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An investigation of global existence of the solution of
fractional reaction-diffusion system

Nabila BarrouK'] Igbal M. Batiha}] and Adel Ouannad

Abstract. This paper investigates the existence of the solution for one
of the most important fractional partial differential problems called frac-
tional reaction-diffusion system. In particular, with the use of combining
the compact semigroup methods and some L'-estimates, we prove the
global existence of the solution for the fractional reaction-diffusion sys-
tem. Our investigation can be applied to a wide class of fractional partial
differential equations even if they contain nonlinear terms in their con-
structions.
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1. Introduction

In this paper, we aim to study the following nonlinear parabolic system:

% - dlAwl = f(¢17¢2) ) in ]O,"‘OO[ X Q,
87’¢t2 + d2 (_A)ﬂ wQ =9 (7/)171/’2) ) in ]07 +OO[ X Q,
(1.1) & 1 O

877]:677’]:0’ 01”/)1:1/)2:0’ in ]O7+OO[X697

$1(0,.) =1, (), $2(0,.) =g, (), nQ,

where €2 is a regular and bounded domain of R™ with boundary 092, n > 1,
1 = 1 (t, ), Y2 = 2 (t,z) are real-valued functions such that x €  and
t > 0, whereas (fA)‘s is a nonlocal operator in which 0 < § < 1, (§ = « or f),
while dy, do are two nonnegative values, and f, g are two functions so that they
are "regular enough” [I7, [I8]. Herein, it should be noted that the initial data
are assumed to be continuous and nonnegative, whereas the local existence of
the solution (11, 12) is classical in times. Such a solution is also nonnegative
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whenever 11, and 1y, are so. In the same regard, concerning with problem
(1.1), we assume the following hypothesis:

e The two functions v;, and 9, are nonnegative such that:

(12) ¢10a ¢20 S Ll (Q) .
e The two functions f and g are quasi-positive, i.e.,
(13) f (Oa¢2) 2 0) g (¢17O) Z Oa v¢1a¢2 2 0.

e There exists a nonnegative constant C' independent of (£1,&2) such that:
(L4) f(€1.62) +9(&1,6) <C (& +&), for everything (61,&) € RY.
o We have:
(1.5) F(61,6) <C (& +&)forall (£1,6) € RY.

The notion of replacing the anomalous diffusion operator by the standard
Laplacian operator (—A) was firstly studied in one-dimensional space. Alikakos

[1] showed the existence of global bounded solutions of the considered problem
2
in the case of f(¥1,12) = —g(¢¥1,12) = — 19§, for 1 < 0 < i The

n
extension of this result for o > 1 was obtained by Masuda [I9]. Then, Haraux
and Youkana [I5] generalized the result of Masuda via the functional of Lya-
punov by putting f (¢1,12) = g (¥1,1%2) = =101 U (), where ¥ is a nonlinear

function satisfying the condition:
log (1+ W
li [log ( (¥2))]

=0.
P2 —r+o00 ¢2

Barabanova [3] generalized the result of Haraux and Youkana by addressing the
global existence of nonnegative solutions of a reaction-diffusion equation with
exponential nonlinearity. It has been shown later that there is also another very
powerful method for dealing with the solvability of the considered problem.
This method, which we will use in this work, relies on the compact semigroups.
For a better understanding, we refer the reader to the works of Moumeni and
Barrouk [20] 2], and for more, see [25, 24] [8 [I2]. Later on, a more general
model was studied by Haraux and Kirane [I4]. They took different diffusion
coefficients for the two equations and certain general nonlinear terms. They
also proved the existence of global bounded solutions and investigated their
asymptotic behavior. Equally, Hnaien et al. [16] proved the existence of a
local solution, global existence and asymptotic behavior of solutions for system
when f(¢1,92) = —A1¢2 and g (Y1, ¢2) = M2 — wipo. However,
for further studies about the previous discussion, the reader may consult the
references [7], 2], 4 10} 6] @, [5]

This paper is organized as follows. In Section [2| we present some defini-
tions and preliminaries. The existence of a local solution, positivity and global
existence for particular system are studied in Section [3] In Section [4] we prove
the global existence of a solution for the fractional reaction-diffusion system,
followed by Section [p| that introduces the conclusions of this work.
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2. Preliminaries

In this part, some preliminaries and overview of the local existence and
global existence of a solution for fractional reaction-diffusion system are illus-
trated. This will pave the way to introduce our findings later on.

Definition 2.1. Let F (11,%2) € X, where X is a Banach space. The function
F' is locally Lipschitz if for all ¢; > 0 and all constant k£ > 0, there exists a
constant L (k,t;) > 0 such that the following condition:

HF(%,%) - F (@1#&2)“ < L’Wh%) - (&1#&2)’7

m%ﬁﬁwﬁnmu¢hwg(¢h@)eRwauhmmww\gh
and t € [0,t1] for all £ > 0.

(1[)1,1/;2)‘ <k

Lemma 2.2. Let T (t) be a semigroup engendered by the m-dissipative operator
A in the Banach space X. Suppose that F' is a function locally Lipschitz and
wo € X is the representation of the initial data. Then the problem:

we (0,71, D(A)nC ([0, T],X),

d
(2.1) Aﬁ—Aw:FML

w (0) = 0.

admits a unique local solution w verifying
t
w(®t)=T(t)wo +/ T({t—7)F(w(r))dr, Vt€10,T).
0

Theorem 2.3. Consider the following classical boundary-eigenvalue system for
the fractional power of Laplacian in Q0 with homogeneous Neumann boundary
condition:

(=A)% o = AMpr, inQ,

— =0, on €,

where Q is a open bounded domain in RN and

D)) = { e 220), G =0 1(-8)" Yl < 420}

with N
« 2 o0 «
I=8)" Yl g2y =D, M (00

Then, this system has a countable system of eigenvalues of the Laplacian op-
erator in L? () with homogeneous Neumann boundary condition, where 0 <
c <A <A< ... <A <...such that \; — oo as j — oo, and @y, are the
corresponding eigenvectors for k=1,2,...,4+00.
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In light of the above preliminaries, it should be noted that:

)= Zkl (¥ pr) ks

for ¢» € D ((—A)™). Accordingly, with the use of the integration by parts, we
can obtain the following formula:

(2.2) /Qu(x) (—A) v (z)dx = /Qv(x) (—A)* u (z) du,

for u,v € D ((—A)%).

Lemma 2.4. [71] Let 0 € C§° (Q) such that 6 > 0. Then, there is a nonnega-
tive function ® € CY2(Q) such that ® is a solution of the system:

—P;, —dADP =0 on Q,
(2.3) D (t,x)=0 on (0,T) x 0,
O (T,z2)=0 on L.

It is worth mentioning here that, for all g € ]1,00[ and ¢’ € ]1, 00], we have:

1 1
q§q'and2(qq/> (n+2) >0,

which implies that there exists a nonnegative constant ¢, independent of 6, such
that:

(2.4) 1@l Lo (r) < €lBllLaqyry -

In addition, for all wy € L' (2) and h € L! (Q), we have the following equalities:

(2.5) /Q (T (1) wo (x)) Odwdt /Q wo (2) ® (0, ) da,

and

(2.6) /Q ( /0 tT(tT)h(T,x)dT> fdzdt = /Q h(r,2) ® (r,z) dadr.

In this work, the compactness of the operator B should be addressed. From
this point of view, we introduce next how we can define this operator, followed
by some basic facts related to the compactness.

B(F) () :A T(t—7)F(w(r))dr, ¥t €[0,T).

Theorem 2.5 (Dunford—Pettis [13]). Let F be a bounded set in L' (2). Then
F has a compact closure in the weak topology o (Ll,LOO) if and only if F is
equi-integrable, i.e.,

(a) {Vs>0,35>0:/ |f| < e,VA CQ, measurable with |A| <5,Vf€f},
A
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and

(b) {Va >0, Jw C Q, measurable with |w| < oo : / Ifl <e, Vfe F}.

Q\w

Theorem 2.6 (|20, 21} 22| 23]). If for allt > 0, the operators T (t) are compact,
then B is compact of L* ([0,T],X) in L' ([0,T], X).
Remark 2.7. The semigroup T (t) generated by the operator d (—A)5 is compact
in L' (Q).
3. Study of a particular system

This section is divided into three subsections so that the first one aims to
deal with the local existence of a solution for a first-order system derived from
system ([L.I), then the positivity of such solution will be discussed, followed by
exploring the global existence of the solution of the derived system.

3.1. Local existence of a particular system

In this subsection, we intend to discuss the local existence of a solution of a
first-order system derived from system (1.1]). In this connection, we define the
functions ¢ and 35 by:

Y1, = min (1,,n), and ¥y = min (Pg,,n),
for all n > 0. It is clear that 97 and ¢35 verify assumption (1.2)), i.e.,
iy € LY (Q) andy}, >0, ¢ > 0.

Now, it is a suitable time to convert system (1.1) to an abstract first-order
system in the Banach space X = L1 () x L! (Q) of the form:

OWn _ Aw, = F (wy,) in [0,T[x Q,

ot
(3.1) BBL; =0, orw, =0 in [0,T]x 99,
Wy, (0,+) = wp, (+) in Q,
where w, = (Y7, 9%), wy, = (V7,,¥5,), F = (f,g), and the operator A is
defined as:
di A 0
A=
( 0 —dy(-0) > ’
where

D (A) = {w, € L' (@) x L' () + (Aut, (-8) v3) e LN (@) x L' (@)}
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It is worth mentioning that system (3.1) can be returned back to the shape
of system ([2.1), which let us confirm that if (¢7,4%) is a solution of system
(3.1)), then this solution will satisfy the following integral equations:

WO=T 0w+ [ Tt 1) 0 ()
(3.2) 0

t

O =T, + [ Tolt-m)gWl (1).v3 () dr,
0
where T3 (t) and T3 (t) are the semigroups of contractions in L! () generated
by the operator dyA and —dy (—A)”.

Theorem 3.1. There exists Tmax > 0 such that (Y7, ¥5) is a local solution of
system , for all t € [0, Tinax)-

Proof. Due to T (t) and T (¢) are semigroups of contractions and as F is
locally Lipschitz in which 0 < 47,45 < n, then IT},ax > 0 such that (47, v5)
is a local solution of system (3.1]) on [0, Tax]- O

Theorem 3.2. Let ¢ 9% € L' (). Then there exists a mazimal time
Tmax > 0 and a unique solution (Y7, ¢5) € C ([0, Tyax), L' () x L' (Q)) of
system such that either

Tmax = 400,
or

Tonax < 00 and T (67 ()] + 165 (1)) = +oc.

> L max

Proof. For arbitrary T' > 0, we define the following Banach space::
Br = {(¥1,¥5) € C([0,T], L (@) x L' () = (¥, )]l < 2| (1, ¢5,) ||}

such that 2 ||(¢7,,¥5 )|| = R, where ||| := [[[/ o (2) and [|-]| is the norm of
Er defined by:

(o1 oI == 1T Ml oo 0,77, oo () F 192 1| oo (0,77, 20 () -

Next, for every (¢, ¢%) € Er, we define:

v (w?a wg) = (\Ill (w?a ¢§L) , Uo ('(/){La wg)) )
where for ¢t € [0,7]. That is,

t

Wy (67, 03) = T (8) 67, + / (= 7) £ (4 (7) 05 ()

t

Wy (7, 03) = T (£) 45, + / ot =) g (R (7). (7)) dr.
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Now, we aim to prove the local existence of a solution of system by the
Banach fixed point theorem. To this purpose, we have to address two claims:
Claim 1: U (¢7,9%) € Er.

To address this claim, we let (¢7, %) € Er to obtain, by maximum principle,
the following inequalities:

W1 (7 )|l

IN

[93ulloc + € (1Nl + 195 100) T
193 lloe +€ (1ot log + 145 1)

IN

Similarly, we have:

192 (07,950 < 195, [l +C (195 oo + 1[5, ]1) T

Consequently, we obtain:

2@t o)l < 95l + 115l +2C (198 o + 115, ]l0) T
2 (15, oo+ 156 1) -

[l +I15 |l
CR

Now, we choose T so that T <
97l +15 |l .
< eeR

. Then ¥ (¢7,¢%) € Er, for

Claim 2: V¥ is a contraction map.

FOI' (1/’?,7/13% (&fﬂ[&’) S ET, we have:

‘ oo

IN

(i v3) — (V1,05 )
L (||95 — vz || _+|or - vt

[ ws i) — v (91,9%)

‘OOdT

J
J

IN

Similarly, we can obtain:

w2 (07, 08) — s (97,4%)

_<or (| —vg

+ |5 - vr
o0

Immediately, the above two estimates imply:

o wr v —w (d.98)|| < oom (|05 - vz -vz[)
oo oo oo
1 non Tnon
< g|wren - (@r.0)
[[¥7[l +l15 Il X
for T < max R . This proves Claim 2, and hence, by the

Banach fixed point theorem, we conclude that system admits a unique
solution (¢},v¢%) € Ep. Furthermore, this solution can be extended on a
maximal interval [0, Tiax) where

Thax :=sup{T > 0: (¢, ¢3) is a solution to system (3.1) in Er}.
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3.2. Positivity of solution of a particular system

In what follows, we intend to prove the positivity of solutions for system
(3.1). This would help us to discuss the global existence of such a solution
later. In this respect, we introduce the next result.

Lemma 3.3. Let (¢7,4%) be the solution of system such that:
Y7 (x) >0, ¥y () >0, z€ Q.

Then:
Y7 (t,x) > 0 and Y3 (t,x) >0, V(t,z) € ]0,T[ x Q.

Py

Proof. Let 7 (t,x) = 0 and %% (t,2) = 0 in ]0,T[ x Q. Then 5
8;/;2 =0 and AY7, (fA)B ¥ = 0. Now, in accordance with hypothesis (1.3,

we can have:

oY

0,

oy

— di AYY — f (P, Y8) =0> — i AG] — f (U1, 4%),

B2 pdy (D) — g (g, 08) = 0> 22 4 dy () gy — g (7, 98)
Wf (O,I) = 77/1?0 (‘T) >0= 1/1? (va)a

1/13 (va) = 1/610 (.’E) >0= wg (va) .

Hence, by the comparison theorem, we can obtain:

{ Ptx) > P (t,a),
> Yy (t,x)

where ¥7 (¢,2) > 0 and ¥ (t,z) > 0. O
3.3. Global existence of a particular system

To prove the global existence of the solution of system (3.1)), it is enough
to find certain estimates related to that solution in L' (). In this regard, we
introduce the next two results.

Lemma 3.4. Let (¢7,9%) be a solution of system . Then, there exists
M (t), which depends only on t, such that for all 0 <t < Tyax, we have:

[1 + 2 L1y < M (1)

Proof. Actually, we can derive from this result the global existence of the so-
lution (¢},4%) for system (3.1) given by Theorem [3.1 However, in order to
prove this result, we should note that system (3.1)) can be rewritten in the form:

BE—diep = 7 (03, u), in [0,7[x 9,
(3.3) ok +da (~0)7 Yy = g (47,4%), in [0,7] x €,
aawr; = 85/;]2 =0, or Y} =% =0, in [0,7T] x 09,

Y1 (O,JJ) = 1110 (Z‘) s )y (va) = %LO (.13), in Q.
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By considering the first and second equations of system , we obtain:
R+ U) — Ay (~) 68 = F (67, 05) + 9 (01 4).
By taking into account assumption , we can have:
5+ U) — A+ da (~)" 0 < C (T + ).

Now, by integrating the above inequality over {2 coupled with using the inte-
gration by parts to formula (2.2), we get:

| oy @an=o,

Consequently, by Green’s formula, we can obtain:

JRCr
Q

which implies:
0
5 [ @t +vpde

< (.
/Q (W0 + ) de

0
[ gutrua<c [ @rsudo or

With the use of integrating the above assertion over [0, ], we find:

t

/ (W + ) de
<Ct or In-2%

< Ct.
: [+, de

ln/Q (W7 + ) de

This immediately leads us to infer the following inequality:
JRGETE

Q
[, +ug) i

Q

<exp(Ct),

which gives:
= / (67 + 93) dx < exp (Ct) / (60, + 92 de
= /2 (W7 + 42 de < exp (Ct) / (r, + tog) da, as i OF, < n,, U5 < .
¢ Q

Now, we assume:

M (t) = exp (C1) [[P1, + P20l 1) -



236 Nabila Barrouk, Igbal M. Batiha, Adel Ouannas

Consequently, we note that as ¥]" and ¢} are positives, then we gain:
||¢? + wSHLl(Q) S M(t) ) 0 S t S Tmaxv
which completes the proof. O

Lemma 3.5. For any solution (Y}, V%) of system , there is a constant
L (t), which depends only on t, such that:

197 + 921l L1y < L (8) 11e + Y20l L1 -

Proof. Let us multiply the first equation of system (3.2)) by 6, and then integrate
the result over @) with using the two equations (2.5)) and (2.6). This gives:

t
/Q P, Odwdt = /Q Ty} (x) Odadt + /Q ( / o (t—7) f(¢?,w§)d7) Odadt

= /Qd)fo () ® (0, 7) dx + /Q f @7, ¥5) ® (1, x) dedr.
In a similar manner, we can find:
/ngf)d:vdt = /ngo ()@ (0,z)dx + /Q g (V1,8 @ (1, ) dedr.
Therefore, we obtain:

/Q (Y1 +9g) Odzdt =
/ (0, () + 42 () ® (0, 2) da + / (F (00 ) + g (00, 93)) ® () dvdlr
Q Q

< /Q (1/1?0 () + o, (m)) ®(0,z)dx + /Q C T +v3) @ (1, z) dedr.
Using Holder inequality yields:
/Q (Y1 +¢5) Oddt

< 1o + V20l 1) - 12 (0, 2) )| oo () + C YT + Y3 [l 11 - 12l e )
< (10 + Yol ey + C 187 + 08 1) 19l ey
< max (1, €) (W1, + Yalliacay + 17 + V51110 ) - 1€l e g
< Li (1) (”%0 + Yol + 197 + ¢g||L1(Q)) N8l o ) -

where L; (t) > max (¢, cC). Since 6 is arbitrary in C§° (Q), then we have:

1t + 0811 i) < Lo (&) (Ilons + w20l oy + 197 + B ll1a())

Li(t)
I—Li(D)°®

101 + 93 1) < L () 11, + Y20l 11 »
which finishes the proof of this result. O

Hence, by taking L (t) = we get:
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4. Global existence of a solution of the main system

In this section, we will provide one of the main results of this work. In
particular, with the help of using the four assumptions (1.2))-(1.5), we will
explore the global existence of a solution for system (|1.1)).

Theorem 4.1. Suppose that the hypotheses — are satisfied. Then,
there exists a solution (11,19) of the following two integral equations:

t

1 (8) =T (t) ¢y + / (=) 1 (1) v () dr, ¥ € 0,71,

(4.1) .

wz(t)=T2(t)¢2o+/OT2(t—T)g(1/11 (1), 42 (7)) dr, Vt € [0, T,

where Y1, € C ([0, +00[, L' (Q)), f (¢1,2), 9 (¥1,2) € L' (Q) such that
Q= (0,T)xQ, for all T > 0, and where Ty (t) and T3 (t) are the semigroups

of contractions in L' (Q) generated by diA and —ds (—A)B.

Proof. Let T4 (t) be a compact semigroup of contractions engendered by the
operator d (—A)°. We define the operator B as:

t

B:(wo,h)—>Td(t)wo+/0Td(t—7)h(7)d7'.

It should be noticed that this operator is compact L' (Q7)x L* (Qr) in L* (Q7).
This is because it is a result of adding two compact operators in L! (Q7), see

Theoremw Consequently, there is a subsequence (z/J?j , ng) of (Y7, ¥%) such

that ( {Lj,wg) converges towards (11, %2) in L' (Q) x L' (Q). Let us now show
that (wﬁ , wé”J) is a solution of system 1' ie.,

i, w0 =T 0w, + [ T 1 (v, 0,0 @) b

(4.2)
U (tz) =Ty (t) v5, + / JBt-n)g (w?_j (7)), 93, (T)) dr.

Thus, it is enough to show that (11,19) satisfies system (4.1)). To this aim, it
is clear to note that if j — +o00, we gain:

wﬁ) — ¢105 W;O — ¢20a

£ (ut08) = f (r,02),
g (vi.us ) = g (02

a.e.
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Thus to show that (11,12) verifies system (4.1)), it remains to show that:

P (e, 08) = f (1, 02),
g (Ve 08) = 901, 12)

in L' (Q) when j — +oo. For this purpose, we integrate the equations of
system (3.1)) over @ while taking (2.2]) into account. In other words, we have:

/ (—=A)7 3 dwdt = 0,
o .
Consequently, by Green’s formula, we can obtain:

| aur@a—o
Q

This immediately yields:

/Qw{;dx—/gwodx /Qf(wj,ng)dmdt,
/Qilfgjdx—/ﬂllfgodx = /Qg(wﬁ_,ng)dxdu

such that:
(4.4) - /Q f(wj,ng)dmdtg /Q ¥, da,
and

(4.5) —/Qg(wg,w;lj) d:cdtg/ﬂgbgodx.

Now, let us assume:
No = C(ui +us) - f(vl08),
C (vt +ug ) — £ (01 08) —g (vl 08
Then, according to and , it is clear that IV,, and M,, are positives.
)

Thus, with using of ( and (4.5)), we obtain:

/ Nodadt < C / (v, +v3, ) dodt + / Vnyda,
Q@ Q Q

Mydedt < C / (% +w§j>dxdt+ / (1, + o) da.
Q Q o

This with the use of Lemma [3.5| give:

/ Npdxdt < +o00, / M, dxdt < +o0,
Q Q
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which implies:
/ ] f <w?j,ng)'dazdt <C / (w?j +w§j) dzdt + / Npdzdt < 400,
Q ! Q Q
and
/ ‘g (w;g,z/;;;) ‘ dedt < c/ (wj n ngj) dedt +/ M, dadt < +oo.
Q ' ' Q Q
Now, we assume:
hn:Nn+C(z/){g. +w§;), ¥, =Mn+0( 1 +1/J£2)’
It should be noted here that h,, and ¥,, are positives in L' (Q) such that:

‘f (djﬁﬂﬁgj)‘ < h,, a.e and ‘g (w{‘j,ng)‘ <V, a.e.

Combining this result with (4.3]) yields, based on the dominated convergence,
the following assertions:

£ (0808 = F (0, 4n)

in L' (Q).
o (i un) g 0

Accordingly, by passing in the limit j — +oo of (4.2) in L' (Q), we obtain:

U () = T (), + / =) G 0) )
o (£) = T (t) thy + / Ty (=) g (0 (7)1 (1) dr.

Hence, (11, 12) satisfies system (4.1]), and consequently (11,12) is a solution
of the system (1.1]). O

5. Conclusions

In this paper, we have investigated the existence of a solution of the frac-
tional reaction-diffusion system. For instance, the compact semigroup methods
coupled with some L'-estimates have been used to prove the global existence
of a solution of the fractional reaction-diffusion system. Throughout attaining
our purpose, we have introduced and derived several theoretical results related
to the existence theory.
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