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Oscillation theorems for advanced differential equations

Amin Benaissa Cherif12, Moussa Fethallah3 and
Fatima Zohra Ladrani4

Abstract. In this paper, we will establish some oscillation criteria for
the advanced differential equations

u
′
(t)−

∑i=k

i=1
qi (t)u

α (τi (t)) = 0, for t ≥ t0

where k is an integer and α is a quotient of odd integers, such as k ≥ 1
and α ≥ 1. The functions {qi}i∈{1,...,k} are continuous positive functions
and the arguments {τi}i∈{1,...,k} are continuous positive functions, such
that τi (t) > t, for i ∈ {1, ..., k}. This study aims to present some new
sufficient conditions for the oscillation of solutions to a class of first-order
advanced differential equations, using a technique based on a recursive
sequence.
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1. Introduction

In this article, we consider the advanced differential equation of the form

(1.1) u
′
(t)−

∑i=k

i=1
qi (t)u

α (τi (t)) = 0, for t ≥ t0

where k is an integer and α is a quotient of odd integers, such that k ≥ 1 and
α ≥ 1. The functions {qi}i∈{1,...,k}, {τi}i∈{1,...,k} are continuous and positive
and they satisfy the conditions stated below:

(H1) {τi}i∈{1,...,k} ∈ C ([t0,∞) , [t0,∞)) satisfy τi (t) ≥ t, for t ≥ t0 and

limt→∞ τi (t) = ∞, for i ∈ {1, 2, ..., k} ,

(H2) {qi}i∈{1,...,k} ∈ C ([t0,∞) , [0,∞)), such that Q :=
∑i=k

i=1 qi ̸= 0 on any

interval of the form [t0,∞) and
∫ τ(t)

t
Q (s) ds increases on [t0,∞), where

τ (t) := min {τi (t) : i ∈ {1, ..k}}, for t ≥ t0.
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By a solution of (1.1) we mean a nontrivial real-valued function u which
is an element of the set C1 ([Tu,∞) ,R), Tu ∈ [t0,∞) which satisfies (1.1) on
[Tu,∞). The solutions vanishing in some neighbourhood of infinity will be ex-
cluded from our consideration. A solution u of (1.1) is said to be oscillatory if it
is neither eventually positive nor eventually negative, otherwise it is nonoscil-
latory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

Today there has been an increasing interest in obtaining sufficient conditions
for oscillation and non oscillation of solutions of advanced type differential
equations, we refer the reader to the articles [2, 3, 4, 1, 5, 6, 7, 8, 9, 11, 12, 13]
and the references cited therein. So far, there are some results on oscillation
of (1.1). In the present work, we study further (1.1) and derive new sufficient
oscillation conditions.

2. Oscillation Results

To derive main results in this section, we need the following lemmas.

Definition 2.1. Let us define a sequence of functions by the recurrence relation

(2.1) Jn+1 (t) :=
∑i=k

i=1

∫ τ(t)

t

qi (s) exp (Jn (t)) ds, for t ≥ t0,

with

(2.2) J0 (t) :=
∑i=k

i=1

∫ τ(t)

t

qi (s) ds, for t ≥ t0,

Lemma 2.2. Assume (H1)− (H2) hold and α = 1. If u is a positive solution
of (1.1), then the sequence {Jn (t) : n ∈ N} converges.

Proof. Let u be an eventually positive solution of (1.1). From (1.1), we have
u

′
(t) ≥ 0, for t ≥ t0. On the other hand, for i ∈ {1, ..., k}, we have

ln

(
u (τi (t))

u (t)

)
=

∫ τi(t)

t

u
′
(s)

u (s)
ds =

∑m=k

m=1

∫ τi(t)

t

qm (s)
u (τm (s))

u (s)
ds

≥
∑m=k

m=1

∫ τ(t)

t

qm (s)
u (τm (s))

u (s)
ds(2.3)

≥
∑m=k

m=1

∫ τ(t)

t

qm (s) ds ≥ J0 (t) , for t ≥ t0.

This means,

u (τi (t))

u (t)
≥ exp (J0 (t)) , for t ≥ t0 and for i ∈ {1, ..., k} .

From (2.3) and the above inequality, we obtain

ln

(
u (τi (t))

u (t)

)
≥
∑m=k

m=1

∫ τ(t)

t

qm (s) exp (J0 (s)) ds := J1 (t) , for t ≥ t0.
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By induction, we can see that if

ln

(
u (τi (t))

u (x)

)
≥ Jn (t) , for t ≥ t0 and for i ∈ {1, ..., k} .

In the same way, we find that the inequality is true for n+1. By (2.1) and the
above inequality, we conclude that the sequence {Jn (t) : n ∈ N} is increasing,
thus {Jn (t) : n ∈ N} converges.

Lemma 2.3. Assume (H1)−(H2) hold and α = 1. The sequence {Jn (t) : n ∈ N}
defined by (2.1), converges if and only if

(2.4)
∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤
1

e
, for all t ≥ t0.

Proof. Sufficient: Suppose that (2.2) is true. Then

J0 (t) ≤
1

e
= v0, for all t ≥ t0,

Then, we get

J1 (t) ≤
∑i=k

i=1

∫ τ(t)

t

qi (s) exp (J0 (t)) ds

≤
∑i=k

i=1

∫ τ(t)

t

qi (s) ds exp (v0) ≤ v0 exp (v0) = v1.

By induction, we can see that if

Jn (t) ≤ v0 exp (vn) < 1.

In view of Lemma [10, Lemma 1], {Jn (t) : n ∈ N} converges.
Necessary: Suppose that {Jn (t) : n ∈ N} converges, then there is a positive
real function denoted J (t), such that J (t) = lim

n→∞
Jn (t), by (2.1), we find that

the function J satisfies

(2.5) J (t) =
∑i=k

i=1

∫ τ(t)

t

qi (s) exp (J (s)) ds, for t ≥ t0.

By the hypothesis, we have that the function J0 is increasing on [t0,∞), then
by induction deduce that functions Jn are increasing on [t0,∞), we conclude
that the function J increases on [t0,∞). By the above equality, we obtain

∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤ J (t) exp (−J (t)) , for t ≥ t0.

On the other hand, we have

max {x exp (−x) : x ≥ 1} =
1

e
.
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By (2.5), deduce that J (t) ≥ 1, for t ≥ t0. From the above, we deduce

∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤
1

e
, for t ≥ t0.

This completes the proof.

Remark 2.4. Assume (H1) − (H2) hold and α = 1. If u is a positive solution
of (1.1), then inequality (2.4) is satisfied.

Next, we consider the advanced differential equation (1.1) subject to the
initial condition

(2.6) u (t0) := a > 0.

Definition 2.5. Let us define a sequence of functions by the recurrence relation
(2.7)

Iαn+1 (t) :=

(
1 + aα−1 (α− 1)

∑i=k

i=1

∫ τi(t)

t

qi (s) I
α
n (s) ds

) α
α−1

, for t ≥ t0,

with

(2.8) Iα0 (t) :=

(
1 + aα−1 (α− 1)

∑i=k

i=1

∫ τ(t)

t

qi (s) ds

) α
α−1

, for t ≥ t0,

where α > 1.

Lemma 2.6. Assume (H1)− (H2) hold and α > 1. If u is a positive solution
of (1.1), then the sequence {Iαn (t) : n ∈ N} converges.

Proof. Let u be an eventually positive solution of (1.1). From (1.1), we have
u

′
(t) ≥ 0, for t ≥ t0. On the other hand, for i ∈ {1, ..., k}, we have

1

uα−1 (t)
− 1

uα−1 (τi (t))
= (α− 1)

∫ τi(t)

t

u
′
(s)

uα (s)
ds

= (α− 1)
∑m=k

m=1

∫ τi(t)

t

qm (s)
uα (τm (s))

uα (s)
ds

≥ (α− 1)
∑m=k

m=1

∫ τ(t)

t

qm (s)
uα (τm (s))

uα (s)
ds(2.9)

> (α− 1)
∑m=k

m=1

∫ τ(t)

t

qm (s) ds, for all t ≥ t0.(2.10)

Since u is increasing on [t0,∞), then u (t) ≥ u (t0) = a, for all t ≥ t0. Hence

(2.11)
uα−1 (τi (t))

uα−1 (t)
≥ 1 + aα−1

(
1

uα−1 (t)
− 1

uα−1 (τi (t))

)
, for all t ≥ t0.
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From (2.10) and the above inequality, we obtain

uα (τi (t))

uα (t)
≥

(
1 + aα−1 (α− 1)

∑m=k

m=1

∫ τ(t)

t

qm (s) ds

) α
α−1

= Iα0 (t) , for all t ≥ t0.

From (2.9), (2.11) and the above inequality, we obtain

uα−1 (τi (t))

uα−1 (t)
≥ 1 + aα−1 (α− 1)

∑m=k

m=1

∫ τ(t)

t

qm (s) Iα0 (s) ds, for all t ≥ t0,

or

uα (τi (t))

uα (t)
≥

(
1 + aα−1 (α− 1)

∑m=k

m=1

∫ τ(t)

t

qm (s) Iα0 (t) ds

) α
α−1

= Iα1 (t) , for t ≥ t0.

By induction, we can see that

uα (τi (t))

uα (t)
≥ Iαn (t) , for t ≥ t0 and for i ∈ {1, ..., k} .

In the same way, we find that the inequality is true for n+1. We conclude that
the sequence {Ian (t) : n ∈ N} is increasing and bounded, then {Iαn (t) : n ∈ N}
converges.

Lemma 2.7. The sequence {Iαn (t) : n ∈ N} defined by (2.7) converges if and
only if

(2.12)
∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤
a1−α

α
α

α−1
,

where α > 1.

Proof. Suppose that {Iαn (t) : n ∈ N} converges. Then there is a positive real
function denoted Iα (t), such that Iα (t) = lim

n→∞
Iαn (t), by (2.7), we find that

the function Iα satisfies
(2.13)

Iα (t) =

(
1 + aα−1 (α− 1)

∑i=k

i=1

∫ τ(t)

t

qi (s) I
α (s) ds

) α
α−1

, for t ≥ t0.

By the hypothesis, we have that the function Iα0 is increasing on [t0,∞), then
by induction deduce that functions Iαn are increasing on [t0,∞), we conclude
that the function Iα increases on [t0,∞). By the above equality, we obtain

aα−1 (α− 1)
∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤
(Iα (t))

1− 1
α − 1

Iα (t)
, for t ≥ t0.
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On the other hand, we have

sup

{
x1−

1
α − 1

x
: x ≥ 1

}
=
α− 1

α
α

α−1
,

By (2.13), deduce that Iα (t) ≥ 1, for t ≥ t0, which means that

∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤
a1−α

α
α

α−1
, for t ≥ t0.

This completes the proof.

Now, we establish some sufficient conditions which guarantee that every
solution u of (1.1) oscillates on [t0,∞).

Theorem 2.8. Assume (H1)− (H2) hold and α = 1. For all sufficiently large
t1 ≥ t0, assume that

(2.14)
∑i=k

i=1

∫ τ(t)

t

qi (s) ds >
1

e
, for t ≥ t1.

Then any solution of (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution u on [t0,∞). Since
−u is also a solution of (1.1), we can confine our discussion only to the case
where the solution u is an eventually positive solution of (1.1). We may assume
without loss of generality that there exists t1 ≥ t0, such that

u (t) > 0 and u (τi (t)) > 0, for all t ≥ t1 and i ∈ {1, 2, ..., k} .

This means that equation (1.1) has a positive solution u on [t1,∞) .

u
′
(t)−

∑i=k

i=1
qi (t)u (τi (t)) = 0, for t ≥ t1

By Lemma 2.2 and Lemma 2.3, we obtain

∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤
1

e
, for t ≥ t1.

which contradicts (2.14). This completes the proof.

Applying the previous result, we deduce the following corollaries.

Corollary 2.9. Assume (H1)− (H2) hold and α = 1, and assume that

lim inf
t→∞

∑i=k

i=1

∫ τ(t)

t

qi (s) ds >
1

e
.

Then any solution of (1.1) is oscillatory.
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Corollary 2.10. Assume (H1)− (H2) hold, that α = 1, and assume that

lim sup
t→∞

∑i=k

i=1

∫ τ(t)

t

qi (s) ds > 1.

Then any solution of (1.1) is oscillatory.

Theorem 2.11. Assume (H1)−(H2) hold and α > 1. For all sufficiently large
t1 ≥ t0, assume that

(2.15)
∑i=k

i=1

∫ τ(t)

t

qi (s) ds >
a1−α

α
α

α−1
, for t ≥ t1.

Then any solution of (1.1)-(2.6) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution u on [t0,∞). Since −u
is also a solution of (1.1), we can confine our discussion only to the case where
the solution u is eventually positive solution of (1.1). We may assume without
loss of generality that there exists t1 ≥ t0, such that

u (t) > 0 and u (τi (t)) > 0, for all t ≥ t1 and i ∈ {1, 2, ..., k} .

By Lemma 2.6 and Lemma 2.7, we obtain∑i=k

i=1

∫ τ(t)

t

qi (s) ds ≤
a1−α

α
α

α−1
, for t ≥ t0.

which contradicts (2.15). This completes the proof.

As a Theorem of the previous result, we deduce the following corollarie.

Corollary 2.12. Assume (H1)− (H2) hold and that α > 1 is such that

lim inf
t→∞

∑i=k

i=1

∫ τ(t)

t

qi (s) ds >
a1−α

α
α

α−1
.

Then any solution of (1.1)-(2.6) is oscillatory.

Next, we give an example to illustrate our main result.

Example 2.13. Consider the delay differential equation

(2.16) x
′
(t)−

∑i=k

i=1
x (t+ i) = 0, for all t ≥ 0.

Here, k ∈ N, α = 1, qi (t) = 1, τi (t) = t + i > t, for all i ∈ {1, 2, ..., n}, and
τ (t) = t+ 1.
Then (H1)− (H2) holds. On the other hand, we have

∑i=k

i=1

∫ τ(t)

t

qi (s) ds =
k

2
(k + 1) >

1

e
, for all t ≥ 0.

Thus, (2.14) holds. By Theorem 2.8, equation (2.16) is oscillatory.
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Example 2.14. Consider the delay differential equation

(2.17) x
′
(t)− tx3 (t+ 1) = 0, for all t ≥ 0.

subject to the initial condition

(2.18) u (0) = a ≥ 0.

Here, k = 1, α = 3 > 1, q1 (t) = t, and τ (t) = τ1 (t) = t + 1 > t. Then
(H1)− (H2) holds. On the other hand, we have∫ τ(t)

t

q (s) ds =
1

2
(2t+ 1) ≥ 1

2
, for all t ≥ 0.

If u (0) = a > 0.620, then (2.15) holds. By Theorem 2.11, equation (2.17)-
(2.18) is oscillatory.

3. Conclusion

In this paper, we use the recursive sequence we have constructed to estab-
lish some new oscillation results of first-order linear dynamic equations with
damping. Our results not only unify the oscillation of differential equations
but also improve the differential equations established in [10]. However, this
problem remains largely open, for future research.

Remark 3.1. For α > 1, we pose ψa (α) = a1−αα
α

1−α , we have limα→1 ψa (α) =
1
e = ψa (1), then, we can summarize the two conditions (2.14) and (2.15) which
guarantee the oscillation of the equation (1.1) in the cases α = 1 and α > 1,
respectively. Meaning, we get,

∑i=k

i=1

∫ τ(t)

t

qi (s) ds > ψa (α) , for t ≥ t1.

Remark 3.2. If we consider an advanced differential equation on time scale of
the form

(3.1) u∆ (t)−
∑i=k

i=1
qi (t)u

α (τi (t)) = 0, for t ≥ t0

on an arbitrary time scale T with supT = ∞. Thus, equation (1.1) becomes a
special case of equation (3.1) in a case T = R. From the method given in this
paper, one can obtain some oscillation criteria for (3.1). It means obtaining
generalizations of Theorems 2.8 and 2.11. The details are left to the reader.
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