
nosti A\ ne zavise od B. U ekstremnom sludaju, B = 90°, A\ 1spol;ava jedan &isto geometrijski
dlskontmmtet Nasuprot ovome, Sundeva sideri¢ka, pnvxdna godxén]n i sinodi¢ka rotacija su ne-
prekidne i mogu se opisati odgovarajuéim vektorskim uglovnim brzinama.

INTRODUCTION

In our first attempt to interpret solar rotational velocities as vectors (Kubi-
Cela and Karabin, 1982) one .of the results suggested is the dependance of synodic
solas rotation on the inclinaticn of the solar equator. As that seemed inconsistent
with the usual scalar treetment of synodic solar rotation some further investiga-
tions were needed.
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Therefore in this paper we repeat a part of the text end Figure 1 from the
éntioned paper (copyright by Reidel Publishing Company) and in an extended
analysis we look for a possible explaination of that controversal result.
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Eigo 1. Projection, s, of the apparent angular velocity introduced by the Earth’s revolution, oa,
bnterthe solar rotation axis, Py — Ps. 0 is the centre of the Sun, o1 is the angular velocity of the
gadiereal solar rotation and Ory and Ors are the dirgct{ons toward the north and south ecliptic poles
respectively. '

ava -COLINEAR COMPONENT OF SYNQDIC SOLAR ROTATION

Biios? .
svoon The line-of-sight component of solar rotation is. usually expressed as
3%'?73 . V1 = R 1 €0S @m Sin Ay cos By, ) (1)
Where e is the angular velocity of sidereal solar rotation. R is radius of the Sun,
om @nd )y, are heliographic latitude and longitude of the observed photospheric
point, M, and By is heliographic latitude of the centre of the solar disk.:

The Earth’s revolution introduces an apparent angular velocity of the oppo-
site direction to the solar rotation. Its line-of-sight component expressed in the
ecliptic coordinate system is analogous to (1)

i Va = R w3z COS bm Sin (l;n -_ L),

here wg represents the sidereal orbital angular velocity of the Earth, bn and In
are heliocentric ecliptic latitude of any given point at the Sun, and L is heliocentric
i98Bitude of the Earth. Angular velocity ws is a periodic function of time according
touthe second Kepler’s law: w2 = 27 ab P-1r-2, where r is Sun-Earth radiusvector,
a and b are the semiaxes of the Earth’s orbit and P is the period of its revolution.
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The annual change of g is about 3.3%. Such a variability is to be assumed in &¢hef
angular velocities derived from it. 5 bas

In order to clarify the influence of ®2 on o it is necessary to project wz onto
the rotation axis of the Sun. Let vector ®;, Figure 1, be the angular velocity of
sidereal solar rotation. The apparent rotation velocity introduced by the Earth’s
revolution, ‘g, lies in the direction toward the south ecliptic pole ns. This velocity
can be represented by its two components: @3 = @z cos B colinear with @y (8 being
the inclination of the solar equator to the ecliptic), and @4 = w2 sin § perpendi-
cular to the solar rotation axis. It is now obvious that w3 can be readily subtracted
from ©; in (1), resulting in

Vs = A (w1 — 2 cos B) cos pm sin A cos By. 2

Taking into account the numerical value of w2, one finds the mean angular

velocity wg = 1.975072 x 107 rad s, or as a peripheral velocity at the solar equa-
tor Vs = 137.5 m s~L. This value is only about l m sl smaller than the one usuelly
applied, namely 138.6 m s~1.

The factor cos § at the rlght-hand side of (2) isin contradlctlon with the usual
relation between the sidereal and synodic sclar rotation:

sidereal — synodic rotation = Earth orbital- motion, 3

given in Allen (1964). In terms of angular velocities relatlon (3) perhaps may be
understood as
C\)sy“ =1 — 0)2, (33)

where wsys is the angular velocity of synodic solar rotation. The relations (3) or
(3a) do not show any dependance of wsys on the inclination of the solar equatagy

This prcblem we are trying to solve scrutinizing the classical deﬁmno’rix ﬁ'f
synodic solar rotation. . ,d:

elaaun

TRIGONOMETRIC DESCRIPTION OF SYNODIC SOLAR ROTATION

According to the generally accepted definition, the synodxc period of rota-
tion of the solar globe is the interval between two successive passages of a given
heliographic meridian through the centre of the solar disk. All necessary geome-
trical parameters are shown in Figure 2. Heliocentric longitudes of the Earth L;
and Lz are measured from the ascending node Q. Then AL is the change of heli¢if
centric longitude of the Earth during one solar synodic 1otation period and Agnig(
the correspondmg heliographic longitude difference between one synodic and side-
real solar rotation turn.

During one sidereal rotational turn of the solar globe, T4, the given central
meridian, PyCiPs, completes 360° returning at the same starting position. ME&RY
while the Earth moves along the ecliptic so that the centre of the solar disk moves
from C; toward Cz and the selected central meridian has to turn for an additicnal
interval in heliographic longitude, A, to reach Cz and to become the central meri~
dian again. We can take the Earth’s longitude change A L as constant (neglecn E
the elipticity of the Earth’s orbit) and approximately equal to 27°. In spite of A
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being constant along the ecliptic, A\ changes during the revolution of the Earth
and depends on the inclination of the solar equator, .

ks

Pig. 2. Trigonometrical definiton of synodic solar rotation. Py and Pg are the north and south

solar rotation poles, 2 Dy Dg is the solar equator, and  C; Ca is the ecliptic. C; and Cj are centres

of solar disk at the moments of two successive passages of the same heliographic meridian through

the centre, with AL and 2+ A2 being the Earth’s heliocentric and heliographic longitude incre-

ments corresponding to one synodic solar turn. C1 Dy = Bo1 and Ca Ca = Bgz are the heliographic
latitudes of the centres of the solar disk C; and Ca respectively.

A convenient way to find A as a function of AL and f is from the spherical
triangle C1PsCsz, namely

cos AL == sin By, sin Boz -+ cos Boy cos Bgz cos A, O]

The heliographic latitude of the centre of the solar disk, By, depends on the Earth’s
longitude in the following weay-

, sin Bo; = sin B sin Ly, (%)
where s = 1 or 2. From (4) and (5) one finds

cos(La — Ly) — sin? B sin Ly sin Ly
4/ (1 —sin? B sin% L;) (1 — sin2 B sin% L3)

A similar relation has been publish by Greff (1974).

A\ = arc cos

)
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The influence of parameter § on AX up to the fictive value § = 90° is shown
in Figure 3. The function A\ changes smoothly with §§ from a constant 27° — value
to as close as 90° when obtained the discrete form A\ = 0°, for 0°<L;<<90° — AL
and 90°<L;<<180° but A\ = 180° for 90° — AL<<L1<90°. The last value appears
if the solar rotatin pole, when f—90° falls into the AL — intervel at the ecliptic,
and the former one appears if pole falls out of that interval.

) =90°
180% AN e T
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Flg 3. Hehographxc longitude difference, A), between one synodic and sidereal solar rotation
turn is given as a function of the Earth’s longitude L; and parameter § for AL = 27°. Six A —
curves for 8 = 0° to § = 90° are shown. The ordinate scale for the curve § = 7°25 has been enlar-
ged 50 times and centered at AX = 27° (at the right). Notice the constancy of the mean value of
A\ — function within the shown sxx-n'éonth n;lterval and throughout the whole interval of
— values

One can also see that for § = 0° at any instant AA = AL = 27°. For other
values of § the mean integral value of A\ within the observed 180° — interval, A},
equals to AL or 27° including the case f = 90° when the three rectangular areas
on both sides of the ordinate 27° satisfy the relation P;-+P; = P3. As each value
of A\ defines a synodic turn of the solar globe, such a behavior of this quantity
means that the mean value of synodic period Tsys within 2 six-month o1 an annual
time interval is constant and independent of the inclination of the solar equator.
Hence, when we deal with such mean synodic periods, or with § = 0°, we can take
the relation (3) as a correct one.

However, this conclusion does not seem to be consistent with the vectorial
relation (2) except for the case f = 0°. To point out the difference between the
trigonometric and vectorial description of synodic solar rotation, let us look at the
Figure 4a where the vicinity of the centre of the solar disk, C, is represented and
the uniform apparent motion of the north solar rotation pole, P; to P13, along the
ecliptic, E — W, is shown for the case § = 90°. An arbitrary heliographic meri-
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dian is represented by the short arrows starting at the pole pesitions and pointing
along the intantaneous directions of the selected meridian. Its starting direction
at P; has been arbitrarily chosen eastward along the ecliptic and the counter-clock-
wise sidereal solar rotation around the pole is shown in 90°-steps. The correspon-
ding sidereal periods of rotation (from one eastward position of the observed meri-
dian till its next eastward position) T'sig, have been marked above. The first shown
synodic period, Ty, begins also at P; as the observed meridian, pointing eastward
and passing through C, represents the central meridian as well (heavy arrow). It
lasts till Ps where the next eastward direction of the observed meridian again has
the role of the central meridian. Here the synodic period of rotation is equal to-
the corresponding sidereal one. In such cases A\ = 0°. But if during a sidereal
period the rotation pole passes the centre of the solar disk, the observed meridian
has to reach the opposite direction to becom: the new central meridian (white arrow
at Py1). Batween the last eastward position of the mzridian, at Py, and its n>w posi-
tion at Pj; a conversian of directin of the central maridian, followed by the h:lio-
graphic longitude in:rement A\ = 180° takes plice. In the remaining part of a
six-month interval all synodic periods are again equail to the corresponding side-
real ones. ' '

An interesting case seems to appear in Figure 4b. Namely, if the centre of
the solar disk, C, happens to fall in the first half of an arbitrarily started sidereal
period (e.g. between Ps and P; for the shown distribution of sidereal periods), the
conversion of direction of the central meridian takes place at Py (the white arrow)
with the consequence T'gyn << Tsig. This case indicates a whole series of formal
solutions for AX and Tsyy (even with T'syn close to zero for 8<C90°) that do not take
into account the necessary completion of one full sidereal turn within the observed
synodic one. This condition is so important that it should be included os unders-
tood in the classical trigonometric definition of the synodic rotation of the Sun.
Provided the one-sidereal-turn condition is satisfied, the case b) in Figure 4 be-
comes a) and the observed synodic turn, lasting for (3/2) T s, completes at Pi1.

Excluding the critical AL interval (Ps to Py) with a kind of an ,artificial”
discontinuity of centrel meridian direction (amounting to A)) we can take Tgyn =
= Tsig O Wgyn=0 what also follows from the earlier vectorial result for f = 90°.
Besides, it is worth noticing in Figure 4 that the mentioned discontinuity — causing
a prolongation of T'sy, compared to Tsg — does not influence either of the two
component solar motions involved (the sidereal rotation and the apparent effect
of the Earth’s revolution) as well as the resulting synodic rotation. The last motion
is shown in Figure 4c as an uninterrupted and smooth cycloidal motion of an arbi-
trary photospheric point, namely the end of the arrow indicating the selectead helio-
graphic meridian (the dotted curve). Unlike the synodic solar rotation defined
through AX and Ty, the smooth cycloidal synodic motion at 4c) can be described
by corresponding vectorial angular velocity of synodic solar rotation.

CONCLUSION

Although fictious, the extreme case = 90° nicely shows the substantial
discrepancy between the classical trigonometric definition of synodic solar rotation
and the alternative vectorial notion — the angular velocity of synodic solar rotation.
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Therefore:

1) In the trigonometric definition of synodic solar turn, besides the funda-
mental quantity A\, we have to imply the completion of one full sidereal turn as
well. We also may apply the relation (3) in connection with notion as ,,synodic rota-
tion period” only when we deal with long-period (six-moth or annual) mean values.
Otherwise, the relations (3) or (3a) can be taken as an approximation only.

2) The physical (vectorial) notion of synodic rotation angular velocity de-
pends on B, seems free of any discontinuities and can be regarded as suitable for
evaluation of instantaneous velccities of individual points at the solar globe.

3) It seems promissing to pay some more attention to the vectorial approach
of the synodic rotation and to develop it to a greater extent.

This work is a part of the research project of the Basic Organization of Associated Labour
for Mathematics, Mechanics and Astronomy of the Belgrade Facnlty of Sciences, funded by the
Republic Community of Sciences of Serbia.
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