# On unit sphere tangent bundles over complex Grassmannians ${ }^{1]}$ <br> Jean Baptiste Gatsinz $\left.\right|^{2}$ and Oteng Maphane ${ }^{3}$ 


#### Abstract

Let $G_{k, n}(\mathbb{C})$ for $2 \leq k<n$ denote the Grassmann manifold of $k$-dimensional vector subspaces of $\mathbb{C}^{n}$. In this paper we show that the total space of the unit sphere tangent bundle $S^{2 m-1} \rightarrow E \xrightarrow{p} G_{k, n}(\mathbb{C})$ is not formal, where $m=k(n-k)$.

AMS Mathematics Subject Classification (2010): Primary 55P62; Secondary 55P15 Key words and phrases: Sullivan algebra, Sphere bundle, Complex Grassmann manifolds, Formality.


## 1. Introduction

We begin by fixing notation and recalling some results on differential graded algebras. All vector spaces and algebras are taken over the field $\mathbb{Q}$ of rational numbers.

Definition 1.1. A graded algebra $A$ is a sum $A=\underset{n>0}{\oplus} A^{n}$, where $A^{n}$ is a vector space, together with an associative multiplication $A^{i} \otimes A^{j} \rightarrow A^{i+j}, x \otimes y \mapsto x y$ and has $1 \in A^{0}$. It is graded commutative if for any homogeneous elements $x$ and $y$,

$$
x y=(-1)^{|x||y|} y x
$$

where $|x|=i$ for $x \in A^{i}$. If $A$ is a graded algebra equipped with a linear differential map $d: A^{n} \rightarrow A^{n+1}$ such that $d \circ d=0$ and

$$
d(x y)=(d x) y+(-1)^{|x|} x(d y),
$$

then $(A, d)$ is called a differential graded algebra and $d$ is called a differential. Moreover, if $A$ is also a graded commutative algebra, then $(A, d)$ is a commutative differential graded algebra (cdga). It is said to be connected if $H^{0}(A) \cong \mathbb{Q}$.

[^0]Definition 1.2. Let $V=\oplus_{i \geq 0} V^{i}$ with $V^{\text {even }}:=\oplus_{i \geq 0} V^{2 i}$ and $V^{\text {odd }}:=\oplus_{i \geq 1} V^{2 i-1}$. A commutative graded algebra $A$ is called free commutative if $A=\wedge V=S\left(V^{\text {even }}\right) \otimes E\left(V^{\text {odd }}\right)$, where $S\left(V^{\text {even }}\right)$ is the symmetric algebra on $V^{\text {even }}$ and $E\left(V^{\text {odd }}\right)$ is the exterior algebra on $V^{\text {odd }}$.

Definition 1.3. A Sullivan algebra is a commutative differential graded alge$\operatorname{bra}(\wedge V, d)$ where $V=\cup_{k \geq 0} V(k)$ and $V(0) \subset V(1) \cdots$ such that $d V(0)=0$ and $d V(k) \subset \wedge V(k-1)$. It is called minimal if $d V \subset \wedge^{2} V$.

If $(A, d)$ is a $c d g a$ of which the cohomology is connected and finite dimensional in each degree, then there always exists a quasi-isomorphism from a Sullivan algebra $(\wedge V, d)$ to $(A, d)$ 4]. To each simply connected space, Sullivan associates a cdga $A_{P L}(X)$ of rational polynomial differential forms on $X$ that uniquely determines the rational homotopy type of $X$ [10. A minimal Sullivan model of $X$ is a minimal Sullivan model of $A_{P L}(X)$.

Definition 1.4. A morphism of commutative differential graded algebras $f$ : $(\wedge V, d) \rightarrow(\wedge V \otimes \wedge W, D)$ is a Koszul-Sullivan extension (KS-extension for short) if $D v=d v$ for $v \in V$ and $D W \subset \wedge V \otimes \wedge W$.

Let $X \xrightarrow{\iota} E \xrightarrow{p} B$ be a fibration between simply connected spaces with $(\wedge V, d)$ and $\left(\wedge W, d^{\prime}\right)$ Sullivan models of $B, X$ respectively, and at least one of $H^{*}(B ; \mathbb{Q})$ and $H^{*}(X ; \mathbb{Q})$ has finite type. Then there is a KS-extension $(\wedge V, d) \xrightarrow{\varphi}(\wedge V \otimes \wedge W, D) \xrightarrow{\psi}\left(\wedge W, d^{\prime}\right)$, where $\varphi$ and $\psi$ are respective models for $p$ and $\iota$, see [4, §15].

Definition 1.5. 5] A simply connected space $X$ is called formal if there is a quasi-isomorphism $(\wedge V, d) \rightarrow H^{*}(\wedge V, d)$, where $(\wedge V, d)$ is the minimal Sullivan model of $X$.

Examples of formal spaces include spheres, projective complex spaces, homogeneous spaces $G / H$, where $G$ and $H$ have same rank, and compact Kähler manifolds.

Definition 1.6. [5] Let $(A, d)$ be a $c d g a$ with cohomology $H^{*}(A, d)$. Let $a, b$, and $c$ be cohomology classes in $H^{*}(A, d)$ whose products $a \cdot b=b \cdot c=0$. Choose cocycles $x, y$ and $z$ representing $a, b$ and $c$ respectively. Then there are elements $v$ and $w$ such that $d v=x y$ and $d w=y z$. The element

$$
v z-(-1)^{|x|} x w
$$

is a cocycle whose cohomology class depends on the choice of $v$ and $w$. Each cohomology class

$$
v z-(-1)^{|x|} x w
$$

is called a triple Massey product of $a, b$ and $c$. If a triple Massey product is 0 as a cohomology class, then it is said to be trivial.

Theorem 1.7. [5] If $X$ has a non-trivial triple Massey product then $X$ is not formal.

## 2. Model of the unit sphere tangent bundle over complex Grassmannians

The complex Grassmannian $G_{k, n}(\mathbb{C})$ is a homogeneous space as $G_{k, n}(\mathbb{C}) \cong$ $U(n) /(U(k) \times U(n-k))$ for $1 \leq k<n$, where $U(n)$ is the unitary group. It is a symplectic manifold of dimension $2 m$, where $m=k(n-k)$. The method to compute a Sullivan model of the homogeneous space $G_{k, n}(\mathbb{C})$ is given in detail in (6) 9].

Let $S^{2 m-1} \rightarrow E \xrightarrow{p} G_{k, n}(\mathbb{C})$ for $2 \leq k<n$ be the unit sphere tangent bundle. A relative minimal model of $p$ is given by

$$
(\wedge V, d) \stackrel{\iota}{\mapsto}\left(\wedge V \otimes \wedge x_{2 m-1}, d^{\prime}\right) \rightarrow\left(\wedge x_{2 m-1}, 0\right)
$$

with $d^{\prime} v=d v$ for $v \in V$ and $d^{\prime} x_{2 m-1}=z$, as $[z]$ is the Euler class of the tangent bundle [5] Page 82]. Moreover, if $[\omega] \in H^{2 m}(\wedge V, d)$ is the fundamental class of $G_{k, n}(\mathbb{C})$, then $[z]=\chi\left(G_{k, n}(\mathbb{C})\right) \cdot[\omega]$, where $\chi\left(G_{k, n}(\mathbb{C})\right)$ is the Euler characteristic of $G_{k, n}(\mathbb{C})$ (see [2, Proposition 11.24]). As $\chi\left(G_{k, n}(\mathbb{C})\right) \neq 0$, there is a quasi-isomorphism

$$
\left(\wedge V \otimes \wedge x_{2 m-1}, d^{\prime}\right) \rightarrow\left(\wedge V \otimes \wedge x_{2 m-1}, D\right)
$$

where $D v=d v$ for $v \in V$ and $D x_{2 m-1}=\omega$.
The unit sphere tangent bundles over complex projective spaces were studied in [1], where it is shown that the total space of the unit sphere tangent bundle over $\mathbb{C} P(n)$ is formal. We extend this study to $G_{k, n}(\mathbb{C})$ for $2 \leq k<n$ and obtain the following result.
We provide here an easier proof for the case $k=2$ as follows.
Theorem 2.1. The total space of the unit sphere tangent bundle

$$
S^{2 m-1} \rightarrow E \rightarrow G_{2, n}(\mathbb{C})
$$

for $n \geq 4$ is not formal.
Proof. Recall that $G_{2, n}(\mathbb{C})$ is a manifold of dimension $2 m$ where $m=2 n-4$. In [7, 3], the cohomology ring $H^{*}\left(G_{k, n}(\mathbb{C}), \mathbb{Q}\right)$ has the presentation

$$
H^{*}\left(G_{k, n}(\mathbb{C}), \mathbb{Q}\right)=\mathbb{Q}\left[b_{2}, \ldots, b_{2 k}\right] /<h_{n-k+1}, \ldots, h_{n}>
$$

where $<h_{n-k+1}, \ldots, h_{n}>$ is the ideal generated by the elements $h_{j}$ for $n-$ $k+1 \leq j \leq n$. Here $h_{j}$ is the $2 j$-degree term in the Taylor series expansion of $\left(1+b_{2}+\cdots+b_{2 k}\right)^{-1}$. As $\left\{h_{n-k+1}, \ldots, h_{n}\right\}$ form a regular sequence in the polynomial algebra $\mathbb{Q}\left[b_{2}, \ldots, b_{2 k}\right]$, the minimal Sullivan model of $G_{k, n}(\mathbb{C})$ is

$$
\left(\wedge\left(b_{2}, \ldots, b_{2 k}, y_{2(n-k)+1}, \ldots, y_{2 n-1}\right), d\right)
$$

where $d b_{i}=0$ and

$$
\begin{aligned}
& d y_{2(n-k)+1}=h_{n-k+1} \\
& \vdots \\
& d y_{2 n-1}=h_{n} .
\end{aligned}
$$

In particular, the minimal Sullivan model of $G_{2, n}(\mathbb{C})$ is given by

$$
(\wedge V, d)=\left(\wedge\left(b_{2}, b_{4}, y_{2 n-3}, y_{2 n-1}\right), d\right)
$$

where $d y_{2 n-3}=h_{n-1}$ and $d y_{2 n-1}=h_{n}$ are polynomials in $b_{2}$ and $b_{4}$. The symplectic class $\left[b_{2}\right] \in H^{2}\left(G_{2, n}(\mathbb{C}), \mathbb{Q}\right)$ is such that $\left[b_{2}^{m}\right]$ is the fundamental class of $G_{2, n}(\mathbb{C})$. As $\chi\left(G_{2, n}(\mathbb{C})\right) \neq 0$, a relative minimal model for the unit sphere tangent bundle $S^{2 m-1} \rightarrow E \rightarrow G_{2, n}(\mathbb{C})$ is given by

$$
(\wedge V, d) \stackrel{\iota}{\hookrightarrow}\left(\wedge V \otimes \wedge x_{2 m-1}, D\right) \rightarrow\left(\wedge x_{2 m-1}, 0\right)
$$

with $D v=d v$ for $v \in V$ and $D x_{2 m-1}=b_{2}^{m}$. We show that $H^{*}(E, \mathbb{Q})$ contains a non zero triple Massey product by hypothesis on $n$ and $m \geq 4$. As $D x_{2 m-1}=b_{2}^{m}$, we have $H^{*}(\iota)\left(\left[b_{2}\right]\right) \cdot H^{*}(\iota)\left(\left[b_{2}^{m-1}\right]\right)=0$ in $H^{*}(E, \mathbb{Q})$. Either $2 n \equiv 2(\bmod 4)$ or $2 n \equiv 0(\bmod 4) . d y_{2 n-1}=b_{2} s$, where $s \notin<b_{2}>$ and $[s] \in H^{2 n-2}\left(G_{2, n}(\mathbb{C}), \mathbb{Q}\right)$ as $2 n \equiv 2(\bmod 4)$ implies $h_{n}$ does not contain a power of $b_{4} .[s] \in H^{2 n-2}\left(G_{2, n}(\mathbb{C}), \mathbb{Q}\right)$ is the non-zero class of smallest degree such that $H^{*}(\iota)\left(\left[b_{2}\right]\right) \cdot H^{*}(\iota)([s])=0$. Moreover, if $2 n \equiv 0(\bmod 4)$, then $d y_{2 n-3}=b_{2} r$, where $r \notin<b_{2}>$ and $[r] \in H^{2 n-4}\left(G_{2, n}(\mathbb{C}), \mathbb{Q}\right)$ is the non-zero class of smallest degree such that $H^{*}(\iota)\left(\left[b_{2}\right]\right) \cdot H^{*}(\iota)([r])=0$. On the one hand, assume that $2 n \equiv 2(\bmod 4)$, then $d y_{2 n-1}=b_{2} s$ and the element

$$
s x_{2 m-1}-b_{2}^{m-1} y_{2 n-1}
$$

is a cocycle of degree $2(m+n)-3$ which cannot be a coboundary for degree reasons. Hence, the triple Massey product set $\left\langle H^{*}(\iota)\left(\left[b_{2}^{m-1}\right]\right), H^{*}(\iota)\left(\left[b_{2}\right]\right)\right.$, $\left.H^{*}(\iota)([s])\right\rangle$ is non-trivial. Similarly, on the other hand, if $2 n \equiv 0(\bmod 4)$, then $d y_{2 n-3}=b_{2} r$ and the element

$$
r x_{2 m-1}-b_{2}^{m-1} y_{2 n-3}
$$

is a cocycle of degree $2(m+n)-5$ which cannot be a coboundary for degree reasons. Thus, the triple Massey product set $\left\langle H^{*}(\iota)\left(\left[b_{2}^{m-1}\right]\right), H^{*}(\iota)\left(\left[b_{2}\right]\right)\right.$, $\left.H^{*}(\iota)([r])\right\rangle$ is non-trivial. Thus $E$ is not formal.

Example 2.2. The minimal Sullivan model of $G_{2,4}(\mathbb{C})$ is given by

$$
\left(\wedge\left(b_{2}, b_{4}, y_{5}, y_{7}\right), d\right)
$$

where

$$
d b_{2}=d b_{4}=0, \quad d y_{5}=-b_{2}^{3}+2 b_{2} b_{4}, \quad d y_{7}=b_{2}^{4}-3 b_{2}^{2} b_{4}+b_{4}^{2}
$$

as $h_{j}$ is the $2 j$-th degree term in the Taylor expansion of $\left(1+b_{2}+b_{4}\right)^{-1}$ [6, 8]. With $\chi\left(G_{2,4}(\mathbb{C})\right)=5$, the total space of the unit sphere bundle $S^{7} \rightarrow E \rightarrow$ $G_{2,4}(\mathbb{C})$ will have a relative minimal model of the form

$$
\left(\wedge\left(b_{2}, b_{4}, y_{5}, y_{7}, a_{7}\right), D\right)
$$

with $D b_{i}=0, D y_{5}=b_{2}\left(b_{2}^{2}-2 b_{4}\right), D y_{7}=b_{4} b_{2}^{2}-b_{4}^{2}$ and $D a_{7}=b_{2}^{4}$. Take $a=H^{*}(\iota)\left(\left[b_{2}^{3}\right]\right), b=H^{*}(\iota)\left(\left[b_{2}\right]\right)$ and $c=H^{*}(\iota)\left(\left[b_{2}^{2}-2 b_{4}\right]\right)$ cohomology classes
in $H^{*}(E, \mathbb{Q})$ whose products $a \cdot b=b \cdot c=0$. The triple Massey product set $\langle a, b, c\rangle$ is represented by the cocycle

$$
\left(b_{2}^{2}-2 b_{4}\right) a_{7}-b_{2}^{3} y_{5}
$$

of degree 11 which cannot be a coboundary for degree reasons. Thus, the triple Massey product set $\langle a, b, c\rangle$ is non-trivial.

For the general case, a Sullivan model of $G_{k, n}(\mathbb{C})$ for $1 \leq k<n$ is given by (see [9])

$$
\left(\wedge\left(b_{2}, b_{4}, \ldots, b_{2 k}, x_{2}, x_{4}, \ldots, x_{2(n-k)}, y_{1}, y_{3}, \ldots, y_{2 n-1}\right), d\right)
$$

with

$$
d b_{i}=0=d x_{j}, d y_{2 p-1}=\sum_{p_{1}+p_{2}=p} b_{2 p_{1}} \cdot x_{2 p_{2}}, 1 \leq p \leq n .
$$

Lemma 2.3. For $2 \leq k<n$ and $n \geq 2 k$, the minimal Sullivan model of $G_{k, n}(\mathbb{C})$ is given by

$$
\left(\wedge\left(b_{2}, \ldots, b_{2 k}, y_{2(n-k)+1}, \ldots, y_{2 n-1}\right), d\right), d y_{2 n-1}=b_{2 k} r
$$

where $r \notin<b_{2 k}>$. It is enough to choose $n \geq 2 k$ as $G_{k, n}(\mathbb{C})$ is homeomorphic to $G_{n-k, n}(\mathbb{C})$.
Proof. Consider the Sullivan model

$$
\left(\wedge\left(b_{2}, b_{4}, \ldots, b_{2 k}, x_{2}, x_{4}, \ldots, x_{2(n-k)}, y_{1}, y_{3}, \ldots, y_{2 n-1}\right), d\right)
$$

of $G_{k, n}(\mathbb{C})$ for $2 \leq k<n$,

$$
\begin{aligned}
d y_{1} & =b_{2}+x_{2} \\
d y_{3} & =b_{4}+x_{4}+b_{2} x_{2} \\
\vdots & \\
d y_{2 n-1} & =b_{2 k} x_{2(n-k)} .
\end{aligned}
$$

The model is not minimal as the linear part is not zero. To find its minimal Sullivan model, we make a change of variable $t_{2}=b_{2}+x_{2}$ and replace $x_{2}$ by $t_{2}-b_{2}$ wherever it appears in the differential. This gives an isomorphic Sullivan algebra

$$
\left(\wedge\left(b_{2}, t_{2}, b_{4}, \ldots, b_{2 k}, x_{4}, \ldots, x_{2(n-k)}, y_{1}, y_{3}, \ldots, y_{2 n-1}\right), d\right)
$$

where

$$
\begin{aligned}
d y_{1} & =t_{2} \\
d y_{3} & =b_{4}+x_{4}+b_{2}\left(t_{2}-b_{2}\right) \\
\vdots & \\
d y_{2 n-1} & =b_{2 k} x_{2(n-k)} .
\end{aligned}
$$

As the ideal generated by $y_{1}$ and $t_{2}$ is acyclic, the above Sullivan algebra is quasi-isomorphic to

$$
\left(\wedge\left(b_{2}, b_{4}, \ldots, b_{2 k}, x_{4}, \ldots, x_{2(n-k)}, y_{3}, \ldots, y_{2 n-1}\right), d\right)
$$

where

$$
\begin{aligned}
d y_{3} & =b_{4}+x_{4}-b_{2}^{2} \\
\vdots & \\
d y_{2 n-1} & =b_{2 k} x_{2(n-k)} .
\end{aligned}
$$

One continues in this fashion and make another change of variable, $t_{4}=b_{4}+$ $x_{4}-b_{2}^{2}$ and replace $x_{4}$ by $t_{4}-b_{4}+b_{2}^{2}$ wherever it appears in the differential and do so until they reach a change of variable of the form

$$
\begin{aligned}
& t_{2(n-k)}=b_{2(n-k)}+x_{2(n-k)}+\alpha \text { for } n=2 k, \text { or } \\
& t_{2(n-k)}=x_{2(n-k)}+\beta \text { for } n>2 k,
\end{aligned}
$$

where $\alpha \in \wedge\left(b_{2}, \ldots, b_{2(k-1)}\right), \beta \in \wedge\left(b_{2}, \ldots, b_{2 k}\right)$ and replace

$$
x_{2(n-k)}= \begin{cases}t_{2(n-k)}-b_{2 k}+\alpha & \text { for } n=2 k \\ t_{2(n-k)}+\beta & \text { for } n>2 k\end{cases}
$$

wherever it appears in the differential. This gives an isomorphic Sullivan algebra

$$
\left(\wedge\left(b_{2}, \ldots, b_{2 k}, y_{2(n-k)-1}, y_{2(n-k)+1}, \ldots, y_{2 n-1}\right), d\right)
$$

where

$$
\begin{aligned}
& d y_{2(n-k)-1}=t_{2(n-k)} \\
& \vdots \\
& d y_{2 n-1}=b_{2 k} x_{2(n-k)}
\end{aligned}
$$

As the ideal generated by $t_{2(n-k)}$ and $y_{2(n-k)-1}$ is acyclic, we get the minimal Sullivan model

$$
\left(\wedge\left(b_{2}, \ldots, b_{2 k}, y_{2(n-k)+1}, \ldots, y_{2 n-1}\right), d\right)
$$

with

$$
d y_{2 n-1}=b_{2 k} r
$$

where $r \in \wedge\left(b_{2}, \ldots, b_{2 k}\right)$ and $[r] \neq 0$ in $H^{*}\left(G_{k, n}(\mathbb{C}), \mathbb{Q}\right)$ as $|r|=2(n-k)$ and there is no coboundary of degree less than $2(n-k)$. In particular, $[r] \neq\left[b_{2 k}\right]$.

Theorem 2.4. More generally, if $2 \leq k<n$, then the total space of the unit sphere tangent bundle

$$
S^{2 m-1} \rightarrow E \rightarrow G_{k, n}(\mathbb{C})
$$

is not formal, where $m=k(n-k)$.

Proof. The minimal Sullivan model of $G_{k, n}(\mathbb{C})$ is given by $(\wedge V, d)=\left(\wedge\left(b_{2}, \ldots, b_{2 k}, y_{2(n-k)+1}, \ldots, y_{2 n-1}\right), d\right)$ and $\left(\wedge x_{2 m-1}, 0\right)$ is the model of $S^{2 m-1}$. Let $\left[b_{2 k}^{*}\right]$ be the Poincaré dual of $\left[b_{2 k}\right]$ in $H^{*}\left(G_{k, n}(\mathbb{C}), \mathbb{Q}\right)$ and $\omega=$ $b_{2 k} b_{2 k}^{*}$. Since $\chi\left(G_{k, n}(\mathbb{C})\right) \neq 0$, a relative minimal model for the unit sphere tangent bundle $S^{2 m-1} \rightarrow E \rightarrow G_{k, n}(\mathbb{C})$ is given by

$$
(\wedge V, d) \stackrel{\iota}{\hookrightarrow}\left(\wedge V \otimes \wedge x_{2 m-1}, D\right) \rightarrow\left(\wedge x_{2 m-1}, 0\right)
$$

with $D v=d v$ for $v \in V$ and $D x_{2 m-1}=\omega$. By Lemma 2.3, there is $[r] \in$ $H^{2 n-2 k}\left(G_{k, n}(\mathbb{C}), \mathbb{Q}\right)$ the class of smallest degree such that $H^{*}(\iota)\left(\left[b_{2 k}\right]\right) \cdot H^{*}(\iota)([r])=0$ in $H^{*}(E ; \mathbb{Q})$, where $r \notin<b_{2 k}>$. We show that the triple Massey product $\left\langle H^{*}(\iota)\left(\left[b_{2 k}^{*}\right]\right), H^{*}(\iota)\left(\left[b_{2 k}\right]\right), H^{*}(\iota)([r])\right\rangle$ in $H^{*}(E ; \mathbb{Q})$ is not trivial. It is represented by the cocycle

$$
r x_{2 m-1}-b_{2 k}^{*} y_{2 n-1}
$$

To show that it is not a coboundary, we use an argument in the Leray-Serre spectral sequence for the unit sphere tangent bundle $S^{2 m-1} \rightarrow E \rightarrow G_{k, n}(\mathbb{C})$. In [4, Chapter 18], the Leray-Serre spectral sequence is obtained by filtering $\left(\wedge V \otimes \wedge x_{2 m-1}, D\right)$ by the degree of $\wedge V$; that is,

$$
F^{p}\left(\wedge V \otimes \wedge x_{2 m-1}\right)=(\wedge V)^{\geq p} \otimes \wedge x_{2 m-1}, p=0,1,2, \ldots
$$

and the associated bigraded module is given by

$$
\begin{aligned}
E_{0}^{p, q} & =(\wedge V)^{\geq p} \otimes \wedge x_{2 m-1} /(\wedge V)^{\geq(p+1)} \otimes \wedge x_{2 m-1} \\
& \cong(\wedge V)^{p} \otimes \wedge x_{2 m-1}
\end{aligned}
$$

Moreover, $d_{0}=0, d_{1}=d$ and $E_{2}^{p, *}=H^{p}(\wedge V, d) \otimes \wedge x_{2 m-1}$. Thus, $\left[r x_{2 m-1}-\right.$ $\left.b_{2 k}^{*} y_{2 n-1}\right] \cong\left[r x_{2 m-1}\right]$ at $E_{2}^{2(n-k), q}$ and we have $E_{2}=E_{3}=\cdots=E_{2 m}$. In particular, $E_{2 m}^{2(n-k), 2 m-1} \cong H^{2(n-k)}(\wedge V, d) \otimes \mathbb{Q}<x_{2 m-1}>$. Moreover, $d_{2 m}$ : $E_{2 m}^{2(n-k), 2 m-1} \rightarrow E_{2 m}^{2(n-k)+2 m, 0}$ is zero, for degree reasons. Hence, the element

$$
r x_{2 m-1} \in E_{2 m}^{2(n-k), 2 m-1}
$$

is a $d_{2 m}$-cocycle. Moreover, it cannot be a $d_{2 m}$-coboundary because
$E_{2 m}^{2(n-k)-2 m, 4 m-2}=0$. Hence the class

$$
\left[r x_{2 m-1}\right]
$$

is not zero at $E_{2 m+1}=E_{\infty}$. This is a non zero triple Massey product. Therefore, $E$ is not formal.

## Acknowledgement

The authors are grateful to the referees for helpful comments and suggestions. This paper is based on a part of Maphane's PhD thesis carried out under Gatsinzi's supervision.

## References

[1] Banyaga, A., Gatsinzi, J. B., and Massamba, F. A note on the formality of some contact manifolds. J. Geom. 109, 1 (2018), Paper No. 3, 10.
[2] Вотt, R., and Tu, L. W. Differential forms in algebraic topology, vol. 82 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.
[3] Chakraborty, P., and Sankaran, P. Maps between certain complex Grassmann manifolds. Topology Appl. 170 (2014), 119-123.
[4] Félix, Y., Halperin, S., and Thomas, J.-C. Rational homotopy theory, vol. 205 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
[5] Félix, Y., Oprea, J., and Tanré, D. Algebraic models in geometry, vol. 17 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2008.
[6] Greub, W., Halperin, S., and Vanstone, R. Connections, curvature, and cohomology. Pure and Applied Mathematics, Vol. 47-III. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Volume III: Cohomology of principal bundles and homogeneous spaces.
[7] Hoffman, M. Endomorphisms of the cohomology of complex Grassmannians. Trans. Amer. Math. Soc. 281, 2 (1984), 745-760.
[8] Murillo, A. The top cohomology class of certain spaces. J. Pure Appl. Algebra 84, 2 (1993), 209-214.
[9] Murillo, A. The top cohomology class of classical compact homogeneous spaces. Algebras Groups Geom. 16, 4 (1999), 531-550.
[10] Sullivan, D. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., 47 (1977), 269-331 (1978).

Received by the editors June 16, 2020
First published online February 3, 2022


[^0]:    ${ }^{1}$ This work was completed with the support of the Botswana International University of Science and Tecnnology (BIUST)
    ${ }^{2}$ Department of Mathematics and Statistical Sciences, Faculty of Science, Botswana International University of Science and Technology, e-mail: gatsinzij@biust.ac.bw
    ${ }^{3}$ Department of Mathematics and Statistical Sciences, Faculty of Science, Botswana International University of Science and Technology, e-mail: maphaneot@biust.ac.bw
    ${ }^{4}$ Corresponding author

