$R C$-Class on some fixed point theorems for multivalued monotone mappings in ordered uniform spaces

Arslan Hojat Ansar $\sqrt[1]{1}$, Demet Binbasioglu $\sqrt[2]{\sqrt{3}}$ and Duran Turkoglu $\sqrt[4]{4}$

Abstract

In this paper, we use the concepts of $R C$-class function which was introduced by A. H. Ansari in [8 and define a new order relation with $R C$-class function. Then we prove some new fixed point and coupled fixed point theorems in ordered uniform spaces.

AMS Mathematics Subject Classification (2010): 54H25; 47H10
Key words and phrases: fixed point; coupled fixed point; multi-valued mapping; ordered uniform space; $R C$-class function

1. Introduction

Considerable literature of fixed point theory dealing with contractive or contractive type mappings (e.g. [1, 2, 3, 4, 6, 5, 7, 9, 10, 8, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 8, 13]). Some of them are about fixed point and coupled fixed point theorems in partially ordered metric spaces [5, 9, 10, 11, 12, 17,23. Aamri and El Moutawakil have presented the concept of an E-distance function on uniform spaces [2]. I. Altun and M. Imdad have defined a partial order relation in uniform spaces using the concept of an E-distance function [7]. In this work, we use the relation on uniform spaces and we give $R C$-class function on some fixed point theorems for multivalued monotone mappings in ordered uniform spaces. Now, we will talk about some relevant concepts in uniform spaces. We term a pair (X, ϑ) to be a uniform space. The uniform space consist of a $X \neq \emptyset$ with a uniformity ϑ with a filter on $X \times X$ which includes the diagonal $\Delta=\{(x, x): x \in X\}$. If $V \in \vartheta$ and $(x, y) \in V,(y, x) \in V$ then x and y are said to be V-close. Also a sequence $\left\{x_{n}\right\}$ in X, is said to be a Cauchy sequence with regard to uniformity ϑ if for any $V \in \vartheta$, there exists $N \geq 1$ such that x_{n} and x_{m} are V-close for $m, n \geq N$. An uniformity ϑ defines a unique topology $\tau(\vartheta)$ on X for which the neighborhoods of $x \in X$ are the sets $V(x)=\{y \in X:(x, y) \in V\}$ when V runs over ϑ.

A uniform space (X, ϑ) is said to be Hausdorff if and only if the intersection of all the $V \in \vartheta$ reduces to diagonal Δ of X i.e. $(x, y) \in V$ for $V \in \vartheta$ implies $x=y$. Notice that Hausdorffness of the topology induced by the uniformity

[^0]guarantees the uniqueness of limit of a sequence in uniform spaces. An element of uniformity ϑ is said to be symmetrical if $V=V^{-1}=\{(y, x):(x, y) \in V\}$. Since each $V \in \vartheta$ contains a symmetrical $W \in \vartheta$ and if $(x, y) \in W$ then x and y are both W and V-close and then one may assume that each $V \in \vartheta$ is symmetrical. When topological concepts are mentioned in the context of a uniform space (X, ϑ), they are naturally interpreted with respect to the topological space $(X, \tau(\vartheta))$.

2. Preliminaries

We will talk about definitions and lemmas in the continuation of this work.
Definition 2.1 ([2]). Let (X, ϑ) be a Hausdorff uniform space. A function $p: X \times X \rightarrow \mathbb{R}^{+}$is said to be an E-distance if
$\left(p_{1}\right)$ For any $V \in \vartheta$ there exists $\delta>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ for some $z \in X$, imply $(x, y) \in V$,
$\left(p_{2}\right) p(x, y) \leq p(x, z)+p(z, y), \forall x, y, z \in X$.
The following lemma embodies some useful properties of E-distance.
Lemma 2.2 ([1, 2]). Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be arbitrary sequences in X and $\left\{\alpha_{n}\right\}$, $\left\{\beta_{n}\right\}$ be sequences in \mathbb{R}^{+}converging to 0 . Then, for $x, y, z \in X$, the following holds:
(a) If $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $y=z$. In particular, if $p(x, y)=0$ and $p(x, z)=0$, then $y=z$.
(b) If $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $\left\{y_{n}\right\}$ converges to z.
(c) If $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for all $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, ϑ).

Let (X, ϑ) be a uniform space equipped with E-distance p. A sequence in X is p-Cauchy if it satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2.3 ([1, 2]). Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on X. Then
(i) $\quad X$ said to be S-complete if for every p-Cauchy sequence $\left\{x_{n}\right\}$ there exists $x \in X$ with $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$,
(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence $\left\{x_{n}\right\}$ there exists $x \in X$ with $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to $\tau(\vartheta)$,
(iii) $f: X \rightarrow X$ is p-continuous if $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$ implies

$$
\lim _{n \rightarrow \infty} p\left(f x_{n}, f x\right)=0
$$

(iv) $f: X \rightarrow X$ is $\tau(\vartheta)$-continuous if $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to $\tau(\vartheta)$ implies $\lim _{n \rightarrow \infty} f x_{n}=f x$ with respect to $\tau(\vartheta)$.

Remark $2.4([2])$. Let (X, ϑ) be a Hausdorff uniform space and let $\left\{x_{n}\right\}$ be a p-Cauchy sequence. Suppose that X is S-complete, then there exists $x \in$ X such that $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$. Then Lemma 1 (b) gives that $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to the topology $\tau(\vartheta)$ which shows that S-completeness implies p-Cauchy completeness.

Lemma 2.5 ($[13])$. Let (X, ϑ) be a Hausdorff uniform space, p be E-distance on X and $\varphi: X \rightarrow \mathbb{R}$. Define the relation " \preceq " on X as follows;

$$
x \preceq y \Leftrightarrow x=y \text { or } p(x, y) \leq \varphi(x)-\varphi(y) .
$$

Then " $\preceq "$ is a (partial) order on X induced by φ.
In September 2014 the concepts of $R C$-class and $L C$-class for Caristi's fixed point theorem (see Definition 2.6 and 2.10 were introduced by A. H. Ansari in [8].
Definition 2.6. Let $F: \mathbb{R}_{1}^{2} \rightarrow \mathbb{R}, \mathbb{R}_{1} \subset \mathbb{R}$ be a function. F is said to be an $R C$-class if F is continuous and satisfies

$$
\begin{aligned}
F(s, t) & \geq 0 \Longrightarrow s \geq t \\
F(t, t) & =0 \\
s & \leq t \Longrightarrow F(e, s) \geq F(e, t) \\
t & \leq e \leq s \Longrightarrow F(s, e)+F(e, t) \leq F(s, t) \\
\exists g & : \mathbb{R} \rightarrow \mathbb{R}, F(g(s), g(t)) \geq 0 \Longrightarrow s \leq t
\end{aligned}
$$

where $s, t, e \in \mathbb{R}$.
In the following, you can see some examples of $R C$-class functions.
Example 2.7. For $n \in \mathbb{N}$ and $a>1$,

$$
\begin{array}{ccc}
F(s, t)=s-t & & g(t)=-t \\
F(s, t)=\frac{s-t}{1+t} & , & g(t)=\frac{1}{t}-1 \\
F(s, t)=s^{2 n+1}-t^{2 n+1} & , & g(t)=-t \\
F(s, t)=a^{s}-a^{t} & , & g(t)=-t \\
F(s, t)=a^{s}-a^{t}+t-s & , & g(t)=-t \\
F(s, t)=e^{s^{n+1}-t^{2 n+1}}-1 & , & g(t)=-t \\
F(s, t)=e^{s-t}-1 & , & g(t)=-t
\end{array}
$$

Remark 2.8. $F(s, t)=e^{s-t}-1 \geq s-t, s \geq t$.
Remark 2.9. $\left|\varphi\left(x_{m}\right)-\varphi\left(x_{n}\right)\right|<\varepsilon \Longrightarrow F\left(\varphi\left(x_{m}\right), \varphi\left(x_{n}\right)\right) \rightarrow 0$
Definition 2.10. We say that $\mathcal{H}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is an $L C$-class function if \mathcal{H} is a continuous and increasing function such that $\mathcal{H}(t)>0, t>0, \mathcal{H}(0)=0$ and

$$
\mathcal{H}(s+t) \leq \mathcal{H}(s)+\mathcal{H}(t)
$$

and

$$
x \leq y \Longrightarrow \mathcal{H}(x) \leq \mathcal{H}(y)
$$

Example 2.11. For $a>1, m>0$ and $n \in \mathbb{N}$

$$
\begin{aligned}
\mathcal{H}(t) & =1-a^{-t} \\
\mathcal{H}(t) & =m t \\
\mathcal{H}(t) & =m \sqrt[n]{t} \\
\mathcal{H}(t) & =\log _{a} 1+t \\
\mathcal{H}(t) & =\log _{a} 1+\sqrt[n]{t}
\end{aligned}
$$

are some examples of $L C$-class function.
Remark 2.12. $\mathcal{H}(t)=\log _{a} 1+t \leq t, a>\ln a$.
Lemma 2.13. Let (X, ϑ) be a Hausdorff uniform space, p be E-distance on X and $\varphi: X \rightarrow \mathbb{R}$ be an one to one function. Define the relation" $\preceq "$ on X as follows;

$$
x \preceq y \Leftrightarrow x=y \text { or } p(x, y) \leq F(\varphi(x), \varphi(y)) .
$$

where F is $R C$-class. Then " $\preceq "$ is a (partial) order on X induced by φ.

3. The Fixed Point Theorems of Multivalued mappings

Lemma 3.1. Let (X, ϑ) be a Hausdorff uniform space and p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded below and $" \preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space, $T: X \rightarrow 2^{X}$ be a multivalued mapping, $[x,+\infty)=\{y \in X: x \preceq y\}$ and $M=\{x \in X \mid T(x) \cap[x,+\infty) \neq \emptyset\}$. Suppose that:
(i) T is upper semi-continuous, that is $x_{n} \in X$ and $y_{n} \in T\left(x_{n}\right)$ with $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$, implies $y_{0} \in T\left(x_{0}\right)$;
(ii) $M \neq \emptyset$;
(iii) for each $x \in M, T(x) \cap M \cap[x,+\infty) \neq \emptyset$.

Then T has a fixed point x^{*} and there exists a sequence $\left\{x_{n}\right\}$ with

$$
x_{n-1} \preceq x_{n} \in T\left(x_{n-1}\right), n=1,2,3, \ldots
$$

such that $x_{n} \rightarrow x^{*}$. Moreover, if φ is lower semi-continuous, then $x_{n} \preceq x^{*}$ for all n.

Proof. By the condition (ii), take $x_{0} \in M$. From (iii), there exist $x_{1} \in T\left(x_{0}\right) \cap$ M and $x_{0} \preceq x_{1}$. Again from (iii), there exist $x_{2} \in T\left(x_{1}\right) \cap M$ and thus $x_{1} \preceq x_{2}$.

Continuing this procedure we get a sequence $\left\{x_{n}\right\}$ satisfying

$$
x_{n-1} \preceq x_{n} \in T\left(x_{n-1}\right), \quad n=1,2,3, \ldots
$$

So by the definition of " $\preceq "$, we have $\ldots \varphi\left(x_{2}\right) \leq \varphi\left(x_{1}\right) \leq \varphi\left(x_{0}\right)$ i.e. the sequence $\left\{\varphi\left(x_{n}\right)\right\}$ is a non-increasing sequence in \mathbb{R}. Since φ is bounded from below, $\left\{\varphi\left(x_{n}\right)\right\}$ is convergent and hence it is Cauchy i.e. for all $\varepsilon>0$, there
exists $n_{0} \in \mathbb{N}$ such that for all $m>n>n_{0}$ we have $\left|\varphi\left(x_{m}\right)-\varphi\left(x_{n}\right)\right|<\varepsilon$. Since $x_{n} \preceq x_{m}$ and by Remark 3, we have $x_{n}=x_{m}$ or

$$
\begin{aligned}
p\left(x_{n}, x_{m}\right) & \leq F\left(\varphi\left(x_{n}\right), \varphi\left(x_{m}\right)\right) \\
& <\varepsilon
\end{aligned}
$$

which shows that (in view of Lemma 1 (c)) that $\left\{x_{n}\right\}$ is p-Cauchy sequence. By the p-Cauchy completeness of $X,\left\{x_{n}\right\}$ converges to x^{*}. Since T is upper semi-continuous, $x^{*} \in T\left(x^{*}\right)$.

Moreover, when φ is lower semi-continuous, for each n

$$
\begin{aligned}
p\left(x_{n}, x^{*}\right) & =\lim _{m \rightarrow \infty} p\left(x_{n}, x_{m}\right) \\
& \leq \lim _{m \rightarrow \infty} \sup F\left(\varphi\left(x_{n}\right), \varphi\left(x_{m}\right)\right) \\
& =F\left(\varphi\left(x_{n}\right), \lim _{m \rightarrow \infty} \inf \varphi\left(x_{m}\right)\right) \\
& \leq F\left(\varphi\left(x_{n}\right), \varphi\left(x^{*}\right)\right)
\end{aligned}
$$

So $x_{n} \preceq x^{*}$, for all n.
Similarly we can prove the following.
Theorem 3.2. Let (X, ϑ) be a Hausdorff uniform space and p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded above and " \preceq " the order introduced by φ. Let X be also a p-Cauchy complete space, $T: X \rightarrow 2^{X}$ be a multivalued mapping, $(-\infty, x]=\{y \in X: y \preceq x\}$ and $M=\{x \in X \mid T(x) \cap(-\infty, x] \neq \emptyset\}$. Suppose that:
(i) T is upper semi-continuous, that is $x_{n} \in X$ and $y_{n} \in T\left(x_{n}\right)$ with $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$, implies $y_{0} \in T\left(x_{0}\right)$;
(ii) $M \neq \emptyset$;
(iii) for each $x \in M, T(x) \cap M \cap(-\infty, x] \neq \emptyset$.

Then T has a fixed point x^{*} and there exists a sequence $\left\{x_{n}\right\}$ with

$$
x_{n-1} \succeq x_{n} \in T\left(x_{n-1}\right), n=1,2,3, \ldots
$$

such that $x_{n} \rightarrow x^{*}$. Moreover, if φ is upper semi-continuous, then $x^{*} \preceq x_{n}$ for all n.

Corollary 3.3. Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded below and $" \preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space, $T: X \rightarrow 2^{X}$ be a multivalued mapping and $[x,+\infty)=\{y \in X: x \preceq y\}$. Suppose that:
(i) T is upper semi-continuous, that is $x_{n} \in X$ and $y_{n} \in T\left(x_{n}\right)$ with $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$, implies $y_{0} \in T\left(x_{0}\right)$;
(ii) T satisfies the monotonic condition: for any $x, y \in X$ with $x \preceq y$ and any $u \in T(x)$, there exists $v \in T(y)$ such that $u \preceq v$;
(iii) there exists an $x_{0} \in X$ such that $T\left(x_{0}\right) \cap\left[x_{0},+\infty\right) \neq \emptyset$.

Then T has a fixed point x^{*} and there exists a sequence $\left\{x_{n}\right\}$ with

$$
x_{n-1} \preceq x_{n} \in T\left(x_{n-1}\right), n=1,2,3, \ldots
$$

such that $x_{n} \rightarrow x^{*}$. Moreover, if φ is lower semi-continuous, then $x_{n} \preceq x^{*}$ for all n.

Proof. By (iii), $x_{0} \in M=\{x \in X: T(x) \cap[x,+\infty) \neq \emptyset\}$. For $x \in M$, take $y \in T(x)$ and $x \preceq y$. By the monotonicity of T, there exists $z \in T(y)$ such that $y \preceq z$. So $y \in M$, and $T(x) \cap M \cap[x,+\infty) \neq \emptyset$. The conclusion follows from Theorem 1.

Corollary 3.4. Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded above and $" \preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space, $T: X \rightarrow 2^{X}$ be a multivalued mapping and $(-\infty, x]=\{y \in X: y \preceq x\}$. Suppose that:
(i) T is upper semi-continuous;
(ii) T satisfies the monotonic condition; for any $x, y \in X$ with $x \preceq y$ and any $v \in T(y)$, there exists $u \in T(x)$ such that $u \preceq v$;
(iii) there exists an $x_{0} \in X$ such that $T\left(x_{0}\right) \cap\left(-\infty, x_{0}\right] \neq \emptyset$.

Then T has a fixed point x^{*} and there exists a sequence $\left\{x_{n}\right\}$ with

$$
x_{n-1} \succeq x_{n} \in T\left(x_{n-1}\right), n=1,2, \ldots
$$

such that $x_{n} \rightarrow x^{*}$. Moreover, if φ is upper semi-continuous, then $x_{n} \succeq x^{*}$ for all n.

Corollary 3.5. Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded below and " $\preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space, $f: X \rightarrow X$ be a map and $M=\{x \in X: x \preceq f(x)\}$. Suppose that:
(i) f is $\tau(\vartheta)$-continuous;
(ii) $M \neq \emptyset$;
(iii) for each $x \in M, f(x) \in M$.

Then f has a fixed point x^{*} and the sequence

$$
x_{n-1} \preceq x_{n}=f\left(x_{n-1}\right), n=1,2,3, . .
$$

converges to x^{*}. Moreover, if φ is lower semi-continuous, then $x_{n} \preceq x^{*}$ for all n.

Corollary 3.6. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded above, and " \preceq " the order introduced by φ. Let X be also a p-Cauchy complete space, $f: X \rightarrow X$ be a map and $M=\{x \in X: x \succeq f(x)\}$. Suppose that:
(i) f is $\tau(\vartheta)$-continuous;
(ii) $M \neq \emptyset$;
(iii) for each $x \in M, f(x) \in M$.

Then f has a fixed point x^{*} and the sequence

$$
x_{n-1} \succeq x_{n}=f\left(x_{n-1}\right), \quad n=1,2,3, \ldots
$$

converges to x^{*}. Moreover, if φ is upper semi-continuous, then $x_{n} \succeq x^{*}$ for all n.

Corollary 3.7. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded below, and" \preceq " the order introduced by φ. Let X be also a p-Cauchy complete space, $f: X \rightarrow X$ be a map and $M=\{x \in X: x \succeq f(x)\}$. Suppose that:
(i) f is $\tau(\vartheta)$-continuous;
(ii) f is monotone increasing, that is for $x \preceq y$ we have $f(x) \preceq f(y)$;
(iii) there exists an x_{0}, with $x_{0} \preceq f\left(x_{0}\right)$.

Then f has a fixed point x^{*} and the sequence

$$
x_{n-1} \preceq x_{n}=f\left(x_{n-1}\right), n=1,2,3, \ldots
$$

converges to x^{*}. Moreover, if φ is lower semi-continuous, then $x_{n} \preceq x^{*}$ for all n.

Example 3.8. Let $A=\{a, b, c\}$ and $\vartheta=\{V \subset A \times A: \Delta \subset V\}$. Define $p: A \times$ $A \rightarrow \mathbb{R}^{+}$as $p(x, x)=0$ for all $x \in A, p(a, b)=p(b, a)=2, p(a, c)=p(c, a)=1$ and $p(b, c)=p(c, b)=3$. By the definition of $\vartheta, \bigcap_{V \in \vartheta} V=\Delta$ and this shows that the uniform space (A, ϑ) is a Hausdorff uniform space. Furthermore, $p(a, b) \leq$ $p(a, c)+p(c, b), p(a, c) \leq p(a, b)+p(b, c)$ and $p(b, c) \leq p(b, a)+p(a, c)$ for $a, b, c \in A$ and thus p is an E-distance on A. Next define $\varphi: A \rightarrow \mathbb{R}, \varphi(a)=3$, $\varphi(b)=2, \varphi(c)=1$. Since $p(a, c)=p(c, a)=1 \leq \varphi(a)-\varphi(c)$, therefore $a \preceq c$. But as $p(b, a)=p(a, b)=2 \not \leq|\varphi(a)-\varphi(b)|$ therefore $a \npreceq b$ and $b \npreceq a$. Again, $b \npreceq c$ and $c \npreceq b$ which show that this ordering is partial and hence (A, ϑ) is a partially ordered uniform space. Define $g: A \rightarrow A$ as $g(a)=a, g(b)=b$ and $g(c)=c$, then we can verify that all conditions of Corollary 5 are satisfied and g has a fixed point. Notice that $p(g(a), g(b))=p(a, b)$. This shows that g is neither E-contractive nor E expansive, therefore the results of [2] are not applicable in the context of this example.

Corollary 3.9. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function which is bounded above and" $\preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space and $f: X \rightarrow X$ be a map. Suppose that:
(i) f is $\tau(\vartheta)$-continuous;
(ii) f is monotone increasing, that is, for $x \preceq y$ we have $f(x) \preceq f(y)$;
(iii) there exists an x_{0} with $x_{0} \succeq f\left(x_{0}\right)$.

Then f has a fixed point x^{*} and the sequence

$$
x_{n-1} \succeq x_{n}=f\left(x_{n-1}\right), n=1,2,3, \ldots
$$

converges to x^{*}. Moreover, if φ is upper semi-continuous, then $x_{n} \succeq x^{*}$ for all n.

Theorem 3.10. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one and continuous function bounded below and $" \preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space, $T: X \rightarrow 2^{X}$ be a multivalued mapping and $[x,+\infty)=\{y \in X: x \preceq y\}$. Suppose that:
(i) T satisfies the monotonic condition: for each $x \preceq y$ and each $u \in T(x)$ there exists $v \in T(y)$ such that $u \preceq v$;
(ii) $T(x)$ is compact for each $x \in X$;
(iii) $M=\{x \in X: T(x) \cap[x,+\infty) \neq \emptyset\} \neq \emptyset$.

Then T has a fixed point x_{0}.
Proof. We shall prove that M has a maximal element. Let $\left\{x_{v}\right\}_{v \in \Lambda}$ be a totally ordered subset in M, where Λ is a directed set. For $v, \mu \in \Lambda$ and $v \leq \mu$, one has $x_{v} \preceq x_{\mu}$, which implies that $\varphi\left(x_{v}\right) \geq \varphi\left(x_{\mu}\right)$ for $v \leq \mu$. Since φ is bounded below, $\left\{\varphi\left(x_{v}\right)\right\}$ is a convergence net in \mathbb{R}. So it is a Cauchy net i.e. for all $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $v \leq \mu$ we have $\left|\varphi\left(x_{\mu}\right)-\varphi\left(x_{v}\right)\right|<\varepsilon$. By the p-Cauchy completeness of X, let x_{v} converge to z in X.

For given $\mu \in \Lambda$, from Remark 3
$p\left(x_{\mu}, z\right)=\lim _{v} p\left(x_{\mu}, x_{v}\right) \leq \lim _{v} F\left(\varphi\left(x_{\mu}\right), \varphi\left(x_{v}\right)\right)=F\left(\varphi\left(x_{\mu}\right), \varphi\left(x_{z}\right)\right)$. So $x_{\mu} \preceq z$ for all $\mu \in \Lambda$.

For $\mu \in \Lambda$, by the condition (i), for each $u_{\mu} \in T\left(x_{\mu}\right)$, there exists a $v_{\mu} \in T(z)$ such that $u_{\mu} \preceq v_{\mu}$. By the compactness of $T(z)$, there exists a convergence subnet $\left\{v_{\mu^{\prime}}\right\}$ of $\left\{v_{\mu}\right\}$. Suppose that $\left\{v_{\mu^{\prime}}\right\}$ converges to $w \in T(z)$. Take Λ^{\prime} such that $\mu^{\prime} \geq \Lambda^{\prime}$ implies $u_{\mu} \preceq v_{\mu} \preceq v_{\mu^{\prime}}$.

We have
$p\left(u_{\mu}, w\right)=\lim _{\mu^{\prime}} p\left(u_{\mu}, v_{\mu^{\prime}}\right) \leq \lim _{\mu^{\prime}} F\left(\varphi\left(u_{\mu}\right), \varphi\left(v_{\mu^{\prime}}\right)\right)=F\left(\varphi\left(u_{\mu}\right), \varphi(w)\right)$.
So $u_{\mu} \preceq w$ for all μ and

$$
p(z, w)=\lim _{\mu} p\left(u_{\mu}, w\right) \leq \lim _{\mu} F\left(\varphi\left(u_{\mu}\right), \varphi(w)\right)=F(\varphi(z), \varphi(w))
$$

So $z \preceq w$ and this gives that $z \in M$. Hence we have proven that $\left\{x_{\mu}\right\}$ has an upper bound in M.

By Zorn's Lemma, there exists a maximal element x_{0} in M. By the definition of M, there exists a $y_{0} \in T\left(x_{0}\right)$ such that $x_{0} \preceq y_{0}$. By the condition (i), there exists a $z_{0} \in T\left(y_{0}\right)$ such that $y_{0} \preceq z_{0}$. Hence $y_{0} \in M$. Since x_{0} is a maximal element in M, it follows that $y_{0}=x_{0}$ and $x_{0} \in T\left(x_{0}\right)$. So x_{0} is a fixed point of T.

Theorem 3.11. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one and continuous function bounded above and $" \preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space, $T: X \rightarrow 2^{X}$ be a multivalued mapping and $(-\infty, x]=\{y \in X: y \preceq x\}$. Suppose that
(i) T satisfies the following condition; for each $x \preceq y$ and $v \in T(x)$, there exists $u \in T(y)$ such that $u \preceq v$;
(ii) $T(x)$ is compact for each $x \in X$;
(iii) $M=\{x \in X: T(x) \cap(-\infty, x] \neq \emptyset\} \neq \emptyset$.

Then T has a fixed point.
Corollary 3.12. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one continuous function bounded below and " $\preceq " ~ t h e ~ o r d e r ~ i n t r o d u c e d ~ b y ~ \varphi . ~ L e t ~ X ~ b e ~ a l s o ~ a ~ p-C a u c h y ~ c o m p l e t e ~ s p a c e ~ a n d ~$ $f: X \rightarrow X$ be a map. Suppose that;
(i) f is monotone increasing, that is for $x \preceq y, f(x) \preceq f(y)$;
(ii) there is an $x_{0} \in X$ such that $x_{0} \preceq f\left(x_{0}\right)$.

Then f has a fixed point.
Corollary 3.13. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one continuous function bounded above and $" \preceq "$ the order introduced by φ. Let X be also a p-Cauchy complete space and $f: X \rightarrow X$ be a map. Suppose that;
(i) f is monotone increasing, that is for $x \preceq y, f(x) \preceq f(y)$;
(ii) there is an $x_{0} \in X$ such that $x_{0} \succeq f\left(x_{0}\right)$.

Then f has a fixed point.

4. The Coupled Fixed Point Theorems of Multivalued Mappings

Definition 4.1. An element $(x, y) \in X \times X$ is called a coupled fixed point of the multivalued mapping $T: X \times X \rightarrow 2^{X}$ if $x \in T(x, y), y \in T(y, x)$.

Theorem 4.2. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on X, $\varphi: X \rightarrow \mathbb{R}$ be an one to one function bounded below and" $\preceq "$ be the order in X introduced by φ. Let X be also a p-Cauchy complete space, $T: X \times X \rightarrow 2^{X}$ be a multivalued mapping, $[x,+\infty)=\{y \in X: x \preceq y\},(-\infty, y]=\{x \in$ $X: x \preceq y\}$, and $M=\{(x, y) \in X \times X: x \preceq y, T(x, y) \cap[x,+\infty) \neq \emptyset$ and $T(y, x) \cap(-\infty, y] \neq \emptyset\}$. Suppose that:
(i) T is upper semi-continuous, that is, $x_{n} \in X, y_{n} \in X$ and $z_{n} \in$ $T\left(x_{n}, y_{n}\right)$, with $x_{n} \rightarrow x_{0}, y_{n} \rightarrow y_{0}$ and $z_{n} \rightarrow z_{0}$ implies $z_{0} \in T\left(x_{0}, y_{0}\right)$;
(ii) $M \neq \emptyset$;
(iii) for each $(x, y) \in M$, there is $(u, v) \in M$ such that $u \in T(x, y) \cap[x,+\infty)$ and $v \in T(y, x) \cap(-\infty, y]$

Then T has a coupled fixed point $\left(x^{*}, y^{*}\right)$ i.e. $x^{*} \in T\left(x^{*}, y^{*}\right)$ and $y^{*} \in$ $T\left(y^{*}, x^{*}\right)$. Also there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with

$$
x_{n-1} \preceq x_{n} \in T\left(x_{n-1}, y_{n-1}\right), y_{n-1} \succeq y_{n} \in T\left(y_{n-1}, x_{n-1}\right), n=1,2,3, \ldots
$$

such that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$.
Proof. By the condition (ii), take $\left(x_{0}, y_{0}\right) \in M$. From (iii), there exist $\left(x_{1}, y_{1}\right) \in$ M such that $x_{1} \in T\left(x_{0}, y_{0}\right), x_{0 \preceq} x_{1}$ and $y_{1} \in T\left(y_{0}, x_{0}\right), y_{1} \preceq y_{0}$. Again from (iii), there exist $\left(x_{2}, y_{2}\right) \in M$ such that $x_{2} \in T\left(x_{1}, y_{1}\right), x_{1 \preceq} x_{2}$ and $y_{2} \in T\left(y_{1}, x_{1}\right), y_{2} \preceq y_{1}$.

Continuing this procedure we get two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ satisfying $\left(x_{n}, y_{n}\right) \in M$ and

$$
x_{n-1} \preceq x_{n} \in T\left(x_{n-1}, y_{n-1}\right), n=1,2, \ldots
$$

and

$$
y_{n-1} \succeq y_{n} \in T\left(y_{n-1}, x_{n-1}\right), n=1,2, \ldots
$$

So

$$
x_{0} \preceq x_{1} \preceq \ldots \preceq x_{n} \preceq \ldots \preceq y_{n} \preceq \ldots \preceq y_{2} \preceq y_{1}
$$

Hence

$$
\varphi\left(x_{0}\right) \geq \varphi\left(x_{1}\right) \geq \ldots \geq \varphi\left(x_{n}\right) \geq \ldots \geq \varphi\left(y_{n}\right) \geq \ldots \geq \varphi\left(y_{1}\right) \geq \varphi\left(y_{0}\right)
$$

From this we get that $\varphi\left(x_{n}\right)$ and $\varphi\left(y_{n}\right)$ are convergent sequences. By the definition of " \preceq " as in the proof of Theorem 1, it is easy to prove that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are p-Cauchy sequences. Since X is p-Cauchy complete, let $\left\{x_{n}\right\}$ converge to x^{*} and $\left\{y_{n}\right\}$ converge to y^{*}. Since T is upper semi-continuous, $x^{*} \in T\left(x^{*}, y^{*}\right)$ and $y^{*} \in T\left(y^{*}, x^{*}\right)$. Hence $\left(x^{*}, y^{*}\right)$ is a coupled fixed point of T.

Corollary 4.3. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function bounded below, and " \preceq "be the order in X introduced by φ. Let X be also a p-Cauchy complete space, $f: X \times X \rightarrow X$ be a mapping and $M=\{(x, y) \in X \times X: x \preceq y$ and $x \preceq f(x, y)$ and $f(x, y) \preceq y\}$. Suppose that;
(i) f is $\tau(\vartheta)$-continuous;
(ii) $M \neq \emptyset$;
(iii) for each $(x, y) \in M, x \preceq f(x, y)$ and $f(y, x) \preceq y$.

Then f has a coupled fixed point $\left(x^{*}, y^{*}\right)$, i.e. $x^{*}=f\left(x^{*}, y^{*}\right)$ and $y^{*}=$ $f\left(y^{*}, x^{*}\right)$ and there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{n-1} \preceq x_{n}=$ $f\left(x_{n-1}, y_{n-1}\right), y_{n-1} \succeq y_{n}=f\left(y_{n-1}, x_{n-1}\right), n=1,2, \ldots$ such that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$.

Corollary 4.4. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one function bounded below, and " $\preceq "$ be the order in X introduced by φ. Let X be also a p-Cauchy complete space, $f: X \times X \rightarrow X$ be a mapping and $M=\{(x, y) \in X \times X: x \preceq y$ and $x \preceq f(x, y)$ and $f(x, y) \preceq y\}$. Suppose that;
(i) f is $\tau(\vartheta)$-continuous;
(ii) $M \neq \emptyset$;
(iii) f is mixed monotone, that is for each $x_{1} \preceq x_{2}$ and $y_{1} \succeq y_{2}, f\left(x_{1}, y_{1}\right) \preceq$ $f\left(x_{2}, y_{2}\right)$.

Then f has a coupled fixed point $\left(x^{*}, y^{*}\right)$ and there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{n-1} \preceq x_{n}=f\left(x_{n-1}, y_{n-1}\right), y_{n-1} \succeq y_{n}=f\left(y_{n-1}, x_{n-1}\right)$, $n=1,2, \ldots$ such that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$.

Theorem 4.5. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be an one to one continuous function, and " \preceq " be the order in X introduced by φ. Let X be also a p-Cauchy complete space, $T: X \times X \rightarrow 2^{X}$ be a multivalued mapping, $[x,+\infty)=\{y \in X: x \preceq y\},(-\infty, y]=\{x \in$ $X: x \preceq y\}$, and $M=\{(x, y) \in X \times X: x \preceq y, T(x, y) \cap[x,+\infty) \neq \emptyset$ and $T(y, x) \cap(-\infty, y] \neq \emptyset\}$. Suppose that;
(i) T is mixed monotone, that is for $x_{1} \preceq y_{1}, x_{2} \succeq y_{2}$ and $u \in T\left(x_{1}, y_{1}\right)$, $v \in T\left(y_{1}, x_{1}\right)$, there exist $w \in T\left(x_{2}, y_{2}\right), z \in T\left(y_{2}, x_{2}\right)$ such that $u \preceq w, v \succeq z$;
(ii) $M \neq \emptyset$;
(iii) $T(x, y)$ is compact for each $(x, y) \in X \times X$.

Then T has a coupled fixed point.
Proof. By $(i i)$, there exists $\left(x_{0}, y_{0}\right) \in M$ with $x_{0} \preceq y_{0}, T\left(x_{0}, y_{0}\right) \cap\left[x_{0},+\infty\right) \neq \emptyset$ and $T\left(y_{0}, x_{0}\right) \cap\left(-\infty, y_{0}\right] \neq \emptyset$. Let $C=\left\{(x, y): x_{0} \preceq x, y \preceq y_{0}, T(x, y) \cap\right.$ $[x,+\infty) \neq \emptyset$ and $T(y, x) \cap(-\infty, y] \neq \emptyset\}$. Then $\left(x_{0}, y_{0}\right) \in C$. Define the order relation " $\preceq "$ in C by

$$
\left(x_{1}, y_{1}\right) \preceq\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1} \preceq x_{2}, y_{2} \preceq y_{1} .
$$

It is easy to prove that (C, \preceq) becomes an ordered space.
We shall prove that C has a maximal element. Let $\left\{x_{v}, y_{v}\right\}_{v \in \Lambda}$ be a totally ordered subset in C, where Λ is a directed set. For $v, \mu \in \Lambda$ and $v \leq \mu$, one has $\left(x_{v}, y_{v}\right) \preceq\left(x_{\mu}, y_{\mu}\right)$. So $x_{v} \preceq x_{\mu}$ and $y_{\mu} \preceq y_{v}$, which implies that

$$
\varphi\left(x_{0}\right) \geq \varphi\left(x_{v}\right) \geq \varphi\left(x_{\mu}\right) \geq \varphi\left(y_{0}\right)
$$

and

$$
\varphi\left(y_{0}\right) \leq \varphi\left(y_{\mu}\right) \leq \varphi\left(y_{v}\right) \leq \varphi\left(x_{0}\right)
$$

for $v \leq \mu$.
Since $\left\{\varphi\left(x_{v}\right)\right\}$ and $\left\{\varphi\left(y_{v}\right)\right\}$ are convergence nets in \mathbb{R}. From

$$
p\left(x_{v}, x_{\mu}\right) \leq F\left(\varphi\left(x_{v}\right), \varphi\left(x_{\mu}\right)\right) \text { and } p\left(y_{\mu}, y_{v}\right) \leq F\left(\varphi\left(y_{\mu}\right), \varphi\left(y_{v}\right)\right),
$$

we get that $\left\{x_{v}\right\}$ and $\left\{y_{v}\right\}$ are p-Cauchy nets in X. By the p-Cauchy completeness of X, let x_{v} converge to x^{*} and y_{v} converge to y^{*} in X. For given $\mu \in \Lambda$,

$$
\begin{aligned}
p\left(x_{\mu}, x^{*}\right) & =\lim _{v} p\left(x_{\mu}, x_{v}\right) \leq \lim _{v} F\left(\varphi\left(x_{\mu}\right), \varphi\left(x_{v}\right)\right)=F\left(\varphi\left(x_{\mu}\right), \varphi\left(x^{*}\right)\right) \\
p\left(y_{\mu}, y^{*}\right) & =\lim _{v} p\left(y_{\mu}, y_{v}\right) \leq \lim _{v} F\left(\varphi\left(y_{v}\right), \varphi\left(y_{\mu}\right)\right)=F\left(\varphi\left(y_{v}\right), \varphi\left(y^{*}\right)\right) .
\end{aligned}
$$

So $x_{0} \preceq x_{\mu} \preceq x^{*}$ and $y_{\mu} \succeq y^{*} \succeq y_{0}$ for all $\mu \in \Lambda$.
For $\mu \in \Lambda$, by the condition (i), for each $u_{\mu} \in T\left(x_{\mu}, y_{\mu}\right)$ with $x_{\mu} \preceq u_{\mu}$ and $v_{\mu} \in T\left(y_{\mu}, x_{\mu}\right)$ with $v_{\mu} \preceq y_{\mu}$, there exist $w_{\mu} \in T\left(x^{*}, y^{*}\right)$ and $z_{\mu} \in T\left(y^{*}, x^{*}\right)$ such that $u_{\mu} \preceq w_{\mu}$ and $v_{\mu} \succeq z_{\mu}$. By the compactness of $T\left(x^{*}, y^{*}\right)$ and $T\left(y^{*}, x^{*}\right)$, there exist convergence subnets $\left\{w_{\mu^{\prime}}\right\}$ of $\left\{w_{\mu}\right\}$ and $\left\{z_{\mu^{\prime}}\right\}$ of $\left\{z_{\mu}\right\}$. Suppose that
$\left\{w_{\mu^{\prime}}\right\}$ converges to $w \in T\left(x^{*}, y^{*}\right)$ and $\left\{z_{\mu^{\prime}}\right\}$ converges to $z \in T\left(y^{*}, x^{*}\right)$. Take Λ^{\prime}, such that $\mu^{\prime} \geq \Lambda^{\prime}$ implies $u_{\mu} \preceq v_{\mu} \preceq v_{\mu^{\prime}}$. We have

$$
\begin{aligned}
p\left(u_{\mu}, w\right) & =\lim _{\mu^{\prime}} p\left(u_{\mu}, u_{\mu^{\prime}}\right) \leq \lim _{\mu^{\prime}} F\left(\varphi\left(u_{\mu}\right), \varphi\left(u_{\mu^{\prime}}\right)\right)=F\left(\varphi\left(u_{\mu}\right), \varphi(w)\right) \\
p\left(z, v_{\mu}\right) & =\lim _{\mu^{\prime}} p\left(v_{\mu^{\prime}}, v_{\mu}\right) \leq \lim _{\mu^{\prime}} F\left(\varphi\left(v_{\mu^{\prime}}\right), \varphi\left(v_{\mu}\right)\right)=F\left(\varphi(z), \varphi\left(v_{\mu}\right)\right)
\end{aligned}
$$

So $x_{\mu} \preceq u_{\mu} \preceq w$ and $z \preceq v_{\mu} \preceq y_{\mu}$ for all μ. Also

$$
\begin{aligned}
p\left(x^{*}, w\right) & =\lim _{\mu^{\prime}} p\left(x_{\mu^{\prime}}, u_{\mu^{\prime}}\right) \leq \lim _{\mu^{\prime}} F\left(\varphi\left(x_{\mu^{\prime}}\right), \varphi\left(u_{\mu^{\prime}}\right)\right)=F\left(\varphi\left(x^{*}\right), \varphi(w)\right) \\
p\left(z, y^{*}\right) & =\lim _{\mu^{\prime}} p\left(v_{\mu^{\prime}}, y_{\mu^{\prime}}\right) \leq \lim _{\mu^{\prime}} F\left(\varphi\left(v_{\mu^{\prime}}\right), \varphi\left(y_{\mu^{\prime}}\right)\right)=F\left(\varphi(z), \varphi\left(y^{*}\right)\right) .
\end{aligned}
$$

So $x^{*} \preceq w$ and $z \preceq y^{*}$, this gives that $\left(x^{*}, y^{*}\right) \in C$. Hence we have proven that $\left\{x_{\mu}, y_{\mu}\right\}_{\mu \in \Lambda}$ has an upper bound in C.

By Zorn's lemma, there exists a maximal element (\bar{x}, \bar{y}) in C. By the definition of C, there exist $\bar{u} \in T(\bar{x}, \bar{y}), \bar{v} \in T(\bar{y}, \bar{x})$, such that $x_{0} \preceq \bar{u}, \bar{v} \preceq y_{0}$ and $\bar{x} \preceq \bar{u}, \bar{v} \preceq \bar{y}$. By the condition (i) there exist $\bar{w} \in T(\bar{u}, \bar{v}), \bar{z} \in T(\bar{v}, \bar{u})$ such that $x_{0} \preceq \bar{u} \preceq \bar{w}$ and $\bar{z} \preceq \bar{v} \preceq y_{0}$. Hence $(\bar{u}, \bar{v}) \in C$ and $(\bar{x}, \bar{y}) \preceq(\bar{u}, \bar{v})$. Since (\bar{x}, \bar{y}) is a maximal element in C, it follows that $(\bar{x}, \bar{y})=(\bar{u}, \bar{v})$, and it follows that $\bar{x}=\bar{u} \in T(\bar{x}, \bar{u})$ and $\bar{y}=\bar{v} \in T(\bar{y}, \bar{x})$. So (\bar{x}, \bar{y}) is a coupled fixed point of T.

Corollary 4.6. Let (X, ϑ) be a Hausdorff uniform space, p an E-distance on $X, \varphi: X \rightarrow \mathbb{R}$ be a continuous function, and " \preceq " be the order in X introduced by φ. Let X be also a p-Cauchy complete space and $f: X \times X \rightarrow X$ be a mapping. Suppose that;
(i) f is mixed monotone, that is for $x_{1} \preceq y_{1}, x_{2} \succeq y_{2}$ and $f\left(x_{1}, y_{1}\right) \preceq$ $f\left(y_{2}, x_{2}\right)$;
(ii) there exist $x_{0}, y_{0} \in X$ such that $x_{0} \preceq f\left(x_{0}, y_{0}\right)$ and $f\left(y_{0}, x_{0}\right) \preceq y_{0}$.

Then f has a coupled fixed point.

Acknowledgement

We wish to thank the referee for valuable suggestions and comments which improved the paper considerably.

References

[1] Aamri, M., Bennani, S., and El Moutawakil, D. Fixed points and variational principle in uniform spaces. Sib. Èlektron. Mat. Izv. 3 (2006), 137-142.
[2] Aamri, M., and El Moutawakil, D. Common fixed point theorems for E contractive or E-expansive maps in uniform spaces. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 20, 1 (2004), 83-91.
[3] Aamri, M., and El Moutawakil, D. Weak compatibility and common fixed point theorems for A-contractive and E-expansive maps in uniform spaces. Serdica Math. J. 31, 1-2 (2005), 75-86.
[4] Acharya, S. P. Some results on fixed points in uniform spaces. Yokohama Math. J. 22 (1974), 105-116.
[5] Agarnal, R. P., El-Gebeily, M. A., and O’Regan, D. Generalized contractions in partially ordered metric spaces. Appl. Anal. 87, 1 (2008), 109-116.
[6] Agarwal, R. P., O'Regan, D., and Papageorgiou, N. S. Common fixed point theory for multivalued contractive maps of Reich type in uniform spaces. Appl. Anal. 83, 1 (2004), 37-47.
[7] Altun, I., and Imdad, M. Some fixed point theorems on ordered uniform spaces. Filomat 23, 3 (2009), 15-22.
[8] Ansari, A. H. Refinement and generalization of caristi's fixed point theorem. 382-385.
[9] Gnana Bhaskar, T., and Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 7 (2006), 1379-1393.
[10] Guo, D. J., and Lakshmikantham, V. Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11, 5 (1987), 623-632.
[11] Lakshmikantham, V., and Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70, 12 (2009), 4341-4349.
[12] Nieto, J. J., and Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 3 (2005), 223-239 (2006).
[13] Olatinwo, M. O. Some common fixed point theorems for selfmappings in uniform space. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 23, 1 (2007), 47-54.
[14] Olatinwo, M. O. Some existence and uniqueness common fixed point theorems for selfmappings in uniform space. Fasc. Math., 38 (2007), 87-95.
[15] Olatinwo, M. O. On some common fixed point theorems of Aamri and El Moutawakil in uniform spaces. Appl. Math. E-Notes 8 (2008), 254-262.
[16] O'Regan, D., Agarwal, R. P., and Jiang, D. Fixed point and homotopy results in uniform spaces. Bull. Belg. Math. Soc. Simon Stevin 11, 2 (2004), 289-296.
[17] Samet, B. Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 72, 12 (2010), 4508-4517.
[18] Türkoglu, D. Fixed point theorems on uniform spaces. Indian J. Pure Appl. Math. 34, 3 (2003), 453-459.
[19] Turkoglu, D. Some fixed point theorems for hybrid contractions in uniform space. Taiwanese J. Math. 12, 3 (2008), 807-820.
[20] Turkoglu, D. Some common fixed point theorems for weakly compatible mappings in uniform spaces. Acta Math. Hungar. 128, 1-2 (2010), 165-174.
[21] Türkoglu, D., and Fisher, B. Fixed point of multivalued mapping in uniform spaces. Proc. Indian Acad. Sci. Math. Sci. 113, 2 (2003), 183-187.
[22] Türkoğlu, D., and Rhoades, B. E. A general fixed point theorem for multivalued mapping in uniform space. Rocky Mountain J. Math. 38, 2 (2008), 639647.
[23] Zhang, X. Fixed point theorems of multivalued monotone mappings in ordered metric spaces. Appl. Math. Lett. 23, 3 (2010), 235-240.

Received by the editors December 18, 2020
First published online October 30, 2021

[^0]: ${ }^{1}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran, e-mail: mathanalsisamir4@gmail.com analsisamirmath2@gmail.com
 ${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, University of Gaziosmanpasa, Tokat, Turkey, e-mail: demetbinbasi@hotmail.com
 ${ }^{3}$ Corresponding author
 ${ }^{4}$ Department of Mathematics, Faculty of Science, University of Gazi, Ankara, Turkey, e-mail: dturkoglu@gazi.edu.tr

