New decomposition forms of bioperation-continuity

Carlos Carpintero¹², Neelamegarajan Rajesh³, Ennis Rosas⁴ and Jorge Vielma⁵

Abstract. In this paper, we introduce some new types of sets via bioperation and obtain new decomposition forms of bioperation-continuity using these sets and finally using the notions of a bioperation some well known concepts of continuity are generalized.

AMS Mathematics Subject Classification (2010): 54A05; 54A10; 54C05; 54D10

Key words and phrases: topological spaces; (γ, γ') -open set

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologist worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. By utilizing generalized open sets. Kasahara [5] introduced the concept of an operation on topological spaces and the notion of γ -open sets, the collection of all γ -open sets is denoted by τ_{γ} . Ogata and Maki [11] introduced the notion of $\tau_{\gamma\vee\gamma'}$ which is the collection of all $\gamma \vee \gamma'$ -open sets in a topological space (X,τ) and Umehara et al. [13] introduced the notion of $\tau_{(\gamma,\gamma')}$ which is the collection of all (γ,γ') -open sets in a topological space (X,τ) that generalized the notions of $\gamma \vee \gamma'$ -open sets in a topological space (X,τ) . In this paper, using the bioperation (γ,γ') , we introduce new types of sets and find the relationships between them and obtain a new forms of decomposition of bioperation-continuity. Finally we can see that these new concepts of continuity using these bioperations, generalizes well-known concepts of continuity.

2. Preliminaries

The closure and the interior of a subset A of (X, τ) are denoted by $\mathrm{Cl}(A)$ and $\mathrm{Int}(A)$, respectively.

¹Departamento de Ciencias Básicas, Corporación Universitaria del Caribe-CECAR, Sincelejo, Colombia, e-mail: carpintero.carlos@gmail.com

²Corresponding author

³Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India, e-mail: nrajesh_topology@yahoo.co.in

⁴Universidad de la Costa, Department of Natural Sciences and Exact, Barranquilla, Colombia, e-mail: ennisrafael@gmail.com

⁵Escuela Superior Politécnica del Litoral, Facultad de Ciencias Naturales y Matemáticas, Campus Gustavo Galindo, Km 30.5, Vía perimetral, P.O Box 09-01-5863, Guayaquil, Ecuador, e-mail: jevielma@espol.edu.ec

198

Definition 2.1. [5] Let (X, τ) be a topological space. An operation γ on the topology τ is a function from τ on to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of τ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2.2. [11] A topological space (X, τ) equipped with two operations, say, γ and γ' defined on τ is called a bioperation-topological space, it is denoted by $(X, \tau, \gamma, \gamma')$.

Definition 2.3. [11] A subset A of a topological space (X, τ) is said to be $\gamma \vee \gamma'$ -open set if for each $x \in A$ there exists an open neighborhood U of x such that $U^{\gamma} \cup U^{\gamma'} \subset A$. The complement of $\gamma \vee \gamma'$ -open set is called $\gamma \vee \gamma'$ -closed. $\tau_{\gamma \vee \gamma'}$ denotes set of all $\gamma \vee \gamma'$ -open sets in (X, τ) .

Definition 2.4. [13] A subset A of a topological space (X, τ) is said to be (γ, γ') -open set if for each $x \in A$ there exist open neighborhoods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$. The complement of (γ, γ') -open set is called (γ, γ') -closed. $\tau_{(\gamma, \gamma')}$ denotes set of all (γ, γ') -open sets in (X, τ) .

Remark 2.5. Observe that from Definitions 2.3 and 2.4, each $\gamma \vee \gamma'$ -open set is a (γ, γ') -open set, but the converse is not necessarily true as we can see in the following example.

Example 2.6. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ as follows: $\gamma(\{a\}) = \{a\}, \gamma(\{b\}) = \{b, c\}, \gamma(\{a, b\}) = \{a, b\}, \gamma'(\{b\}) = \{b\}, \gamma'(\{a, b\}) = X$

 $\gamma(\{a\}) = \{a, b\}, \ \gamma(\{b\}) = \{b\}, \ \gamma(\{a, b\}) = X \\
Observe that: \ \tau_{\gamma \vee \gamma'} = \{\emptyset, X\} \ and \ \tau_{(\gamma, \gamma')} = \{\emptyset, X, \{a, b\}\}$

Example 2.7. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\}$. We define the operators $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ by $\gamma(A) = \text{Cl}(A)$ and $\gamma'(A) = \text{Int}(\text{Cl}(A))$ for all $A \in \tau$. Then $\tau_{(\gamma, \gamma')} = \tau_{\gamma \vee \gamma'} = \{\emptyset, X\}$.

Definition 2.8. [13] For a subset A of (X, τ) , $\operatorname{Cl}_{(\gamma, \gamma')}(A)$ denotes the intersection of all (γ, γ') -closed sets containing A, that is, $\operatorname{Cl}_{(\gamma, \gamma')}(A) = \cap \{F : A \subset F, X \setminus F \in \tau_{(\gamma, \gamma')}\}$.

Definition 2.9. Let A be any subset of X. The $\operatorname{Int}_{(\gamma,\gamma')}(A)$ is defined as $\operatorname{Int}_{(\gamma,\gamma')}(A) = \bigcup \{U : U \text{ is a } (\gamma,\gamma')\text{-open set and } U \subset A\}.$

Definition 2.10. Let (X, τ) be a topological space and A be a subset of X and γ and γ' be operations on τ . Then A is said to be

- 1. (γ, γ') - α -open if $A \subset Int_{(\gamma, \gamma')}(Cl_{(\gamma, \gamma')}(Int_{(\gamma, \gamma')}(A)))$
- 2. (γ, γ') -preopen [3] if $A \subset \operatorname{Int}_{(\gamma, \gamma')}(\operatorname{Cl}_{(\gamma, \gamma')}(A))$
- 3. (γ, γ') -semiopen [10] if $A \subset Cl_{(\gamma, \gamma')}(Int_{(\gamma, \gamma')}(A))$
- 4. (γ, γ') -semipreopen (or (γ, γ') - β -open) if $A \subset \text{Cl}_{(\gamma, \gamma')}(\text{Int}_{(\gamma, \gamma')}(\text{Cl}_{(\gamma, \gamma')}(A)))$

5.
$$(\gamma, \gamma')$$
-regular open [9] if $A = Int_{(\gamma, \gamma')}(Cl_{(\gamma, \gamma')}(A))$.

Remark 2.11. The union of all (γ, γ') -semipreopen sets contained in A is called the (γ, γ') -semipreinterior of A and denoted by $\operatorname{spInt}_{(\gamma, \gamma')}(A)$. The complement of a (γ, γ') -semipreopen set is called a (γ, γ') -semipreclosed set. It is clear that $\operatorname{spInt}_{(\gamma, \gamma')}(A) = A \cap \operatorname{Cl}_{(\gamma, \gamma')}(\operatorname{Int}_{(\gamma, \gamma')}(\operatorname{Cl}_{(\gamma, \gamma')}(A)))$.

Remark 2.12. Observe that if in Definition 2.10, the operations γ and γ' are the identity operations, we obtain well-known concepts studied in general topology such as: α -open set [7], [12], preopen set [8], semiopen set [2], semipreopen set [2].

Definition 2.13. Let (X,τ) and (Y,σ) be two topological spaces and let γ,γ' : $\tau \to \mathcal{P}(X)$ be operations on τ . A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be (γ,γ') -continuous (resp. (γ,γ') - α -continuous, (γ,γ') -precontinuous, (γ,γ') -semicontinuous, (γ,γ') -semiprecontinuous) if for each $x\in X$ and each open set V of Y containing f(x) there exists a (γ,γ') -open set U containing x (resp. (γ,γ') - α -open set, (γ,γ') -preopen set, (γ,γ') -semipreopen set) such that $f(U)\subset V$.

3. Some subsets in topological spaces

Through this section, let (X, τ) and (Y, σ) be two topological spaces, and let $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ be operations on τ .

Definition 3.1. A subset A of a topological space (X, τ) with the operations γ , γ' is called:

1.
$$\alpha^{\star}_{(\gamma,\gamma')}$$
-set if $\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(A))) = \operatorname{Int}_{(\gamma,\gamma')}(A)$,

2.
$$t_{(\gamma,\gamma')}$$
-set if $\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A)) = \operatorname{Int}_{(\gamma,\gamma')}(A)$,

3.
$$s_{(\gamma,\gamma')}$$
-set if $Cl_{(\gamma,\gamma')}(Int_{(\gamma,\gamma')}(A)) = Int_{(\gamma,\gamma')}(A)$,

4.
$$\beta_{(\gamma,\gamma')}^{\star}$$
-set if $\operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A))) = \operatorname{Int}_{(\gamma,\gamma')}(A)$.

Remark 3.2. Observe that if in Definition 3.1, the operations γ and γ' are the identity operations, we obtain well-known concepts studied in general topology such as β -set [1], t-set and α^* -set.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ as follows

$$A^{\gamma} = \left\{ \begin{array}{ll} A & \textit{if } A = \{a\} \textit{ or } \{c\}, \\ A \cup \{a,c\} & \textit{if } A \neq \{a\} \textit{ and } \{c\} \end{array} \right.$$

and $A^{\gamma'} = int(Cl(A)).$

1.
$$\tau_{(\gamma,\gamma')} = \{\emptyset, X, \{c\}\}\$$

2.
$$\alpha^{\star}_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$.

3.
$$t_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$.

4.
$$s_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$.

5.
$$\beta_{(\gamma,\gamma')}^{\star}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$.

Proposition 3.4. The following are equivalent for a subset A of a space (X, τ) with the operations γ , γ'

- 1. A is a $\alpha^{\star}_{(\gamma,\gamma')}$ -set,
- 2. A is a (γ, γ') -semipreclosed set,
- 3. $\operatorname{Int}_{(\gamma,\gamma')}(A)$ is a (γ,γ') -regular open set.

Proof. Straightforward.

Proposition 3.5. Let A be a subset of a space (X, τ) with the operations γ , γ'

1. A (γ, γ') -semiopen set A is a $t_{(\gamma, \gamma')}$ -set if and only if it is an $\alpha^{\star}_{(\gamma, \gamma')}$ -set.

2. A is (γ, γ') - α -open and $\alpha^{\star}_{(\gamma, \gamma')}$ -set if and only if it is (γ, γ') -regular open.

Proof. 1. Let A be a (γ, γ') -semiopen and A an $\alpha^*_{(\gamma, \gamma')}$ -set. Since A is (γ, γ') -semiopen,

$$Cl_{(\gamma,\gamma')}(Int_{(\gamma,\gamma')}(A)) = Cl_{(\gamma,\gamma')}(A)$$

and

$$\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A)) = \operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(A))) = \operatorname{Int}_{(\gamma,\gamma')}(A).$$

Therefore, A is a $t_{(\gamma,\gamma')}$ -set.

2. Let A be a (γ, γ') - α -open set and an $\alpha^*_{(\gamma, \gamma')}$ -set. Then $\operatorname{Int}_{(\gamma, \gamma')}(\operatorname{Cl}_{(\gamma, \gamma')}(A)) = A$ and hence $\operatorname{Int}_{(\gamma, \gamma')}(\operatorname{Cl}_{(\gamma, \gamma')}(A)) = \operatorname{Int}_{(\gamma, \gamma')}(\operatorname{Cl}_{(\gamma, \gamma')}(\operatorname{Int}_{(\gamma, \gamma')}(A))) = A$. The converse is obvious.

Definition 3.6. A subset A of a topological space (X, τ) with the operations γ , γ' is called a

- 1. $C_{(\gamma,\gamma')}$ -set if $A = U \cap V$, where $U \in \tau_{(\gamma,\gamma')}$ and V is an $\alpha^*_{(\gamma,\gamma')}$ -set,
- 2. $B_{(\gamma,\gamma')}$ -set if $A = U \cap V$, where $U \in \tau_{\gamma,\gamma'}$ and V is a $t_{(\gamma,\gamma')}$ -set,
- 3. $S_{(\gamma,\gamma')}$ -set if $A = U \cap V$, where $U \in \tau_{(\gamma,\gamma')}$ and V is a $s_{(\gamma,\gamma')}$ -set,
- 4. $\beta_{(\gamma,\gamma')}$ -set if $A = U \cap V$, where $U \in \tau_{(\gamma,\gamma')}$ and V is a $\beta_{(\gamma,\gamma')}^*$ -set,
- 5. $\beta^{\star\star}$ -open set if $\operatorname{sp}\operatorname{Int}_{(\gamma,\gamma')}(A) = \operatorname{Int}_{(\gamma,\gamma')}(A)$.

Example 3.7. Observe that in Example 2.6,

1.
$$\tau_{(\gamma,\gamma')} = \{\emptyset, X, \{a,b\}\}\$$

2.
$$\alpha^{\star}_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}\}$.

3.
$$t_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{c\}\}$.

4.
$$s_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}\}$.

5.
$$\beta^{\star}_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{c\}\}$.

6.
$$C_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}\}$.

7.
$$B_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{c\}, \{a,b\}\}$.

8.
$$S_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}\}$.

9.
$$\beta_{(\gamma,\gamma')}$$
-set = $\{\emptyset, X, \{c\}, \{a,b\}\}$.

10.
$$\beta^{**}$$
-open set = $\{\emptyset, X, \{a, b\}\}$.

Proposition 3.8. Let (X, τ) be a topological space with the operations γ , γ' and A a subset of X. Then the following hold:

- 1. If A is a $t_{(\gamma,\gamma')}$ -set, then A is an $\alpha^{\star}_{(\gamma,\gamma')}$ -set,
- 2. If A is a $s_{(\gamma,\gamma')}$ -set, then A is an $\alpha^{\star}_{(\gamma,\gamma')}$ -set,
- 3. If A is a $\beta^{\star}_{(\gamma,\gamma')}$ -set, then A is both a $t_{(\gamma,\gamma')}$ -set and a $s_{(\gamma,\gamma')}$ -set.
- 4. $t_{(\gamma,\gamma')}$ -set and $s_{(\gamma,\gamma')}$ -set are independent notions.

Proof. (1). Let A be a $t_{(\gamma,\gamma')}$ -set. Then $\tau_{(\gamma,\gamma')}$ - $\operatorname{Int}(\tau_{(\gamma,\gamma')}$ - $\operatorname{Cl}(A)) = \tau_{(\gamma,\gamma')}$ - $\operatorname{Int}(A) \supset \tau_{(\gamma,\gamma')}$ - $\operatorname{Int}(\tau_{(\gamma,\gamma')}$ - $\operatorname{Cl}(\tau_{\gamma}$ - $\operatorname{Int}(A))) \supset \tau_{(\gamma,\gamma')}$ - $\operatorname{Int}(A)$ and hence $\tau_{\gamma\vee\gamma'}$ - $\operatorname{Int}(\tau_{\gamma\vee\gamma'}$ - $\operatorname{Cl}(\tau_{\gamma\vee\gamma'}$ - $\operatorname{Int}(A))) = \tau_{\gamma\vee\gamma'}$ - $\operatorname{Int}(A)$. Therefore, A is an $\alpha^{\star}_{\gamma\vee\gamma'}$ -set.

(2) and (3) are proved in a similar form as (1).

(4) The following examples shows that the notions of a $t_{(\gamma,\gamma')}$ -set and a $s_{(\gamma,\gamma')}$ -set are independent.

Remark 3.9. The converse of the statement in Proposition 3.8 are not true as seen in the following examples.

Example 3.10. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ as follows

$$A^{\gamma}=A^{\gamma'}=\left\{\begin{array}{ll} A & \textit{if } A=\{a\} \textit{ or } \{c\},\\ A\cup\{a,c\} & \textit{if } A\neq\{a\} \textit{ and } \{c\}. \end{array}\right.$$

Then $\tau_{(\gamma,\gamma')} = \{\emptyset, X, \{a\}, \{c\}, \{a,c\}\}\}$. If we take $A = \{a\}$, then A is an $\alpha^{\star}_{(\gamma,\gamma')}$ -set and a $t_{(\gamma,\gamma')}$ -set, but it is neither a $s_{(\gamma,\gamma')}$ -set and nor a $\beta^{\star}_{(\gamma,\gamma')}$ -set.

Example 3.11. If in Example 2.6 and Example 3.7, we take $A = \{b\}$, then it is an $\alpha^{\star}_{(\gamma,\gamma')}$ -set and a $s_{(\gamma,\gamma')}$ -set, but it is neither a $t_{(\gamma,\gamma')}$ -set and nor a $\beta^{\star}_{(\gamma,\gamma')}$ -set.

Proposition 3.12. Let (X, τ) be a topological space with the operations γ , γ' and A a subset of X. Then the following hold:

1. If A is an $\alpha^{\star}_{(\gamma,\gamma')}$ -set, then it is a $C_{(\gamma,\gamma')}$ -set,

- 202
 - 2. If A is a $t_{(\gamma,\gamma')}$ -set, then it is a $B_{(\gamma,\gamma')}$ -set,
 - 3. If A is a $s_{(\gamma,\gamma')}$ -set, then it is a $S_{(\gamma,\gamma')}$ -set,
 - 4. If A is a $\beta^{\star}_{(\gamma,\gamma')}$ -set, then it is a $\beta_{(\gamma,\gamma')}$ -set.
- *Proof.* 1. Let A be an $\alpha^{\star}_{(\gamma,\gamma')}$ -set. If we take $U=X\in\tau_{(\gamma,\gamma')}$, then $A=U\cap A$ and hence A is a $C_{(\gamma,\gamma')}$ -set.
- 2. Let A be a $t_{(\gamma,\gamma')}$ -set. If we take $U=X\in\tau_{(\gamma,\gamma')}$, then $A=U\cap A$ and hence A is a $B_{(\gamma,\gamma')}$ -set.
- 3. Let A be a $s_{(\gamma,\gamma')}$ -set. If we take $U=X\in\tau_{(\gamma,\gamma')}$, then $A=U\cap A$ and hence A is a $S_{(\gamma,\gamma')}$ -set.
- 4. Let A be a $\beta_{(\gamma,\gamma')}^{\star}$ -set. If we take $U = X \in \tau_{(\gamma,\gamma')}$, then $A = U \cap A$ and hence A is a $\beta_{(\gamma,\gamma')}$ -set.

Remark 3.13. The converse of the statements in Proposition 3.12 are not true. In Example 3.7, $\{a,b\}$ is a $C_{(\gamma,\gamma')}$ -set (resp. $B_{(\gamma,\gamma')}$ -set, $S_{(\gamma,\gamma')}$ -set, $S_{(\gamma,\gamma')}$ -set, but it is not an $\alpha^*_{(\gamma,\gamma')}$ -set (resp. $t_{(\gamma,\gamma')}$ -set, $t_{(\gamma,\gamma')}$ -set, $t_{(\gamma,\gamma')}$ -set).

Proposition 3.14. Let (X,τ) be a topological space with the operations γ, γ' .

- 1. Every $B_{(\gamma,\gamma')}$ -set is a $C_{(\gamma,\gamma')}$ -set,
- 2. Every $S_{(\gamma,\gamma')}$ -set is a $C_{(\gamma,\gamma')}$ -set,
- 3. Every $\beta_{(\gamma,\gamma')}$ -set is both a $B_{(\gamma,\gamma')}$ -set and a $S_{(\gamma,\gamma')}$ -set.

Proof. The proof follows from Proposition 3.12 and Definition 3.6. \Box

Remark 3.15. The converse of the statements in Proposition 3.14 are not true and $B_{(\gamma,\gamma')}$ -set and $S_{(\gamma,\gamma')}$ -set are independent notions. In Example 3.10, $\{a,b\}$ is a $B_{(\gamma,\gamma')}$ -set but it is not a $S_{(\gamma,\gamma')}$ -set and not a $\beta_{(\gamma,\gamma')}$ -set. In Example 2.7, $\{b\}$ is a $C_{(\gamma,\gamma')}$ -set and a $S_{(\gamma,\gamma')}$ -set but it is neither a $B_{(\gamma,\gamma')}$ -set nor a $\beta_{(\gamma,\gamma')}$ -set.

Remark 3.16. Observe that if (X, τ) is a topological space with the operations γ , γ' . Then $\beta^{\star\star}$ -open and β^{\star} -set are independent notions. See Example 3.7.

Remark 3.17. We have the following implication diagram.

Theorem 3.18. For a subset A of a space (X, τ) with the operations γ, γ' , the following properties are equivalent:

- 1. A is (γ, γ') -open,
- 2. A is a (γ, γ') - α -open set and a $C_{(\gamma, \gamma')}$ -set,
- 3. A is a (γ, γ') -preopen set and a $B_{(\gamma, \gamma')}$ -set,
- 4. A is a (γ, γ') -semiopen set and a $S_{(\gamma, \gamma')}$ -set,
- 5. A is a (γ, γ') -semipreopen set and a $\beta_{(\gamma, \gamma')}$ -set.

Proof. The proofs of $(1) \rightarrow (2)$, $(1) \rightarrow (3)$, $(1) \rightarrow (4)$, $(1) \rightarrow (5)$ are obvious. $(5) \rightarrow (1)$: Let A be a (γ, γ') -semipreopen set and a $\beta_{(\gamma, \gamma')}$ -set. Since A is a $\beta_{(\gamma, \gamma')}$ -set, $A = U \cap V$, where U is a (γ, γ') -open set and V is a $\beta_{(\gamma, \gamma')}^{\star}$ -set. By the hypothesis, A is also (γ, γ') -semipreopen and we have

$$\begin{array}{lll} A &\subset& \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A))) \\ &=& \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(U\cap V))) \\ &\subset& \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(U)\cap \operatorname{Cl}_{(\gamma,\gamma')}(V))) \\ &=& \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(U))\cap \operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(V))) \\ &\subset& \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(U)))\cap \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(V))) \\ &\subset& \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(U)))\cap \operatorname{Int}_{(\gamma,\gamma')}(V). \end{array}$$

Hence

$$A = U \cap V$$

$$= (U \cap V) \cap U$$

$$\subset (Cl_{(\gamma,\gamma')}(Int_{(\gamma,\gamma')}(Cl_{(\gamma,\gamma')}(U))) \cap Int_{(\gamma,\gamma')}(V)) \cap U$$

$$= (Cl_{(\gamma,\gamma')}(Int_{(\gamma,\gamma')}(Cl_{(\gamma,\gamma')}(U))) \cap U) \cap Int_{(\gamma,\gamma')}(V).$$

Notice $A = U \cap V \supset U \cap \operatorname{Int}_{(\gamma,\gamma')}(V)$. Hence $A = U \cap \operatorname{Int}_{(\gamma,\gamma')}(V)$. (2) \rightarrow (1), (3) \rightarrow (1), (4) \rightarrow (1) are shown similarly.

4. Decompositions of (γ, γ') -continuity

Definition 4.1. Let (X, τ) and (Y, σ) be two topological spaces, γ, γ' operations on τ . A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $C_{(\gamma, \gamma')}$ -continuous (resp. $B_{(\gamma, \gamma')}$ -continuous, $S_{(\gamma, \gamma')}$ -continuous, $S_{(\gamma, \gamma')}$ -continuous) if for each $V \in \sigma$, $f^{-1}(V)$ is a $C_{(\gamma, \gamma')}$ -set (resp. $B_{(\gamma, \gamma')}$ -set, $S_{(\gamma, \gamma')}$ -set, $S_{(\gamma, \gamma')}$ -set).

Remark 4.2. It is clear that the definition of $C_{(\gamma,\gamma')}$ -continuous function (resp. $B_{(\gamma,\gamma')}$ -continuous, $S_{(\gamma,\gamma')}$ -continuous, $S_{(\gamma,\gamma')}$ -continuous) generalize the notions of $C_{\gamma\vee\gamma'}$ -continuous function (resp. $B_{\gamma\vee\gamma'}$ -continuous, $S_{\gamma\vee\gamma'}$ -continuous, $S_{\gamma\vee\gamma'}$ -continuous, defined in [4] and also in the case that the operations γ and γ' are the identity operations, it is easy to see that Definition 4.1, generalizes the well-known concepts of continuity in general topology such as; α -continuous function [12], semi continuous functions [6], precontinuous function [8], β -continuous function [1].

204

Proposition 4.3. Let $f:(X,\tau)\to (Y,\sigma)$ be a function and γ,γ' operations on τ . Then

- 1. Every $B_{(\gamma,\gamma')}$ -continuous function is $C_{(\gamma,\gamma')}$ -continuous.
- 2. Every $S_{(\gamma,\gamma')}$ -continuous function is $C_{(\gamma,\gamma')}$ -continuous.
- 3. Every $\beta_{(\gamma,\gamma')}$ -continuous is both $B_{(\gamma,\gamma')}$ -continuous and $S_{(\gamma,\gamma')}$ -continuous.

Proof. The proof follows from Proposition 3.14.

Theorem 4.4. Let (X,τ) and (Y,σ) be two topological spaces and let γ,γ' operations on τ . For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- 1. f is (γ, γ') -continuous.
- 2. f is (γ, γ') - α -continuous and $C_{(\gamma, \gamma')}$ -continuous.
- 3. f is (γ, γ') -precontinuous and $B_{(\gamma, \gamma')}$ -continuous.
- 4. f is (γ, γ') -semicontinuous and $S_{(\gamma, \gamma')}$ -continuous.
- 5. f is (γ, γ') -semiprecontinuous and $\beta_{(\gamma, \gamma')}$ -continuous.

Proof. The proof follows from Theorem 3.18.

Remark 4.5. The notions of (γ, γ') - α -continuity, $C_{(\gamma, \gamma')}$ -continuity, (γ, γ') -continuity, $B_{(\gamma, \gamma')}$ -continuity, (γ, γ') -semicontinuity, $S_{(\gamma, \gamma')}$ -continuity, (γ, γ') -semiprecontinuity and (γ, γ') -continuity are independent of each other as seen in the following examples.

Example 4.6. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}\}$. We define the operators $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ by

$$A^{\gamma} = A^{\gamma'} = \left\{ \begin{array}{ll} A & \text{if } A = \{a\}, \\ A \cup \{a,c\} & \text{if } A \neq \{a\}. \end{array} \right.$$

Then $\tau_{(\gamma,\gamma')} = \{\emptyset, X, \{a\}, \{a,c\}\}$. Define a function $f: (X,\tau) \to (Y,\sigma)$ as f(a) = f(b) = a, f(c) = c. Then f is $C_{(\gamma,\gamma')}$ -continuous (resp. $B_{(\gamma,\gamma')}$ -continuous, (γ,γ') -semicontinuous and (γ,γ') -semiprecontinuous), but it is not (γ,γ') - α -continuous (resp. $\gamma \vee \gamma'$ -precontinuous, $S_{\gamma \vee \gamma'}$ -continuous and $\beta_{(\gamma,\gamma')}$ -continuous).

Example 4.7. Let $X = \{a,b,c\}$ and $\tau = \{\emptyset,X,\{a\},\{a,b\}\}$ and $\sigma = \{\emptyset,X,\{a\},\{b\},\{a,b\}\}$. We define the operators $\gamma,\gamma':\tau\to\mathcal{P}(X)$ by $\gamma(A)=\operatorname{Cl}(A)$ and $\gamma'(A)=\operatorname{Int}(\operatorname{Cl}(A))$ for all $A\in\tau$. Then $\tau_{(\gamma,\gamma')}=\{\emptyset,X\}$. Define a function $f:(X,\tau)\to(Y,\sigma)$ as f(a)=f(c)=a, f(b)=b. Then f is both $S_{(\gamma,\gamma')}$ -continuous and (γ,γ') -precontinuous, but it is neither (γ,γ') -semicontinuous nor $B_{(\gamma,\gamma')}$ -continuous.

Example 4.8. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} \operatorname{Int}(\operatorname{Cl}(A)) & \text{if } A = \{a\}, \\ \operatorname{Cl}(A) & \text{if } A \neq \{a\}. \end{cases}$$

Then $\tau_{(\gamma,\gamma')} = \{\emptyset, \{a\}, \{c\}, \{a,c\}, \{a,b,d\}, X\}$. Define a function $f: (X,\tau) \to (Y,\sigma)$ as f(a) = f(c) = a, f(b) = f(d) = b. Then f is $\beta_{(\gamma,\gamma')}$ -continuous, but it is not (γ,γ') -semiprecontinuous.

Example 4.9. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}\}$ and $\sigma = \{\emptyset, X, \{a\}\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ by

$$A^{\gamma} = A^{\gamma'} = \left\{ \begin{array}{cc} \operatorname{Int}(\operatorname{Cl}(A)) & \text{if } A = \{a\}, \\ X & \text{if } A \neq \{a\}. \end{array} \right.$$

Then $\tau_{(\gamma,\gamma')} = \{\emptyset, \{a\}, X\}$. Define a function $f: (X,\tau) \to (Y,\sigma)$ as f(a) = f(c) = a, f(b) = b. Then f is (γ,γ') - α -continuous but it is not $C_{(\gamma,\gamma')}$ -continuous.

Acknowledgement

Thanks to the referees for the valuable observations made that improve the content of the article.

References

- ABD EL-MONSEF, M. E., EL-DEEB, S. N., AND MAHMOUD, R. A. β-open sets and β-continuous mapping. Bull. Fac. Sci. Assiut Univ. A 12, 1 (1983), 77–90.
- [2] Andrijević, D. Semipreopen sets. Mat. Vesnik 38, 1 (1986), 24–32.
- [3] CARPINTERO, C., RAJESH, N., AND ROSAS, E. On a class of (γ, γ') -preopen sets in a topological space. Fasc. Math., 46 (2011), 25–35.
- [4] CARPINTERO, C., RAJESH, N., AND ROSAS, E. On decomposition of bioperation-continuity. C. R. Acad. Bulgare Sci. 73, 4 (2020), 443–450.
- [5] KASAHARA, S. Operation-compact spaces. Math. Japon. 24, 1 (1979/80), 97– 105.
- [6] LEVINE, N. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36–41.
- [7] Mashbour, A., Abd-El-Monsef, M., and El-Deep, S. α -continuous and α -open mapping. 213–218.
- [8] Mashhour, A. S., Abd El-Monsef, M. E., and El-Deep, S. N. On precontinuous and weak precontinuous mappings. *Proc. Math. Phys. Soc. Egypt*, 53 (1982), 47–53 (1983).
- [9] NIRMALA, R., AND RAJESH, N. Bioperation-regular open sets. Aryabhata J. Math. Infor. 8(1) (2016), 53-62.

- [10] NIRMALA, R., AND RAJESH, N. Generalization of semiopen sets via bioperation.
- [11] OGATA, H., AND MAKI, H. Bioperations on topological spaces. *Math. Japon.* 38, 5 (1993), 981–985.
- [12] Reilly, I., and M. Vamanamunty, M. On α -continuity in topological spaces. J. Indian Acad. Math. 18 (1996), 89–99.
- [13] UMEHARA, J.-I., MAKI, H., AND NOIRI, T. Bioperations on topological spaces and some separation axioms. *Mem. Fac. Sci. Kochi Univ. Ser. A Math.* 13 (1992), 45–59.

Received by the editors June 13, 2021 First published online January 27, 2022