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An investigation of global existence of the solution of
fractional reaction-diffusion system

Nabila Barrouk1, Iqbal M. Batiha234 and Adel Ouannas5

Abstract. This paper investigates the existence of the solution for one
of the most important fractional partial differential problems called frac-
tional reaction-diffusion system. In particular, with the use of combining
the compact semigroup methods and some L1-estimates, we prove the
global existence of the solution for the fractional reaction-diffusion sys-
tem. Our investigation can be applied to a wide class of fractional partial
differential equations even if they contain nonlinear terms in their con-
structions.
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1. Introduction

In this paper, we aim to study the following nonlinear parabolic system:

(1.1)


∂ψ1

∂t − d1∆ψ1 = f (ψ1, ψ2) , in ]0,+∞[× Ω,
∂ψ2

∂t + d2 (−∆)
β
ψ2 = g (ψ1, ψ2) , in ]0,+∞[× Ω,

∂ψ1

∂η
=
∂ψ2

∂η
= 0, or ψ1 = ψ2 = 0, in ]0,+∞[× ∂Ω,

ψ1 (0, .) = ψ10 (.) , ψ2 (0, .) = ψ20 (.) , in Ω,

where Ω is a regular and bounded domain of Rn with boundary ∂Ω, n ≥ 1,
ψ1 = ψ1 (t, x), ψ2 = ψ2 (t, x) are real-valued functions such that x ∈ Ω and

t > 0, whereas (−∆)
δ
is a nonlocal operator in which 0 < δ < 1, (δ = α or β),

while d1, d2 are two nonnegative values, and f , g are two functions so that they
are ”regular enough” [17, 18]. Herein, it should be noted that the initial data
are assumed to be continuous and nonnegative, whereas the local existence of
the solution (ψ1, ψ2) is classical in times. Such a solution is also nonnegative

1Department of Mathematics and Informatics, Mohamed Cherif Messaadia University,
Souk Ahras, Algeria, e-mail: n.barrouk@univ-soukahras.dz, ORCID iD: orcid.org/0009-0009-
5559-1956

2Department of Mathematics, Al Zaytoonah University of Jordan, Amman 11733 Jordan
e-mail: ibatiha@inu.edu.jo, ORCID iD: orcid.org/0000-0002-8443-8848

3Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, UAE
4Corresponding author
5Department of Mathematics and Computer Science, University of Larbi Ben M’hidi,

Oum El Bouaghi, Algeria, e-mail: dr.ouannas@gmail.com, ORCID iD: orcid.org/0000-0001-
9611-2047

https://doi.org/10.30755/NSJOM.15045
mailto:n.barrouk@univ-soukahras.dz
https://orcid.org/0009-0009-5559-1956
https://orcid.org/0009-0009-5559-1956
mailto:ibatiha@inu.edu.jo
https://orcid.org/0000-0002-8443-8848
mailto:dr.ouannas@gmail.com
https://orcid.org/0000-0001-9611-2047
https://orcid.org/0000-0001-9611-2047


228 Nabila Barrouk, Iqbal M. Batiha, Adel Ouannas

whenever ψ10 and ψ20 are so. In the same regard, concerning with problem
(1.1), we assume the following hypothesis:

� The two functions ψ10 and ψ20 are nonnegative such that:

(1.2) ψ10 , ψ20 ∈ L1 (Ω) .

� The two functions f and g are quasi-positive, i.e.,

(1.3) f (0, ψ2) ≥ 0, g (ψ1, 0) ≥ 0, ∀ψ1, ψ2 ≥ 0.

� There exists a nonnegative constant C independent of (ξ1, ξ2) such that:

(1.4) f (ξ1, ξ2) + g (ξ1, ξ2) ≤ C (ξ1 + ξ2) , for everything (ξ1, ξ2) ∈ R2
+.

� We have:

(1.5) f (ξ1, ξ2) ≤ C (ξ1 + ξ2) for all (ξ1, ξ2) ∈ R2
+.

The notion of replacing the anomalous diffusion operator by the standard
Laplacian operator (−∆) was firstly studied in one-dimensional space. Alikakos
[1] showed the existence of global bounded solutions of the considered problem

in the case of f (ψ1, ψ2) = −g (ψ1, ψ2) = −ψ1ψ
σ
2 , for 1 < σ <

n+ 2

n
. The

extension of this result for σ > 1 was obtained by Masuda [19]. Then, Haraux
and Youkana [15] generalized the result of Masuda via the functional of Lya-
punov by putting f (ψ1, ψ2) = g (ψ1, ψ2) = −ψ1Ψ(ψ2), where Ψ is a nonlinear
function satisfying the condition:

lim
ψ2→+∞

[log (1 + Ψ (ψ2))]

ψ2
= 0.

Barabanova [3] generalized the result of Haraux and Youkana by addressing the
global existence of nonnegative solutions of a reaction-diffusion equation with
exponential nonlinearity. It has been shown later that there is also another very
powerful method for dealing with the solvability of the considered problem.
This method, which we will use in this work, relies on the compact semigroups.
For a better understanding, we refer the reader to the works of Moumeni and
Barrouk [20, 21], and for more, see [25, 24, 8, 12]. Later on, a more general
model was studied by Haraux and Kirane [14]. They took different diffusion
coefficients for the two equations and certain general nonlinear terms. They
also proved the existence of global bounded solutions and investigated their
asymptotic behavior. Equally, Hnaien et al. [16] proved the existence of a
local solution, global existence and asymptotic behavior of solutions for system
(1.1) when f (ψ1, ψ2) = −λψ1ψ2 and g (ψ1, ψ2) = λψ1ψ2 − µψ2. However,
for further studies about the previous discussion, the reader may consult the
references [7, 2, 4, 10, 6, 9, 5]

This paper is organized as follows. In Section 2, we present some defini-
tions and preliminaries. The existence of a local solution, positivity and global
existence for particular system are studied in Section 3. In Section 4, we prove
the global existence of a solution for the fractional reaction-diffusion system,
followed by Section 5 that introduces the conclusions of this work.
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2. Preliminaries

In this part, some preliminaries and overview of the local existence and
global existence of a solution for fractional reaction-diffusion system are illus-
trated. This will pave the way to introduce our findings later on.

Definition 2.1. Let F (ψ1, ψ2) ∈ X, where X is a Banach space. The function
F is locally Lipschitz if for all t1 ≥ 0 and all constant k > 0, there exists a
constant L (k, t1) > 0 such that the following condition:∥∥∥F (ψ1, ψ2)− F

(
ψ̂1, ψ̂2

)∥∥∥ ≤ L
∣∣∣(ψ1, ψ2)−

(
ψ̂1, ψ̂2

)∣∣∣ ,
is satisfied for all (ψ1, ψ2) ,

(
ψ̂1, ψ̂2

)
∈ R×R with |(ψ1, ψ2)| ≤ k,

∣∣∣(ψ̂1, ψ̂2

)∣∣∣ ≤ k

and t ∈ [0, t1] for all t > 0.

Lemma 2.2. Let T (t) be a semigroup engendered by the m-dissipative operator
A in the Banach space X. Suppose that F is a function locally Lipschitz and
ω0 ∈ X is the representation of the initial data. Then the problem:

(2.1)


ω ∈ C ([0, T ] , D (A)) ∩ C1 ([0, T ] , X) ,
dω

dt
−Aω = F (ω) ,

ω (0) = ψ0.

admits a unique local solution ω verifying

ω (t) = T (t)ω0 +

∫ t

0

T (t− τ)F (ω (τ)) dτ, ∀t ∈ [0, T ] .

Theorem 2.3. Consider the following classical boundary-eigenvalue system for
the fractional power of Laplacian in Ω with homogeneous Neumann boundary
condition:  (−∆)

α
φk = λαkφk, in Ω,

∂φk
∂η

= 0, on Ω,

where Ω is a open bounded domain in RN and

D ((−∆)
α
) =

{
ψ ∈ L2 (Ω) ,

∂ψ

∂η
= 0, ∥(−∆)

α
ψ∥L2(Ω) < +∞

}
,

with

∥(−∆)
α
ψ∥2L2(Ω) =

∑+∞

k=1
|λαk ⟨ψ,φk⟩|

2
.

Then, this system has a countable system of eigenvalues of the Laplacian op-
erator in L2 (Ω) with homogeneous Neumann boundary condition, where 0 <
c ≤ λ1 < λ2 < . . . < λj < . . . such that λj → ∞ as j → ∞, and φk are the
corresponding eigenvectors for k = 1, 2, . . . ,+∞.
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In light of the above preliminaries, it should be noted that:

(−∆)
α
ψ =

∑+∞

k=1
λαk ⟨ψ,φk⟩φk,

for ψ ∈ D ((−∆)
α
). Accordingly, with the use of the integration by parts, we

can obtain the following formula:

(2.2)

∫
Ω

u (x) (−∆)
α
v (x) dx =

∫
Ω

v (x) (−∆)
α
u (x) dx,

for u, v ∈ D ((−∆)
α
).

Lemma 2.4. [11] Let θ ∈ C∞
0 (Q) such that θ ≥ 0. Then, there is a nonnega-

tive function Φ ∈ C1,2 (Q) such that Φ is a solution of the system:

(2.3)

 −Φt − d∆Φ = θ on Q,
Φ (t, x) = 0 on (0, T )× ∂Ω,
Φ (T, x) = 0 on Ω.

It is worth mentioning here that, for all q ∈ ]1,∞[ and q′ ∈ ]1,∞], we have:

q ≤ q′ and 2−
(
1

q
− 1

q′

)
(n+ 2) > 0,

which implies that there exists a nonnegative constant c, independent of θ, such
that:

(2.4) ∥Φ∥Lq′ (QT ) ≤ c ∥θ∥Lq(QT ) .

In addition, for all ω0 ∈ L1 (Ω) and h ∈ L1 (Q), we have the following equalities:

(2.5)

∫
Q

(T (t)ω0 (x)) θdxdt =

∫
Ω

ω0 (x) Φ (0, x) dx,

and

(2.6)

∫
Q

(∫ t

0

T (t− τ)h (τ, x) dτ

)
θdxdt =

∫
Q

h (τ, x) Φ (τ, x) dxdτ.

In this work, the compactness of the operator B should be addressed. From
this point of view, we introduce next how we can define this operator, followed
by some basic facts related to the compactness.

B (F ) (t) =

∫ t

0

T (t− τ)F (ω (τ)) dτ, ∀t ∈ [0, T ] .

Theorem 2.5 (Dunford–Pettis [13]). Let 𭟋 be a bounded set in L1 (Ω). Then
𭟋 has a compact closure in the weak topology σ

(
L1, L∞)

if and only if 𭟋 is
equi-integrable, i.e.,

(a)

{
∀ε > 0,∃δ > 0 :

∫
A

|f | < ε,∀A ⊂ Ω, measurable with |A| < δ, ∀f ∈ 𭟋
}
,
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and

(b)

{
∀ε > 0, ∃ω ⊂ Ω, measurable with |ω| <∞ :

∫
Ω\ω

|f | < ε, ∀f ∈ 𭟋

}
.

Theorem 2.6 ([20, 21, 22, 23]). If for all t > 0, the operators T (t) are compact,
then B is compact of L1 ([0, T ] , X) in L1 ([0, T ] , X).

Remark 2.7. The semigroup T (t) generated by the operator d (−∆)
δ
is compact

in L1 (Ω).

3. Study of a particular system

This section is divided into three subsections so that the first one aims to
deal with the local existence of a solution for a first-order system derived from
system (1.1), then the positivity of such solution will be discussed, followed by
exploring the global existence of the solution of the derived system.

3.1. Local existence of a particular system

In this subsection, we intend to discuss the local existence of a solution of a
first-order system derived from system (1.1). In this connection, we define the
functions ψn10 and ψn20 by:

ψn10 = min (ψ10 , n) , and ψ
n
20 = min (ψ20 , n) ,

for all n > 0. It is clear that ψn10 and ψn20 verify assumption (1.2), i.e.,

ψn10 , ψ
n
20 ∈ L1 (Ω) andψn10 ≥ 0, ψn20 ≥ 0.

Now, it is a suitable time to convert system (1.1) to an abstract first-order
system in the Banach space X = L1 (Ω)× L1 (Ω) of the form:

(3.1)


∂wn

∂t −Awn = F (wn) in [0, T [× Ω,

∂wn

∂η = 0, or wn = 0 in [0, T [× ∂Ω,

wn (0, ·) = wn0
(·) in Ω,

where wn = (ψn1 , ψ
n
2 ), wn0 =

(
ψn10 , ψ

n
20

)
, F = (f, g), and the operator A is

defined as:

A =

(
d1∆ 0

0 −d2 (−∆)
β

)
,

where

D (A) :=
{
wn ∈ L1 (Ω)× L1 (Ω) :

(
∆ψn1 , (−∆)

β
ψn2

)
∈ L1 (Ω)× L1 (Ω)

}
.
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It is worth mentioning that system (3.1) can be returned back to the shape
of system (2.1), which let us confirm that if (ψn1 , ψ

n
2 ) is a solution of system

(3.1), then this solution will satisfy the following integral equations:

(3.2)


ψn1 (t) = T1 (t)ψ

n
10 +

∫ t

0

T1 (t− τ) f (ψn1 (τ) , ψn2 (τ)) dτ,

ψn2 (t) = T2 (t)ψ
n
20 +

∫ t

0

T2 (t− τ) g (ψn1 (τ) , ψn2 (τ)) dτ,

where T1 (t) and T2 (t) are the semigroups of contractions in L1 (Ω) generated

by the operator d1∆ and −d2 (−∆)
β
.

Theorem 3.1. There exists Tmax > 0 such that (ψn1 , ψ
n
2 ) is a local solution of

system (3.1), for all t ∈ [0, Tmax].

Proof. Due to T1 (t) and T2 (t) are semigroups of contractions and as F is
locally Lipschitz in which 0 ≤ ψn10 , ψ

n
20 ≤ n, then ∃Tmax > 0 such that (ψn1 , ψ

n
2 )

is a local solution of system (3.1) on [0, Tmax].

Theorem 3.2. Let ψn10 , ψ
n
20 ∈ L1 (Ω). Then there exists a maximal time

Tmax > 0 and a unique solution (ψn1 , ψ
n
2 ) ∈ C

(
[0, Tmax) , L

1 (Ω)× L1 (Ω)
)
of

system (3.1) such that either

Tmax = +∞,

or

Tmax < +∞ and lim
t→Tmax

(∥ψn1 (t)∥∞ + ∥ψn2 (t)∥∞) = +∞.

Proof. For arbitrary T > 0, we define the following Banach space::

ET :=
{
(ψn1 , ψ

n
2 ) ∈ C

(
[0, T ] , L1 (Ω)× L1 (Ω)

)
: ∥(ψn1 , ψn2 )∥ ≤ 2

∥∥(ψn10 , ψn20)∥∥}
such that 2

∥∥(ψn10 , ψn20)∥∥ = R, where ∥·∥∞ := ∥·∥L∞(Ω) and ∥·∥ is the norm of
ET defined by:

∥(ψn1 , ψn2 )∥ := ∥ψn1 ∥L∞([0,T ],L∞(Ω)) + ∥ψn2 ∥L∞([0,T ],L∞(Ω)) .

Next, for every (ψn1 , ψ
n
2 ) ∈ ET , we define:

Ψ (ψn1 , ψ
n
2 ) := (Ψ1 (ψ

n
1 , ψ

n
2 ) ,Ψ2 (ψ

n
1 , ψ

n
2 )) ,

where for t ∈ [0, T ]. That is,
Ψ1 (ψ

n
1 , ψ

n
2 ) = T1 (t)ψ

n
10 +

∫ t

0

T1 (t− τ) f (ψn1 (τ) , ψn2 (τ)) dτ ,

Ψ2 (ψ
n
1 , ψ

n
2 ) = T2 (t)ψ

n
20 +

∫ t

0

T2 (t− τ) g (ψn1 (τ) , ψn2 (τ)) dτ.
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Now, we aim to prove the local existence of a solution of system (3.1) by the
Banach fixed point theorem. To this purpose, we have to address two claims:
Claim 1: Ψ(ψn1 , ψ

n
2 ) ∈ ET .

To address this claim, we let (ψn1 , ψ
n
2 ) ∈ ET to obtain, by maximum principle,

the following inequalities:

∥Ψ1 (ψ
n
1 , ψ

n
2 )∥∞ ≤

∥∥ψn10∥∥∞ + C (∥ψn1 ∥∞ + ∥ψn2 ∥∞)T

≤
∥∥ψn10∥∥∞ + C

(∥∥ψn10∥∥∞ +
∥∥ψn20∥∥∞)

T.

Similarly, we have:

∥Ψ2 (ψ
n
1 , ψ

n
2 )∥∞ ≤

∥∥ψn20∥∥∞ + C
(∥∥ψn10∥∥∞ +

∥∥ψn20∥∥∞)
T.

Consequently, we obtain:

∥Ψ(ψn1 , ψ
n
2 )∥ ≤

∥∥ψn10∥∥∞ +
∥∥ψn20∥∥∞ + 2C

(∥∥ψn10∥∥∞ +
∥∥ψn20∥∥∞)

T

≤ 2
(∥∥ψn10∥∥∞ +

∥∥ψn20∥∥∞)
.

Now, we choose T so that T ≤ ∥ψn
10
∥∞

+∥ψn
20
∥∞

CR . Then Ψ (ψn1 , ψ
n
2 ) ∈ ET , for

T ≤ ∥ψn
10
∥∞

+∥ψn
20
∥∞

CR .
Claim 2: Ψ is a contraction map.

For (ψn1 , ψ
n
2 ) ,

(
ψ̃n1 , ψ̃

n
2

)
∈ ET , we have:

∥∥∥Ψ1 (ψ
n
1 , ψ

n
2 )−Ψ1

(
ψ̃n1 , ψ̃

n
2

)∥∥∥
∞

≤ L

∫ t

0

∥∥∥(ψn1 , ψn2 )− (
ψ̃n1 , ψ̃

n
2

)∥∥∥
∞
dτ

≤ LT
(∥∥∥ψ̃n2 − ψn2

∥∥∥
∞

+
∥∥∥ψ̃n1 − ψn1

∥∥∥
∞

)
.

Similarly, we can obtain:∥∥∥Ψ2 (ψ
n
1 , ψ

n
2 )−Ψ2

(
ψ̃n1 , ψ̃

n
2

)∥∥∥
∞

≤ LT
(∥∥∥ψ̃n2 − ψn2

∥∥∥
∞

+
∥∥∥ψ̃n1 − ψn1

∥∥∥
∞

)
.

Immediately, the above two estimates imply:∥∥∥Ψ(ψn1 , ψ
n
2 )−Ψ

(
ψ̃n1 , ψ̃

n
2

)∥∥∥
∞

≤ 2LT
(∥∥∥ψ̃n2 − ψn2

∥∥∥
∞

+
∥∥∥ψ̃n1 − ψn1

∥∥∥
∞

)
≤ 1

2

∥∥∥(ψn1 , ψn2 )− (
ψ̃n1 , ψ̃

n
2

)∥∥∥ ,
for T ≤ max

(
∥ψn

10
∥∞

+∥ψn
20
∥∞

CR , 1
4L

)
. This proves Claim 2, and hence, by the

Banach fixed point theorem, we conclude that system (3.1) admits a unique
solution (ψn1 , ψ

n
2 ) ∈ ET . Furthermore, this solution can be extended on a

maximal interval [0, Tmax) where

Tmax := sup {T > 0 : (ψn1 , ψ
n
2 ) is a solution to system (3.1) in ET } .
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3.2. Positivity of solution of a particular system

In what follows, we intend to prove the positivity of solutions for system
(3.1). This would help us to discuss the global existence of such a solution
later. In this respect, we introduce the next result.

Lemma 3.3. Let (ψn1 , ψ
n
2 ) be the solution of system (3.1) such that:

ψn10 (x) ≥ 0, ψn20 (x) ≥ 0, x ∈ Ω.

Then:
ψn1 (t, x) ≥ 0 and ψn2 (t, x) ≥ 0, ∀ (t, x) ∈ ]0, T [× Ω.

Proof. Let ψ̄n1 (t, x) = 0 and ψ̄n2 (t, x) = 0 in ]0, T [ × Ω. Then
∂ψ̄n1
∂t

= 0,

∂ψ̄n2
∂t

= 0 and ∆ψ̄n1 , (−∆)
β
ψ̄n2 = 0. Now, in accordance with hypothesis (1.3),

we can have:
∂ψn1
∂t

− d1∆ψ
n
1 − f (ψn1 , ψ

n
2 ) = 0 ≥ ∂ψ̄n1

∂t
− d1∆ψ̄

n
1 − f

(
ψ̄n1 , ψ

n
2

)
,

∂ψn
2

∂t + d2 (−∆)
β
ψn2 − g (ψn1 , ψ

n
2 ) = 0 ≥ ∂ψ̄n

2

∂t + d2 (−∆)
β
ψ̄n2 − g

(
ψn1 , ψ̄

n
2

)
,

ψn1 (0, x) = ψn10 (x) ≥ 0 = ψ̄n1 (0, x) ,
ψn2 (0, x) = ψn20 (x) ≥ 0 = ψ̄n2 (0, x) .

Hence, by the comparison theorem, we can obtain:{
ψn1 (t, x) ≥ ψ̄n1 (t, x) ,
ψn2 (t, x) ≥ ψ̄n2 (t, x) ,

where ψn1 (t, x) ≥ 0 and ψn2 (t, x) ≥ 0.

3.3. Global existence of a particular system

To prove the global existence of the solution of system (3.1), it is enough
to find certain estimates related to that solution in L1 (Ω). In this regard, we
introduce the next two results.

Lemma 3.4. Let (ψn1 , ψ
n
2 ) be a solution of system (3.1). Then, there exists

M (t), which depends only on t, such that for all 0 ≤ t ≤ Tmax, we have:

∥ψn1 + ψn2 ∥L1(Ω) ≤M (t) .

Proof. Actually, we can derive from this result the global existence of the so-
lution (ψn1 , ψ

n
2 ) for system (3.1) given by Theorem 3.1. However, in order to

prove this result, we should note that system (3.1) can be rewritten in the form:

(3.3)


∂ψn

1

∂t − d1∆ψ
n
1 = f (ψn1 , ψ

n
2 ) , in [0, T [× Ω,

∂ψn
2

∂t + d2 (−∆)
β
ψn2 = g (ψn1 , ψ

n
2 ) , in [0, T [× Ω,

∂ψn
1

∂η =
∂ψn

2

∂η = 0, or ψn1 = ψn2 = 0, in [0, T [× ∂Ω,

ψn1 (0, x) = ψn10 (x) , ψ
n
2 (0, x) = ψn20 (x) , in Ω.
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By considering the first and second equations of system (3.3), we obtain:

∂

∂t
(ψn1 + ψn2 )− d1∆ψ

n
1 + d2 (−∆)

β
ψn2 = f (ψn1 , ψ

n
2 ) + g (ψn1 , ψ

n
2 ) .

By taking into account assumption (1.4), we can have:

∂

∂t
(ψn1 + ψn2 )− d1∆ψ

n
1 + d2 (−∆)

β
ψn2 ≤ C (ψn1 + ψn2 ) .

Now, by integrating the above inequality over Ω coupled with using the inte-
gration by parts to formula (2.2), we get:∫

Ω

(−∆)
β
ψn2 (x) dx = 0.

Consequently, by Green’s formula, we can obtain:∫
Ω

∆ψn1 (x) dx = 0,

which implies:

∫
Ω

∂

∂t
(ψn1 + ψn2 ) dx ≤ C

∫
Ω

(ψn1 + ψn2 ) dx or

∂

∂t

∫
Ω

(ψn1 + ψn2 ) dx∫
Ω

(ψn1 + ψn2 ) dx

≤ C.

With the use of integrating the above assertion over [0, t], we find:

ln

∫
Ω

(ψn1 + ψn2 ) dx

∣∣∣∣t
0

≤ Ct or ln

∫
Ω

(ψn1 + ψn2 ) dx∫
Ω

(
ψn10 + ψn20

)
dx

≤ Ct.

This immediately leads us to infer the following inequality:∫
Ω

(ψn1 + ψn2 ) dx∫
Ω

(
ψn10 + ψn20

)
dx

≤ exp (Ct) ,

which gives:

⇒
∫
Ω

(ψn1 + ψn2 ) dx ≤ exp (Ct)

∫
Ω

(
ψn10 + ψn20

)
dx

⇒
∫
Ω

(ψn1 + ψn2 ) dx ≤ exp (Ct)

∫
Ω

(ψ10 + ψ20) dx, as if ψ
n
10 ≤ ψ10 , ψ

n
20 ≤ ψ20 .

Now, we assume:

M (t) = exp (Ct) ∥ψ10 + ψ20∥L1(Ω) .
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Consequently, we note that as ψn1 and ψn2 are positives, then we gain:

∥ψn1 + ψn2 ∥L1(Ω) ≤M (t) , 0 ≤ t ≤ Tmax,

which completes the proof.

Lemma 3.5. For any solution (ψn1 , ψ
n
2 ) of system (3.1), there is a constant

L (t), which depends only on t, such that:

∥ψn1 + ψn2 ∥L1(Q) ≤ L (t) ∥ψ10 + ψ20∥L1(Ω) .

Proof. Let us multiply the first equation of system (3.2) by θ, and then integrate
the result over Q with using the two equations (2.5) and (2.6). This gives:∫
Q

ψ1nθdxdt =

∫
Q

T1ψ
n
10 (x) θdxdt+

∫
Q

(∫ t

0

T1 (t− τ) f (ψn1 , ψ
n
2 ) dτ

)
θdxdt

=

∫
Ω

ψn10 (x) Φ (0, x) dx+

∫
Q

f (ψn1 , ψ
n
2 ) Φ (τ, x) dxdτ.

In a similar manner, we can find:∫
Q

ψn2 θdxdt =

∫
Ω

ψn20 (x) Φ (0, x) dx+

∫
Q

g (ψn1 , ψ
n
2 ) Φ (τ, x) dxdτ.

Therefore, we obtain:∫
Q

(ψn1 + ψn2 ) θdxdt =∫
Ω

(
ψn10 (x) + ψn20 (x)

)
Φ (0, x) dx+

∫
Q

(f (ψn1 , ψ
n
2 ) + g (ψn1 , ψ

n
2 )) Φ (τ, x) dxdτ

≤
∫
Ω

(
ψn10 (x) + ψ20 (x)

)
Φ (0, x) dx+

∫
Q

C (ψn1 + ψn2 ) Φ (τ, x) dxdτ.

Using Holder inequality yields:∫
Q

(ψn1 + ψn2 ) θdxdt

≤ ∥ψ10 + ψ20∥L1(Ω) . ∥Φ (0, x)∥L∞(Q) + C ∥ψn1 + ψn2 ∥L1(Q) . ∥Φ∥L∞(Q)

≤
(
∥ψ10 + ψ20∥L1(Ω) + C ∥ψn1 + ψn2 ∥L1(Q)

)
. ∥Φ∥L∞(Q)

≤ max (1, C)
(
∥ψ10 + ψ20∥L1(Ω) + ∥ψn1 + ψn2 ∥L1(Q)

)
. ∥Φ∥L∞(Q)

≤ L1 (t)
(
∥ψ10 + ψ20∥L1(Ω) + ∥ψn1 + ψn2 ∥L1(Q)

)
. ∥θ∥L∞(Q) ,

where L1 (t) ≥ max (c, cC). Since θ is arbitrary in C∞
0 (Q), then we have:

∥ψn1 + ψn2 ∥L1(Q) ≤ L1 (t)
(
∥ψ10 + ψ20∥L1(Ω) + ∥ψn1 + ψn2 ∥L1(Q)

)
.

Hence, by taking L (t) = L1(t)
1−L1(t)

, we get:

∥ψn1 + ψn2 ∥L1(Q) ≤ L (t) ∥ψ10 + ψ20∥L1(Ω) ,

which finishes the proof of this result.
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4. Global existence of a solution of the main system

In this section, we will provide one of the main results of this work. In
particular, with the help of using the four assumptions (1.2)-(1.5), we will
explore the global existence of a solution for system (1.1).

Theorem 4.1. Suppose that the hypotheses (1.2)-(1.5) are satisfied. Then,
there exists a solution (ψ1, ψ2) of the following two integral equations:

(4.1)


ψ1 (t) = T1 (t)ψ10 +

∫ t

0

T1 (t− τ) f (ψ1 (τ) , ψ2 (τ)) dτ , ∀t ∈ [0, T [ ,

ψ2 (t) = T2 (t)ψ20 +

∫ t

0

T2 (t− τ) g (ψ1 (τ) , ψ2 (τ)) dτ , ∀t ∈ [0, T [ ,

where ψ1, ψ2 ∈ C
(
[0,+∞[ , L1 (Ω)

)
, f (ψ1, ψ2) , g (ψ1, ψ2) ∈ L1 (Q) such that

Q = (0, T ) × Ω, for all T > 0, and where T1 (t) and T2 (t) are the semigroups

of contractions in L1 (Ω) generated by d1∆ and −d2 (−∆)
β
.

Proof. Let Td (t) be a compact semigroup of contractions engendered by the

operator d (−∆)
δ
. We define the operator B as:

B : (w0, h) → Td (t)w0 +

∫ t

0

Td (t− τ)h (τ) dτ.

It should be noticed that this operator is compact L1 (QT )×L1 (QT ) in L
1 (QT ).

This is because it is a result of adding two compact operators in L1 (QT ), see

Theorem 2.6. Consequently, there is a subsequence
(
ψn1j , ψ

n
2j

)
of (ψn1 , ψ

n
2 ) such

that
(
ψn1j , ψ

n
2j

)
converges towards (ψ1, ψ2) in L

1 (Q)×L1 (Q). Let us now show

that
(
ψn1j , ψ

n
2j

)
is a solution of system (3.2), i.e.,

(4.2)


ψn1j (t, x) = T1 (t)ψ

n
10 +

∫ t

0

T1 (t− τ) f
(
ψn1j (τ) , ψ

n
2j (τ)

)
dτ,

ψn2j (t, x) = T2 (t)ψ
n
20 +

∫ t

0

T2 (t− τ) g
(
ψn1j (τ) , ψ

n
2j (τ)

)
dτ.

Thus, it is enough to show that (ψ1, ψ2) satisfies system (4.1). To this aim, it
is clear to note that if j → +∞, we gain:

ψn10 → ψ10 , ψ
n
20 → ψ20 ,

and

(4.3)

 f
(
ψn1j , ψ

n
2j

)
→ f (ψ1, ψ2) ,

g
(
ψn1j , ψ

n
2j

)
→ g (ψ1, ψ2)

a.e.
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Thus to show that (ψ1, ψ2) verifies system (4.1), it remains to show that: f
(
ψn1j , ψ

n
2j

)
→ f (ψ1, ψ2) ,

g
(
ψn1j , ψ

n
2j

)
→ g (ψ1, ψ2)

in L1 (Q) when j → +∞. For this purpose, we integrate the equations of
system (3.1) over Q while taking (2.2) into account. In other words, we have:∫

Q

(−∆)
β
ψn2jdxdt = 0,

Consequently, by Green’s formula, we can obtain:∫
Ω

∆ψn1 (x) dx = 0,

This immediately yields:∫
Ω

ψn1jdx−
∫
Ω

ψn10dx =

∫
Q

f
(
ψn1j , ψ

n
2j

)
dxdt,∫

Ω

ψn2jdx−
∫
Ω

ψn20dx =

∫
Q

g
(
ψn1j , ψ

n
2j

)
dxdt,

such that:

(4.4) −
∫
Q

f
(
ψn1j , ψ

n
2j

)
dxdt ≤

∫
Ω

ψ10dx,

and

(4.5) −
∫
Q

g
(
ψn1j , ψ

n
2j

)
dxdt ≤

∫
Ω

ψ20dx.

Now, let us assume:

Nn = C
(
ψn1j + ψn2j

)
− f

(
ψn1j , ψ

n
2j

)
,

Mn = C
(
ψn1j + ψn2j

)
− f

(
ψn1j , ψ

n
2j

)
− g

(
ψn1j , ψ

n
2j

)
.

Then, according to (1.4) and (1.5), it is clear that Nn and Mn are positives.
Thus, with using of (4.4) and (4.5), we obtain:∫

Q

Nndxdt ≤ C

∫
Q

(
ψn1j + ψn2j

)
dxdt+

∫
Ω

ψ10dx,∫
Q

Mndxdt ≤ C

∫
Q

(
ψn1j + ψn2j

)
dxdt+

∫
Ω

(ψ10 + ψ20) dx.

This with the use of Lemma 3.5 give:∫
Q

Nndxdt < +∞,

∫
Q

Mndxdt < +∞,
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which implies:∫
Q

∣∣∣f (ψn1j , ψn2j)∣∣∣ dxdt ≤ C

∫
Q

(
ψn1j + ψn2j

)
dxdt+

∫
Q

Nndxdt < +∞,

and ∫
Q

∣∣∣g (ψn1j , ψn2j)∣∣∣ dxdt ≤ C

∫
Q

(
ψn1j + ψn2j

)
dxdt+

∫
Q

Mndxdt < +∞.

Now, we assume:

hn = Nn + C
(
ψn1j + ψn2j

)
, Ψn =Mn + C

(
ψn1j + ψn2j

)
,

It should be noted here that hn and Ψn are positives in L1 (Q) such that:∣∣∣f (ψn1j , ψn2j)∣∣∣ ≤ hn a.e and
∣∣∣g (ψn1j , ψn2j)∣∣∣ ≤ Ψn a.e.

Combining this result with (4.3) yields, based on the dominated convergence,
the following assertions:

f
(
ψn1j , ψ

n
2j

)
→ f (ψ1, ψ2)

g
(
ψn1j , ψ

n
2j

)
→ g (ψ1, ψ2)

in L1 (Q) .

Accordingly, by passing in the limit j → +∞ of (4.2) in L1 (Q), we obtain:
ψ1 (t) = T1 (t)ψ10 +

∫ t

0

T1 (t− τ) f (ψ1 (τ) , ψ2 (τ)) dτ,

ψ2 (t) = T2 (t)ψ20 +

∫ t

0

T2 (t− τ) g (ψ1 (τ) , ψ2 (τ)) dτ.

Hence, (ψ1, ψ2) satisfies system (4.1), and consequently (ψ1, ψ2) is a solution
of the system (1.1).

5. Conclusions

In this paper, we have investigated the existence of a solution of the frac-
tional reaction-diffusion system. For instance, the compact semigroup methods
coupled with some L1-estimates have been used to prove the global existence
of a solution of the fractional reaction-diffusion system. Throughout attaining
our purpose, we have introduced and derived several theoretical results related
to the existence theory.
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