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Abstract 
This article is written to promote a didactic idea of connecting computer-enabled experiential approach to K-12 
mathematics with the applied, project-based teaching of undergraduate university mathematics as a way of 
encouraging students to participate in the STEM (science, technology, engineering, mathematics) workforce of the 
future. It reviews current body of research on how to bring engineering and science into the K-12 mathematics 
curriculum. The notion of recursion is used as an illustration of how one can bridge K-12 and university mathematics 
in the context of STEM education. The ideas presented in this article, though based on a North American experience, 
can be used within a broader international context. 
 
ZDM Subject Classification (2010): R20 
 

 
1. Introduction 

 
 Nowadays the colleges and universities need to provide more and more graduates knowledgeable 
in science, technology, engineering, and mathematics (STEM) to meet the challenges posed by the global 
community [37]. Although a degree in a STEM area can lead to a successful career, in the United States 
fewer and fewer students choose to enter these areas [28]. According to the report of the National Center 
for Education Statistics [18] about 4% of the U.S. high school graduates (regardless of gender or ethnicity) 
will obtain an undergraduate degree in mathematics or physical sciences. The situation with other STEM 
fields seems to be just a little better. This, obviously worrisome, lack of students’ interest in the STEM 
subjects originates at the pre-college level because their learning experiences have usually been associated 
with little or no connections to real-life problems and methods of solving them. Without practical 
examples that motivate problem-solving strategies, most pre-college students of all ages struggle to retain 
the theoretical lessons they have learned. Furthermore, “curricular materials do not portray engineering 
[and sciences] in ways that seem likely to excite the interest of students from a variety of ethnic and 
cultural backgrounds” [31, p. 10]. A reform of the K-12 education with a STEM focus is of crucial 
importance for educational systems in the U.S. and elsewhere. Schoolchildren begin to form the attitudes 
towards STEM subjects when they first encounter them at the primary level. The importance of the initial 
impact on their career goals cannot be overestimated. It is imperative that the primary grades become the 
starting point in improving the situation with STEM education [37]. Consequently, an intervention at the 
primary level will facilitate STEM education at the secondary level. 
 The aim of this article is to illustrate a pedagogical strategy originally introduced elsewhere [8, 9] 
of linking the application-oriented, computer-enabled experiential approach to K-12 mathematics with the 
applied, project-based approach to the teaching of university mathematics at the undergraduate level. This 
strategy is based on the notion that many engineering/science problems that are to motivate the study of 
undergraduate mathematics and its methods can also be rendered to be adopted at the pre-college level to 
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serve as a motivation for ‘big ideas’ in mathematics through applications. In what follows, the idea of 
bridging K-12 and university mathematics education systems will be illustrated by focusing on the 
concept of recursion. The concept turns out to be enormously fruitful for the study of engineering, 
computer science, biology, economics, physics, and other disciplines that use mathematical methods. The 
applications of recursive models to engineering and science require different levels of mathematical 
competence and technological support.  
 

2. STEM and mathematics teacher education 
 
 There is a growing body of research on how to bring engineering and science in the school 
curriculum [17, 21, 31, 34, 44, 47, 50]. In particular, this research shows the importance of incorporating 
engineering education into teacher education programs. Indeed, as mentioned in [17], the lack of pre-
service teacher preparation in the “E” component of STEM could hamper any efforts of introducing 
schoolchildren to the ideas that develop the foundation of engineering profession. Therefore, an important 
task of a mathematics teacher education program is to develop cadre of teachers capable to use the 
available technology tools in teaching mathematics with focus on engineering/sciences methods. To this 
end, an appropriate ad-hoc redesign of mathematics teacher education courses can help teacher candidates 
learn, understand and use more complex concepts.  
 State University of New York (SUNY) at Potsdam, the first author’s workplace, has accumulated 
a wealth of experience in using technology and context (applications) in teaching mathematics 
schoolchildren and teacher candidates [1, 3]. At the primary level, over the last 10 years a number of 
projects aimed at the implicit introduction of higher mathematical concepts through the use of technology 
and real-life applications to 2nd and 3rd grade students have been carried out in two schools by teacher 
candidates [4, 6, 7, 13]. Likewise, this approach was used at the secondary level [2, 5, 10, 12] as a 
capstone project experience for teacher candidates in using spreadsheets and computer algebra systems as 
a means of reaching the depth of the mathematics curriculum not accessible otherwise. The successful 
implementation of these projects enabled the efficient redesign of elementary and secondary mathematics 
teacher education courses at SUNY Potsdam in order to address many ideas of contemporary mathematics 
pedagogy [19, 20, 36] focusing on applications of technology and problem solving. Still, connecting 
school mathematics and true science and engineering ideas within a teacher education program remains a 
challenge. 
 As mentioned in [24], for teachers to be able to significantly improve teaching practices on a 
larger scale, a comprehensive enhancement and support system based on the notion of “teachers-
mentoring-teachers” should be provided. This system allows for the emergence of alternative beliefs and 
perspectives, it guides each participating teacher in formulating the new classroom methods, and 
encourages self-evaluation and reflection. Towards this end, the teacher candidates during their field 
experience can collaborate with sponsor teachers in the context of professional development school using 
the model introduced by Holmes Group [27]—a consortium of about 100 major U.S. universities, who put 
forward a new vision of teacher preparation grounded in comprehensive collaboration of university and 
public school faculty in teaching and research. If teacher candidates are to become comfortable with 
STEM-oriented teaching strategies, they need the courses informed by the results of a disciplined inquiry 
into the pedagogy of STEM subject matters. 
 

3. STEM and teaching undergraduate mathematics 
 
 The University of South Florida (USF), the second author’s workplace, is continually seeking ties 
to the community, establishing contacts with industry, and integrating the technology provided by these 
contacts into the educational experiences of the students. The Mathematics Umbrella Group (MUG) 
program at USF founded by the second author in 1999 is aimed at bringing active experimental learning 
into the curricula of some basic mathematics courses (such as engineering calculus and life sciences 
calculus) for non-mathematics majors. It creates service-learning opportunities for students and organizes 
popular partnerships between mathematics professors and the non-mathematical community along 
educational lines. The MUG activities include individual instruction, advising, and double supervision (a 
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mathematician and a non-mathematician) of the mathematics application projects, which involve problems 
from numerous subject areas, businesses, and organizations. The main goal of these activities is to 
increase the number of qualified STEM graduates [33].  
 With a choice between taking a traditional final exam and a real life-based project tailored to 
students’ needs and interests, many students choose the latter. It is important to distinguish between many 
project-based courses currently available elsewhere in which the projects are pre-selected by the instructor 
from the projects which are customized to each student with significant student input. From an extensive 
literature review into conceptually similar teaching approaches, Milligan [35] concluded that project 
options were unique in their employment at USF. Upon comparing project and non-project (final exam) 
groups, mathematical proficiency was found to be on a similar level for both groups before starting the 
project work or final exam preparation; then, project students reported higher levels of course satisfaction 
and an improved positive perception of mathematics. On average, project students spent about twice as 
much time preparing their projects than non-project students did in preparing for their final exam. In 
addition to the project-based instruction in the calculus sections at USF, there are a tutoring center, help 
sessions (sponsored by graduate students), tutors and peer leaders (high performing undergraduate 
students). The results of the integrated use of projects and help sessions/tutoring have exceeded all 
expectations. The USF approach to teaching undergraduate mathematics through applications [25] 
resulted in over one thousand mathematics application projects completed by undergraduate students. The 
summaries of those projects can be found at the MUG website [http://ciim.usf.edu/mug].  

 
4. Collaboration as a pedagogical idea 

 
 The authors’ collaboration is based on the idea of juxtaposing the two university approaches. The 
USF undergraduate projects provide an untapped source of exciting state-of-the-art examples to stimulate 
the engineering and scientific curiosity of schoolchildren. For instance, successful businesses rely on the 
accurate inventories before ordering the additional supplies and explore various population characteristics 
before opening the additional stores. Therefore, such basic mathematical activities as sorting and counting 
can be considered the rudiments of business analysis. Distance calculations, extensively used in robotic 
navigation and collision avoidance, are based on vector subtraction. Furthermore, robotic navigation uses 
geometry and trigonometry—areas of mathematics studies at the secondary level. Finding the area of a 
circle and the volume of a cylinder can be considered adaptations of mathematical calculations used in 
environmental engineering and the restaurant business such as finding area of a restored wetland and the 
volume of a sniffer glasses to justify the importance of using jiggers, respectively [8]. Recursively 
counting the population growth of mice (Alzheimer’s research), cats (feral cat problem in Florida) and 
dogs (dog vaccination problem) builds the pattern recognition skills and engages the undergraduates into 
the study of difference equations—mathematical descriptions of discrete dynamical systems. It should be 
noted that difference equations are associated with another set of real-life problems arising in radio 
engineering, communication, and computer architecture research [32]. Therefore, counting techniques 
based on the idea of recursion should be a part of teacher candidates’ (and schoolchildren alike) 
mathematical experience. 
 In reality, K-12 teachers, when teaching mathematics, a subject matter increasingly seen as a core 
to academic success across the curriculum [48], often underutilize connections to real life. This stunts 
schoolchildren’s mathematics learning by ignoring the fact that mathematical concepts historically 
emerged in response to the need to solve practical problems. Many existing K-12 curricula materials 
superficially address the traditional concern of students that mathematics they are learning would be 
useful in their lives and do not provide students with a learning environment that encourages and promotes 
career paths in the STEM area. A logical place to intervene is at the pre-college level when students’ 
career goals are still evolving. Such an intervention, proceeding from the SUNY Potsdam experiential, 
computer-enabled approach to teaching mathematics to teacher candidates can be enriched and broadened 
by simplifying engineering and science problems associated with higher mathematical concepts. This 
leads to comprehensive, application-oriented teaching of K-12 mathematics that is consistent with the 
view, “when a school subject is taught for which there is a professional counterpart, there should be a 
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conceptual connection to post-secondary studies and to the practice of that subject in the real world” [31, 
p. 4]. 
 

5. A research-based rationale for the collaboration 
 
 According to [31], a very few projects exist which describe how students use mathematical 
models in designing the solutions to problems. This is unfortunate as mathematics has the capability to 
minimize trial and error methods through modeling techniques. In theory, if students are taught 
mathematical concepts in the context of solving problems with an engineering/science focus, they will 
understand mathematics more easily. Current standards for technological literacy [29] describe 
engineering design as a purposeful (often collaborative) activity with an explicit goal, shaped by 
specifications and constraints, leading to multiple solutions through systematic reasoning and an iterative 
process. This is exactly what can be fostered in schoolchildren through grade-appropriate computer-
enhanced mathematical activities with an engineering/science focus. By modeling mathematical concepts 
in a computer environment, teachers and their students can develop the powerful learning experiences in 
the STEM disciplines that are very different from the traditional educational practices with little or no 
connection to real life and without using technology as a conceptual tool. 
 As mentioned in [45], mathematics can be defined as a process of thinking that involves 
developing and applying abstract, logically interconnected ideas that often arise from the need to solve 
problems in science, technology, and everyday life—the problems ranging from how to model certain 
aspects of a complex scientific problem to how to balance a checkbook. One of the main principles that 
underpin the authors’ collaboration is that mathematical abilities can be identified and developed earlier 
than the other abilities in the STEM area [41, 42]. Research suggests that, in a broad sense, engineering 
skills represent a combination of mathematical abilities and interest in technical problems [51, 52]. 
Suppose, for example, a child is interested in the very design of a computer. If a child has mathematical 
abilities—she/he has a great potential to become an engineer or scientist. Therefore, mathematical abilities 
can be utilized in the STEM education as a basis for the development of engineering/science skills.   
 One of the benchmarks for literacy in the STEM area conceptualizes a mathematical model as a 
tool that enables the demonstration and observation of different phenomena that go beyond one’s intuition 
[15]. Perhaps this is one of the reasons why tertiary mathematics courses taught with an emphasis on 
engineering applications are considered as useful experiments [46]. As a current research on teaching 
engineering indicates, it is important to demonstrate the learners that good problems, being grounded in 
context, have many possible solutions found through a number of iterations [31] and that experiments 
appearing to be simple may not be simple at all [51]. Such demonstration can first be presented through 
the teaching of mathematics (the problems of which inherently have more than one solution) by extending 
seemingly simple mathematical explorations to include more and more challenging situations. That way, 
schoolchildren can be introduced to and even have an experience with intuitive discoveries in the STEM 
area. This can be accomplished through the use of curriculum materials emphasizing the role of 
mathematical model in testing the potential designs. 
 As mentioned in [46] in the context of preparing engineers, the use of technology as a pedagogical 
tool fosters concept learning. Consider an electronic spreadsheet. Already in the 1990s, a spreadsheet was 
singled out as a teaching tool for all engineering/science disciplines [23, 52]. Nowadays, facility at 
creating spreadsheets is required in many entry-level positions in industry for high-school graduates [20]. 
Moreover, the Principles and Standards for School Mathematics [36] include a recommendation to use a 
spreadsheet in open-ended problem-solving situations. In addition, many mathematics education 
researchers made a similar recommendation advocating a spreadsheet as a scaffolding device for the 
learning of mathematics beginning from the primary grades [40]. Indeed, evidence collected by the first 
author with collaborators in the past decade [6, 7, 13] strongly suggests that young children have a great 
potential to acquire quickly the spreadsheet-based skills. In the context of the authors’ collaboration, the 
use of a spreadsheet is particularly advantageous as it includes many features conducive for exploring the 
engineering/science concepts, which are inherently iterative, interactive, and complex. 
 Another technological tool that all teacher candidates should learn to use is The Geometer’s 
Sketchpad – a dynamic geometry program commonly available at schools across North America. The 
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appropriate use of this computer application allows for the development of the basic geometric skills that 
can be transformed into the advanced mathematical skills important for engineering applications through 
the repeated application in purposeful contexts. Like spreadsheets, dynamic geometry software includes 
many features that support posing the problems and the interactive design of solutions as the center of 
professional activity of an engineer [46]. Alternatively, one could use the recently developed (and free) 
software GeoGebra. At the secondary level, in addition to the above-mentioned tools, teacher candidates 
can learn to use computer algebra systems such as Maple, Wolfram Alpha, and The Graphing Calculator 
[16] to name just most commonly available computer applications. 
 

6. Connecting concepts across the K-16 mathematics curriculum 
 
 Through the authors’ collaboration two different routes connecting higher and lower level 
mathematical concepts as a pedagogical method in promoting STEM education have emerged. One route, 
that can be referred to as conceptual ascend, is to move gradually from early to upper grades along the K-
16 staircase by extending the concepts at each step and motivating such extension through a concrete 
activity. Through this process, a student accumulates new mathematical knowledge and STEM-related 
skills that can be applied later to the study of problems in science and engineering.  In other words, “What 
students can learn at any particular grade level depends upon what they have learned before” [19, p. 5]. 
  Another route, that can be referred to as conceptual descend, is to start with a non-trivial 
concept/problem encountered in the practice of science or engineering and gradually split it into special 
cases each of which brings about a grade-appropriate mathematical task that can be explored with or 
without a reference to the original problem. The method of conceptual descend motivates students to think 
about learning more mathematics in order to solve the problems by eliminating the simplified conditions. 
Jointly, conceptual ascend and descend form a bidirectional concept map of the whole K-16 mathematics 
teaching (Figure 1).  
 

 

Figure 1. STEM education concept map.  

 The map intends to demonstrate that the right steps at the base of the staircase are informed by 
what one needs at the top of the staircase where mathematics knowledge develops through a true 
interaction with science and engineering. Conversely, it is due to the right steps that one makes at the 
bottom of the staircase, a success at its top is possible. Only very few individuals can reach successfully 
the top of the staircase without the appropriate educational support. By analyzing and conceptualizing the 
success of these few, technology-enhanced mathematics education system oriented towards science and 
engineering that enables such success for all can be developed. Put another way, when a child first learns 
to say “thank-you” he or she does not know how helpful in the adult life this pair of words could (and 
would) be. Yet, the realization of the usefulness of this simple communicative tool becomes more and 
more apparent within more and more contexts as the child grows physically and develops cognitively.  
 

7. Illustration: Developing recursive reasoning through conceptual ascend 
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 As was mentioned above, many authentic problems arising in science and engineering are 
described by difference equations—recursive formulations of discrete concepts.  In this section, it will be 
demonstrated that discrete concepts can be encountered throughout the whole pre-college mathematics 
curricula. When taught appropriately, that is, through making bidirectional connections across the K-12 
mathematics conceptual map, they can provide students with knowledge necessary for dealing with real-
life problems involving difference equations. One such problem, offered to an undergraduate student at 
USF in the context of project-based learning of mathematics, is discussed at the end of this section. Prior 
to this discussion, it will be shown how knowing what is needed at the top of the staircase can influence 
activities along the whole staircase beginning from its first steps. 
 
 7.1. Reduction to a simpler problem. The ability to reason recursively can be fostered at the pre-
operational level by emphasizing a reduction to a simpler problem as an effective counting method. Pólya 
[43] called this problem-solving strategy ‘try a simpler problem.’ Unfortunately, some schoolteachers 
discourage their students to use this strategy by insisting on solving the given problem and seeing one’s 
reduction efforts as an unnecessary distraction.  
 Already at the kindergarten level, when building different towers out of three different color 
linking cubes [39, p. 21], a child can be helped to recognize that there are three pairs of towers that differ 
by the color of the top/middle/bottom cube (Figure 2). Each such pair differs by the arrangement of two 
cubes only. That way, a systematic reasoning of reducing a problem with three cubes to three problems 
with two cubes can be seen as a rudiment of recursive reasoning.  
 

 

Figure 2. Reduction to a simpler problem. 

 7.2. Generating counting numbers within a spreadsheet. Noting that each counting (natural) 
number is one greater than the previous number and the first number is equal to one, a second-grader can 
use a spreadsheet (Figure 3) to conceptualize the recursive nature of counting numbers by using the so-
called ostensive definition. This definition is based on the pointing at the first term (entered into cell A1: 
=1) and defining the second term in cell B1 as the previous term plus one (B1: =A1+1). Replicating the 
formula to the right across the columns to cell J1 yields a spreadsheet representation of the first ten 
counting numbers (Figure 3). In the higher grades, the definition of counting numbers in the form of the 
first-order recurrence x

n1
 x

n
1, x

1
 1, can be introduced with recourse to a spreadsheet. Similarly, 

other arithmetic sequences (e.g., even and odd numbers) can be generated through a recursive definition 
by using a spreadsheet. This prepares students for the appropriate use of a spreadsheet in modeling other, 
more complicated recursive relations. Moreover, a spreadsheet, when used in the context of generating 
recursively defined sequences, creates background over which mathematics and computer science 
intersect.  
 

 

Figure 3. Generating counting numbers through ostensive definition. 
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 7.3. Recognizing recursion in the multiplication table. The skill of interpreting and 
manipulating data presented in a tabular form is important for engineering/science applications. The 
addition and multiplication tables are the first experiences of that kind for young children. In particular, 
the concept of recursion can be emphasized through the study of the multiplication table (that begins in 
grade three) in which each product can be developed by iterating one of its factors [3]. To clarify, note 
that by setting P(x, y)  xy  each entry of the multiplication table can be expressed in the form of the 
following recursive definitions 

P(x, y)  P(x 1, y) y, P(1, y)  y,    (1) 

 P(x, y)  P(x, y 1) x, P(x,1)  x .    (2) 

Indeed, the boundary condition P(1, y)  y  means that one group of y objects contains y objects; the 

boundary condition P(x,1)  x means that x groups of single objects contain x objects. Repeatedly adding 

a group of y objects to have x such groups, in other words, by iterating y until the product P(x, y)  defined 
by formula (1) is reached, the multiplication table can be developed. Likewise, repeatedly adding a group 
of x objects to have y such groups can be interpreted as the iteration of x until the product P(x, y)defined 
by formula (2) is reached. In other words, counting by y's is an iteration by y and counting by x's is an 
iteration by x.  Figure 4 shows the case of 16  4 4  4 (41) 4 
 

 

Figure 4. Iterative structure of the multiplication table. 

 Also, the numbers 1, 4, 9, 16, 25, 36 in the main diagonal of the multiplication table (Figure 4) 
develop recursively. Seeing the table as a checkerboard, this phenomenon can be given a geometric 
interpretation: a transition from a square of the side length n (the product n n) to that of n + 1 (the 
product (n1) (n1)) requires augmentation by two rectangles that correspond to the products n1 

and (n1)1. For example, the transition from 9 to 16 can be interpreted through the chain of equalities 

4 4  3 3 31 41 3 3 2(31)1. 

In other words, the relation (n1)2  n2  2n1—a basic identity studied in algebra—can be interpreted 

as the recursive relation s
n1

 s
n
 2n1, s

1
 1, through which the numbers in the main diagonal of 

the multiplication table develop.  A pictorial representation of this recurrence is shown in Figure 6 (right). 
 

 7.4. Counting matchsticks through recursion. Counting activities are among the most 
fundamental ones in mathematics and, as mentioned above, can be considered as rudiments of business 
analysis. Recursive reasoning can be effectively applied to the counting context as well. For example, 
counting matchsticks used to construct a square (or rectangular) grid [26] is another problem that can be 

used in developing recursive reasoning already at the upper elementary level. For example, if M
n
is the 

number of matchsticks used to construct the n n  grid, then  
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M
n
 M

n1
 4n, M

1
 4 .      (3) 

In Figure 5 (which prompts a connection to the tiling problems arising in the construction industry), n = 3. 
A useful mathematical exercise is to develop a transition from recursive formula (3) to a formula that 
expresses M

n
 as a function of n. Such formula has the form 

M
n
 2n(n1)       (4) 

 and it can be proved by the method of mathematical induction, another valuable tool of discrete 
mathematics. Towards this end note that when n  1 formula (4) yields M

1
 4. Assuming that formula 

(4) holds true for n = k, proving that it is true for n = k + 1, that is, M
k1

 2(k 1)(k  2), would imply 

that formula (4) is true for any natural number n. Indeed, it follows from formula (3) and the inductive 
assumption that 

M
k1

 M
k
 4(k 1)  2k(k 1) 4(k 1)  2(k 1)(k  2). 

This completes mathematical induction proof of formula (4). 
 Note that the number of shared edges can be interpreted as the number of matchsticks if the tiles 
are linked like the linking cubes in the first example (section 7.1). 
 

 

Figure 5. Counting matchsticks through recursion. 
 
 7.5. Counting activities on a geoboard. A grid made of matchsticks can then be turned into a 
geoboard—the basic learning environment for exploring geometry across the grades. As was mentioned 
above, among many applications of geometry are problems arising in robotic navigation. Utilizing a 
geoboard, one can count other entities associated with the geometric objects constructed. For example, 
using either physical or computational geoboard, one can construct evolving isosceles triangles and 
squares and count pegs on the border and inside each of the shapes (Figure 6). Both the smallest isosceles 
triangle and square have four pegs on their border and no internal pegs. As the triangles and squares grow, 
so do the number of border and the number of interior pegs. Both geometric shapes and the number of 

pegs associated with them develop recursively. The sequences of border pegs, B
n
, and internal pegs, I

n
, 

are 4, 8, 12, 16, 20, 24, ...  and  0, 1, 4, 9, 16, 25, ... , respectively. One can recognize a recursive nature of 

these sequences and thus the corresponding definitions can be developed: B
n1

 B
n
 4, B

1
 4 , and 

I
n1

 I
n
 2n1, I

1
 0. From here, closed formulas for B

n
 and I

n
 can also be derived: B

n
 4n and 

I
n
 (n1)2 . 
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Figure 6. Evolving isosceles triangles and squares on a geoboard. 

 
Equilateral triangles, like squares, develop recursively as a triangle of side length n is augmented by 

an isosceles trapezoid with the bases n and n + 1 and height 
3

2
. These explorations can be carried out by 

the joint use of a spreadsheet and The Geometer’s Sketchpad. It should be noted that a grid can be used in 
calculating areas of irregular shapes through an approximation—a problem frequently arising in 
engineering contexts. 

 

 

Figure 7. Evolving right-angled triangles on a geoboard. 

 
 7.6. Recursion and polygonal numbers. A different number sequence can be developed if one 

considers evolving right-angled triangles on a geoboard and counts all pegs associated with a triangle at 
each step without distinguishing between border and internal pegs. The sequence 1, 3, 6, 10, 15, 21, ... , 
known already at the elementary level [38, p. 14] as triangular numbers, also develops recursively through 

the formula t
n
 t

n1
 n, t

1
 1. Another related sequence is 1, 4, 9, 16, 25, ... , called square numbers, has 

the following recursive representation s
n
 s

n1
 2n1, s

1
 1 . Just like counting numbers, both 

sequences can be generated within a spreadsheet through the ostensive definition by pointing at the 
appropriate cells. Their closed formulas can be found by using computer algebra system Maple as shown 

in Figure 8. It is important to emphasize that triangular numbers t
n

are the sums of the first n counting 

numbers (as shown in Figure 7 for n = 7) 

t
n
 k

k1

n

 .        (5) 

Likewise, square numbers s
n
 are the sums of the first n odd numbers (as shown in Figure 6 for n = 6) 

s
n
 (2k

k1

n

 1) .       (6) 
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Figure 8. Computing closed formulas using Maple. 

 

Interestingly, both sequences can be described through the same third-order recurrence 

x
n
 3(x

n1
 x

n2
) x

n3        (7) 

with initial conditions x
1
 1, x

2
 3, x

3
 6  for tn and x

1
 1, x

2
 4, x

3
 9  for sn. A geometric 

representation of relation (7) in the case of the fourth triangular number t
4

is shown in Figure 9.  

 

 

Figure 9. Recursive relation (7) for the fourth triangular number. 

 In fact, recurrence (7) holds true for all polygonal numbers P(m, n) with the initial 

conditions x
1
 P(m,1), x

2
 P(m,3), x

3
 P(m,3). At the same time, a closed formula for a polygonal 

number of side m and rank n is 

  
P(m,n) 

n(n1)

2
(m 2) n . 

The spreadsheet pictured in Figure 10 provides numerical evidence of the equivalence of different 
symbolic representations of polygonal numbers for m = 3, 4, 5, 6. This example, in particular, 
demonstrates the importance of initial conditions in defining recursive relations. 
 

 

Figure 10. Relation (7) for triangular, square, pentagonal and hexagonal numbers. 
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 7.7. Pick’s formula as a double recursion. Let An be the area of an isosceles triangle/square with 
Bn and In pegs. Then, according to Pick’s formula [22],

  

  
A

n1


B
n

2
 I

n
 2n, B

1
 4, I

1
 0,  

where B
n1

 B
n
 4, B

1
 4 , and I

n1
 I

n
 2n1, I

1
 0. One can see how a recursive formula may 

include components which satisfy recursive definitions as well (compare to section 9.11.1 below). 
 

 7.8. Fibonacci numbers. One of the most common uses of a computer in high school 
mathematics for demonstrating the recursive nature of calculations is to generate Fibonacci numbers 1, 1, 
2, 3, 5, 8, 13, 21, ... within a spreadsheet. This remarkable number sequence and its recursive structure can 
be introduced earlier than it is being done now (i.e., earlier than in high school) through the following 
hands-on task [3, p. 114] (that incorporates manupulative materials familiar to young learners): 
 Find the number of different arrangements of one, two, three, four, and so on two-sided (red-
yellow) counters in which no two red counters appear in a row. 

Indeed, the number of such arrangements of, say, four counters is the sum of those with two and 
three counters, respectively (Figure 11). Here the idea of reduction to a simpler problem, already familiar 
from the kindeegarten level, comes into play. Just like all the towers constructed out of three cubes of 
different color were put in three groups depending on the color of the top cube, all the arrangements of 
four counters can be put in two groups depending on the colour of the far-right counter. When the far-right 
counter is red, its immediate neighbour has to be yellow; thus only two counters have to be arranged 
according to the rules of the task; this can be done in three ways. When the far-right counter is yellow, its 
immediate neighbour may be of either colour. This implies that the number of the arrangements of 
counters in the second group equals to that with three counters. In a numeric form, the diagram of Figure 
11 can be expressed as 8  35 . Obvisously, there are two ways to arrange one counter; therefore, 
beginning from the third number, Fibonacci numbers provide the solution to the above hands-on task. 

 

 
Figure 11. Reduction to a simpler problem: 3 + 5 = 8. 

The recursive structure of Fibonacci numbers can be described in the form of the following 
second-order difference equation  

F
n
 F

n1
 F

n2  for n ≥ 2 and F
0
 F

1
 1.     (8) 

Relation (8) can be shown to describe the growth of the population of rabits breeding in ideal 
circumstances, something that connects recurrences to a classic real-life problem (studied by Fibonacci in 
the 13th century) though not necessarily of an authentic nature. However, the realization of such a 
connection prepares studens for work on authentic research problems dealing with the calculation of 
growth of different speices like the one described below at the conculusion of the conceptual ascend. 
Furthermore, in the context of Fibonacci numbers one can learn about the qualitative difference between 
recursive and closed formulas for discrete concepts—while the recursive form may look rather simple, the 
closed form may be very complicated or even unknown. In particular, a closed formula for Fibonacci 
numbers (the derivation of which is included in section 7.10) has the form 

F
n


1

5
[(

1 5

2
)n1  (

1 5

2
)n1] , n = 0, 1, 2, …  .    (9) 
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Formula (9) is commonly referred to as Binet’s formula named after Jacques Binet—a French 
mathematician of the 19th century. One can be surprised to see that the computerization (e.g., using a 
spreadsheet) of formula  (9) produces whole numbers only. 
 

 7.9. Recursion in Pascal’s triangle. The right triangle pictured in Figure 12 can be turned into 
Pascal’s triangle if one counts the number of ways to reach an internal peg starting from the far-left vertex 
when travelling either North or East only. For example, in order to reach any internal peg in the second 
row of the pegs (to which pegs A and B belong) requires one to make two decisions: where to go North 

and where to go East. In particular, there are C
5
2  10 ways to reach peg A (column 5 and row 2) and 

C
4
2  6 ways to reach peg B (column 4 and row 2). Similarly, one has to make three choices to reach a 

peg in the third (internal) row. In particular, there are C
4
3  4 ways to reach point D. In general, the peg 

(n, k), n  k , located at the intersection of the n-th internal column and the k-th internal row of the 

evolving triangle shown in Figure 12 can be reached in C
n
k  ways. The recursive development of the 

numbers C
n
k  known as the binomial coefficients can be revealed through the understanding that one can 

reach the peg (n, k) in the following two ways—either through the peg (n – 1, k) or through the peg (n – 1, 
k – 1). That is, the relation 

C
n
k  C

n1
k C

n1
k1 

betweeen the entries of Pascal’s triangle holds true.  
 

 

Figure 12. Pascal’s triangle on a geoboard. 

 Finally, by travelling North-West only strating from a bottom border peg of the triangle and 
adding the binomial coefficients located at the pegs which are being passed, one can arrive at Fibonacci 
numbers F

n
 and through this process the identity  

  C
n
0 C

n1
1 C

n2
2  ...C

nr
r  F

n
, n = 0, 1, 2, ... ,   (10) 

where 
  
r  [

n

2
], can be developed.1  

																																																								
1	Hereafter, [x] denotes the largest integer smaller than or equal to x. 
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 7.10. Fibonacci numbers revisited. Consider the function F(x)  F
n
xn

n0



 , where Fn are 

Fibonacci numbers satisfying recurrence relation (8). Noting that
 

F
n1

n2



 xn1  F
n

n1



 xn  F(x)1 and 

F
n2

n2



 xn2  F
n

n0



 xn  F(x) , one can write 

F(x)  1 x  (F
n1

n2



  F
n2

)xn  1 x  x F
n1

n2



 xn1  x2 F
n2

n2



 xn2

 1 x  x[F(x)1] x2F(x)  1 xF(x) x2F(x).

 

Hence, using the rule of summation of geometric series, the binomial theorem, and the substitution n = k + 
r yields the so-called generating function for Fibonacci numbers 

F(x) 
1

1 (x  x2 )
 xk

k0



 (1 x)k  xk

k0



 C
k
r

r0

k

 xr  xn

n0



 C
nr
r

r0

[n/2]

 .  (11) 

Thus, due to the uniqueness of the power series expansion about x = 0, 

  F
n
 C

nr
r

r0

[n/2]

 .       (12) 

Formula (12) is the exact replica of formula  (10) already discovered within Pascal’s triangle. 
 In addition, using the function F(x) defined in (11) makes it possible to derive formula (9) without 
much difficulty. To this end, note that the characteristic equation of difference equation (8) has the form 

x2  x 1 0 the roots of which are x
1


1 5

2
 and x

2


1 5

2
 . Due to the following factorization  

1 x  x2  x2[(x1)2  (x1) 1] x2(x1  x
1
)(x1  x

2
)  (1 x

1
x)(1 x

2
x) 

and the equality x
1
 x

2
 5, the function F(x) can be decomposed in partial fractions as follows 

F(x) 
1

1 x  x2


1

(1 x
1
x)(1 x

2
x)


1

5
(

x
1

1 x
1
x


x
2

1 x
2
x

) . 

Using, once again, the rule of summation of geometric series yields 

F(x) 
x1

5
(x

1
x)n

n0



 
x2

5
(x

2
x)n

n0



 
1

5n0



 [(
1 5

2
)n1  (

1 5

2
)n1]xn. 

As F(x)  F
n
xn

n0



 , the uniqueness of the power series expansion about x = 0 implies formula (9). One 

can also establish formula (9) through the direct use of the characteristic equation rather than using the 

method of generating functions. Namely, formula (9) can be found as the unique linear combination of x
1
n  

and x
2
n  that satisfies the initial conditions F

0
 F

1
 1. 

Furthermore, any Fibonacci number can be represented through a sum of consecutive Fibonacci 
numbers. Using mathematical induction, one can prove that  

  
F

n2
 F

l
l0

n

 1.       (13) 
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Setting n = 0 in (13) yields F
2
 F

0
1—a true identity. Assuming (13) to be true for n  k , one can 

show that it remains true for n  k 1. Indeed,  

F
k3

 F
k2

 F
k1

 F
l

l0

k

 1 F
k1

 F
l

l0

k1

 1. 

In other words, any Fibonacci number is a linear combination of a sum of consecutive Fibonacci numbers 
starting from one. 
 

 7.11. Recurrence relations in authentic science research. Finally, we present a modified 
version of the mouse population project associated with Alzheimer's research. The original project (see 
[25] for details) deals with the study of transgenic mice population and focuses, given a budget limitation, 
on a financial feasibility of purchasing two parent mice (male and female) and raising a population of 
mice of a specified size. To this end, one should come up with a recursive algorithm defining the 
population size as a function of time, determine the amount of time required for the population of mice to 
reach a given quantity, and see if one can afford the resulting population of offspring for this amount of 
time. Laboratory data lead to several assumptions that underlie an idealized mathematical model, namely: 
the average length of gestation period (20 days), its relation to the period of sexual maturation (60 days), 
and the litter size of offspring (3 mails and 3 females). Under these assumptions, one can easily find an 
approximate “power” solution to the mice population problem. However, an effective approach to this 
problem, which leads to the closed formula for the mice population, involves the theory of recurrence 
relations. 

  7.11.1. Developing a recursive model. To begin, note that the population of mice 
depends on one’s interpretation of the initial purchase of the parent couple. This interpretation would be 
reflected in the initial conditions of a recursive model to be constructed. Namely, one can buy either two 
separate adult mice (male and female) or a family couple. In the former case, six babies will appear in 20 
days according to the considered model, in the second case, it can happen earlier (actually, it can be any 
number of days not greater than 20). The solution that follows is based on the case of two separate adult 
mice purchase2.  

Let m
n
and f

n
be, respectively, the number of mice and reproducing females at the time tn. The time 

unit is 20 days, thus t
n
 20n . Because each of the f

n1
 mature (reproducing) female gives birth to six 

mice at the time t
n

, the equation 

m
n
 m

n1
 6 f

n1
, m

0
 2, f

0
 1    (14) 

is a recurrence relation for the number of mice at that point of time. From (14), it follows that 

   m
n
 2 6 f

k
k0

n1

 ,  n = 1, 2, … .    (15) 

Indeed, 

m
n
 m

n1
 6 f

n1
 m

n2
 6 f

n2
 6 f

n1
 m

n3
 6 f

n3
 6 f

n2
 6 f

n1

 m
0
 6( f

0
 f

1
 ... f

n1
)  2 6 f

k
k0

n1

 .
 

 

																																																								
2 Some “average” initial conditions generated by the case of the parent couple purchase are used in [25]. 

Obviously, the complexity of a recurrence model increases if additional restrictions are to be taken into 
consideration. For example, one can consider the case when reproducing females die by the end of the sixth 
reproduction period. 	
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Thus, the problem of determining the population size m
n
 at the time t

n
 is reduced to the need to find the 

sequence f
n
. Because it takes three time periods for a female to mature, the equation 

f
n
 f

n1
 3 f

n3
, f

1
 f

2
 f

3
 1, n  4,5,...   .                          (16)  

is a recurrence relation for the number of mature females at the time t
n

. Indeed, because f
n3

 represents 

those females who were mature at the time t
n3

, only half of their offspring (that is, three females) are 

able to reproduce at the time t
n

. Also, the reproducing females (except the original purchased mouse) 

cannot immediately become impregnated for they need 60 days to mature.  
 One can use relations (14) and (16) to prove by induction that  
    m

n
 6 2 f

n2
 ,    n =1, 2, … .                               (17) 

Indeed, setting n = 1 in (17) implies m
1
 8  because, according to (16), f

3
 1. It follows from (14) that 

m
1
 8 ,  thus formula (17) holds for n = 1.  If (17) holds for n  k 1, i.e., assuming m

k
 6 2 f

k2
 

for k 1 and then setting n  k 1in (14) and n  k  3in (16) yields 

m
k1

 m
k
 6 f

k
 6 2 f

k2
 6 f

k
 6 2( f

k2
 3 f

k
)  6 2 f

k3
. 

This completes inductive proof of formula (17).  
 Furthermore, it follows from (15) and (17) that  

f
n2

 3 f
k

k0

n1

  2, n  1,2,3,... .         (18) 

Formula (18) may be considered as an analogue of formula (13) established for Fibonacci numbers. One 
can explore if the representation of recursively defined sequences as a linear combination of a sum of its 
consecutive terms starting from the first one holds true in other cases. For example, given positive integer 
n, one can develop an algorithm of finding the smallest triangular number (the sum of consecutive integers 
starting from one) greater than or equal to n. As discussed elsewhere [1], finding such a triangular number 
may be motivated by a real-life context. 
 
       7.11.2. Spreadsheet modeling approach. Note that recurrence relations (14) and (16) (as 
well as (16) and (17)) can be modeled numerically within a spreadsheet directly without using any 

additional mathematical tools. Here are some values of f
n
and m

n
, respectively, for n = 0, 1., …, 10:  1, 

1, 1, 1, 4, 7, 10, 22, 43, 73, 139; and 2, 8, 14, 20, 26, 50, 92, 152, 284, 542, 980. These numbers will be 
used below to verify theoretical results. 
 

  7.11.3. Generating function approach. The method of generating functions, already 

employed in section 7.10, can be used again to express f
n
 and m

n
 algebraically through the binomial 

coefficients.  Let f (x)  f
n
xn

n0



 . Towards this end, using recurrence relation and initial conditions 

defined by (16) we have 

f (x)  1 x  x2  x3  ( f
n1
 3 f

n3
)xn

n4





 1 x  x2  x3  x f
n
xn

n3



  3x3 f
n
xn

n1



  1 3x3  (x  3x3) f (x) .
 

(19) 

From (19), using the corresponding geometric series, binomial theorem, and the substitution 

n  k  2r , we obtain the generating function for the sequence f
n
 as follows 
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f (x) 
1 3x3

1 (x  3x3)
 (1 3x3) xk (1 3x2 )xk

k0





 (1 3x3) xk

k0



 C
k
r 3r x2r

r0

k

  (1 3x3) xn

n0



 C
n2r
r

r0

[n/3]

 3r .
      

(20)  

            

That is, 

f (x)  (1 3x3) xn

n0



 C
n2r
r

r0

[n/3]

 3r .

      

(21) 

 

 

Formula (21) implies the following representation of f
n
 through binomial coefficients 

f
n
 C

n2r
r

r0

[n/3]

 3r  3 C
n32r
r

r0

[n/3]1

 3r

 C
n2[n/3]
[n/3] 3[n/3]  (C

n2r
r

r0

[n/3]1

  3C
n12r
r )3r ,                        

(22) 

n  0,1,2,... . 
 

In turn, relations (17) and (22) imply the binomial presentation for m
n
 

m
n
 6 2C

n22[(n2)/3]
[(n2)/3] 3[(n2)/3]  2 (C

n22r
r

r0

[(n2)/3]1

  3C
n12r
r ) 3r ,

n  0,1,2,... .                   
(23)  

For instance, plugging n = 5 into (23) yields 

m
5
 6 2C

3
2 32  2[(C

7
0  3C

4
0 ) 30  (C

5
1  3C

2
1) 3] 65410  50 . 

 
As was shown above, spreadsheet modeling of relations (14) and (16) gives the same result. Furthermore, 

relation (23) can be modeled within a spreadsheet to confirm numerically two different
approaches to the 

calculation of the mice population size. Note that a sum is considered to be equal zero when its upper 
bound is less than its lower bound thus making formulas (22) and (23) work for n = 0.

  

  7.11.4. Characteristic equation approach. To obtain formulas for m
n
and f

n
 without 

the sums of binomial coefficients, the characteristic equation method can be used. Just like in the case of 
Fibonacci numbers, this standard approach to solving recurrence relations allows one to represent fn in 
(16) as a linear combination of the nth powers of the roots of the auxiliary (characteristic) equation  

                     x3  x2  3 .                                                                           (24) 

Equation (24) has three roots: one real root a and two complex conjugates b and b  (see, e.g., [30] and also 
[25]). Solving the cubic equation yields the real root 

a 
y1/3 1 y1/3

3
, where y  41.5 4.5 85 ,             (25) 

and then the complex root b as a function of a 
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b 
a  a2  i 9a  3

2a
 .    (26) 

Note that (26) is easily implied by the factorization x3  x2  3 (x  a)[x2  (a 1)x 
3

a
]  and the 

identity a3  a2  3. 

 Representing f
n
as a linear combination of the nth powers of a, b, and b yields 

f
n
 uan  vbn  wb n . 

As f
n
 is real for all n, it follows that 

f
n
 f

n
 x

1
an (x

2
bn  x

3
b n )  x

1
an [(x

2
 x

3
)]bn]. 

Setting   x
1
 and   x

2
 x

3
yields 

   fn  an (bn ), n ≥ 1 ,                                      (27)   

a (b)  a2 (b2 ) a3 (b3)  1 .   (28) 

The exact formulas for fn and mn (n = 1, 2, …) implied by relations (25)-(28) and (17) in terms of the 
constant a  are  

fn 
1

a2  9
an2  6 1

ai

9a  3







1 a  i 9a  3 / a

2











n1
























,  (29) 

mn  6
2

a2  9
an4  6 1

ai

9a  3







1 a  i 9a  3 / a

2











n1
























 .           (30) 

 

 Plugging n = 10 into (29) and (30) and using a spreadsheet as a computing tool yield 

exactly f
10
 139 and m

10
 980—the values already listed in section 9.11.2. 

 Note that formulas (29) and (30) do not include the values f
0
 and m

0
. This is due to the fact that 

the initial conditions f
k
1 (k  0,1,2,3)  cannot be satisfied by any combination of the available 

parameters  , , and   in (27). This observation becomes more obvious if one notes that the 
generating function in (20) is not a proper rational function. Such problem has not occurred in the case of 
Fibonacci numbers for the generating function in (11) is a proper rational function. As 

f (x) 
1 3x3

1 x  3x3
 1

x

1 x  3x3
, 

the constant term f
0
 1 does not depend on the roots of characteristic equation (24). Hence, 

f
n
xn

n1



  f (x)1
x

(1 ax)(1 bx)(1 bx)


A

1 ax


B

1 bx


C

1 bx
. 

As  

A(1 bx)(1 bx) B(1 ax)(1 bx)C(1 ax)(1 bx)  x , 

it follows  
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A 
a

| a  b |2
, B 

b

[2(b a)b]
, C  B, 

and f
n
 Aan  2[Bbn] for n = 1, 2, 3, .... , which is equivalent to (29). 

 

8. Concluding remarks 

 One may argue that computing technology commonly available nowadays in a variety of 
educational settings has reduced the need for teaching formal mathematical methods like those used in 
developing rather sophisticated representations of recursive sequences f

n  and m
n
. Indeed, as mentioned 

in section 7.11.2, the use of a spreadsheet allows one to get a numerical solution of the mice population 
size problem without much difficulty. Consequently, one may doubt the importance of preparing students 
to study mathematics conceptually at the lower levels of the map shown in Figure 1. The concluding 
remarks that follow are designed to counter such perspectives on mathematics education and justify the 
need for teaching and learning mathematical theory which is supported rather than replaced by powerful 
computational tools.  

To begin, note that from an educational perspective, binomial representations of f
n

 and m
n
 

demonstrate one of the most
 
profound notions of mathematics epistemology—the recurring structure of 

mathematical concepts on different levels of abstraction that preserves the unity of mathematics despite its 
enormous growth [14]. At the early grades, some rudiments of binomial summation formulas can be 
developed using pictorial representations of the sums of numbers as shown in Figures 6 and 7. Likewise, 
formulas (5) and (6) can be considered as precursors to formulas (12), (22), and (23). Furthermore, 
formulas (22) and (23), developed through the method of generating functions, imply (and thus confirm) 
formula (17) found through other means and then proved by induction. As the National Council of 
Teachers of Mathematics put it, “When students can see the connections across content areas, they 
develop a view of mathematics as an integrated whole” [36, p. 355]. On a practical level, formula (23) 
enables one to find the smallest n for which the mice population size m

n
 is greater or equal to the 

specified amount.  
The educational aspect of formulas (29) and (30) can also be revealed. The fact that f

n
 and m

n
 

defined through complex numbers turn out to be natural numbers when calculated within a spreadsheet (or 
through other computational tools) for each n greatly fascinates students. These calculations demonstrate a 
robust interplay between mathematics and technology—two major pillars of STEM education—and show 
how one can use computing to verify theoretical results. Furthermore, it follows from (29), (30), and (25) 

that 
  
lim
n

[m
n

/ f
n
]  2a2  6.9468...  . Here is a simple, yet powerful application of this limit. Assume that 

m
n
 is not known while f

n
 is known for sufficiently large n. Instead of counting all the mice, one can use 

the approximation m
n
 7 f

n
. Indeed, spreadsheet modeling (section 9.11.2) yields m

10
 980  and 

f
10
 139, hence 

 

980

139
 7.0504... . Some approximate formulas in the trigonometric form are good for 

applications and education also. Equations (29) and (30) allow one to have approximations for f
n
and m

n
 

(without using complex numbers) to any required degree of accuracy. For example,  

f
n
 0.5189765(1.863707)n1  0.5215636(1.268738)n1 cos[157.2605 109.9001(n1)] 

and 

mn  6 2 {0.5189765(1.863707)n1  0.5215636(1.268738)n1 cos[157.2605 109.9001(n1)]}. 

Once again, computing yields f
10
139.0003 and m

10
 980.002 —pretty good approximations to the 

exact values found in section 7.11.2. 
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 Although the material of section 7 presented an example of conceptual ascend, it could also serve 

to illustrate conceptual descend. Indeed, when n = 1 formula (29) yields f
1


a3  6

a2  9
 and this may prompt 

a simple, yet quite an educative computational task to show that f
1
 1. An educative value of such a task 

is to show how a complex arithmetical combination of irrational numbers is in fact a whole number. At a 
more basic level, one may recall or can be asked to show that division of fractions might lead to a whole 

number. Another task descending from formula (29) is to prove that if 
a3  6

a2  9
 1 then a is a root of 

equation (24). Likewise, as f
2
 f

3
 1, one can be asked to prove that setting n = 2 (or n = 3) in formula 

(29) implies that a, once again, satisfies equation (24). Similarly, formula (29) can be explored with other 
values of n. 
 A simple task of that kind may bring about many similar tasks when a real root of an algebraic 
equation of degree higher than two satisfies other algebraic equations. This leads to a problem posing 
activity—“the creation of a new problem from a situation or experience” [49, p. 20]. Such a situation 
and/or experience originates at the top of the conceptual map of Figure 1 and it is the notion of conceptual 
descend that results in the creation of a new problem. Thereby, one can say that the notion of conceptual 
descend can be used as a springboard into mathematical problem posing—another important tool of 
STEM education. The discussion of the use of technology in problem posing is, however, beyond the 
scope of this article. 
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