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Finslerian hypersurfaces of a Finsler space with deformed
randers (o, 5)- metric

V. K. ChaubeyT] and Brijesh Kumar Tripathi’||

Abstract. In the present paper, we have studied the Finslerian hyper-
surfaces of a Finsler Space with deformed Randers (o, 8)-metric. Further,
we have endeavored to prove the conditions under which these hypersur-
faces of a special Finsler space with deformed Randers («, ) metric will
be a hyperplane of the first, second and third kinds.
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1. Introduction

Finsler metric L(«, 8) of two variables is known as («, 8)-metric, where
L is positively homogeneous function of degree one in an n-dimensional dif-
ferentiable manifold M™ and the space F™ = {M", L} is Finsler space with
(a, B)-metric. The interesting and important examples of an («, §)-metric are
Randers metric a + 5, Kropina metric %2 and Matsumoto metric ﬁ [7,@].
Matsumoto [7] studied these metrics in detail and obtained various interesting
geometrical properties which shows the importance of these metrics in the de-
velopment of Finsler geometry.

In 2018, Tripathi and Chaubey [12] considered two different deformed spe-
cial (a, 8)-metrics of degree two in which one was formed as the combination
of Randers and Riemannian metric and determined the nonholonomic frame
due to this metric. The nonholonomic frame is to be considering if the metric
defined by:

Definition 1.1. A space F" = {M", F(z,y)} is said to be Finsler space with
(v, 8)-metric, if there exists a 2-homogeneous function L of two variables such
that the Finsler metric F' : TM — R is given by

F?(z,y) = L{a(z,y), B(z,v)},

where o (z,y) = a;;(x)y'y’, a is a Riemannian metric on the manifold M™ and
B(x,y) = b;(x)y’ is a 1-form on the manifold M™.
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The special (a, 8)-metric [12] which is expressed in the form
(1.1) L= (a+B)a=a’+af,

where a = /a;;(z)y’y/ is a Riemannian metric and 8 = b;(z)y’ is a 1-form
with ||8z||la < bo, V 2 € M™ is known as deformed Randers («,3)- metric.

The concept of Finslerian hypersurface was first introduced by Matsumoto
[6] in 1985 and where he obtained the three types of hypersurfaces that were
called hyperplane of the first, second and third kinds. Moreover, many authors
[ 2 B 4 B 8, 10, I1] studied the Finslerian hypersurfaces for the Finsler
space equipped with 1-degree homogeneous Finsler metric and obtained the
conditions under which it will be a hyperplane of the first, second and third
kinds.

In the present paper, we have considered the deformed Randers («, 3)-
metric which forms a nonholonomic frame of («, 5)-metric [I2] and a 2-degree
homogeneous function written in equation (1.1). Further, we have examined the
conditions under these hypersurfaces of a special Finsler space with deformed
Randers («, 8) metric will be a hyperplane of the first, second and third kinds.

2. Finsler spaces F" with deformed Randers («a,3)-metric

In the present paper we consider an n-dimensional Finsler space F™ =
{M", L(a, )}, that is equipped with deformed Randers (a, 8)-metric which is
given by the equation (1.1).

Differentiating equation (1.1) partially with respect to a and 3, we have
Lo=2a+8, Lg=0ao, Liu=2,
Lﬁg =0 and Lag = 1,

__ 0L _ 0L __ 0L __ 0L,
a = Jao Lﬁ*%; Loza*aioila Lﬁﬁ*ﬁa LQ,B* B -

where L

In the Finsler space F" = {M", L(«, 3)} the normalized element of support
l; = 0;L and angular metric tensor h;; are given by [7]

(2.1) li = a 'L,Y; + Lgb;,
and
(2.2) hij = paij + qobibj + q-1(b:Y; + b;Y;) + ¢-2ViYj,

where Y; = a;;y7. For the fundamental metric (1.1) the above constants are

(23) b= 20{2, qo = Oa d—1 =0, q-2= 0.
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The fundamental metric tensor g;; = %8.i5‘jL2 and its reciprocal tensor g% for
L = L(a, B) are given by

(2.4) Gij = Pasij + pobib; + p_1(b;Y; + b,;Y;) + p_oY;Y,
where

Do :q0+L% :Oé2,
(2.5) p1=q1+ L 'plg =3a,
p2a=q2+p’ L2 =4

The reciprocal tensor g% of gi; is given by
(2.6) g7 =pta — sob't’ — s_1 (b + b y') — s_oy'y’,
where b* = aijbj, b = aijbibj and
80 = 75{ppo + (Pop—2 — P2 1)’}
(2.7) §.1= %{Pp—l + (pop—2 — p*1)B},

s—2 = 2 {pp—2 + (Pop—2 — p21)0°},
7 =p(p + pob® + p-18) + (pop—2 — p*1)(®b* — 5?).

The hv-torsion tensor Cjji = %5;1@92'3' is given by
(2.8) 2pCijk = p—1(hijmi + hjpm; + hgm;) + yymgm,my,

where
_ . Opo _ -2
(2.9) "= P% — 3p_14o, m; = b; — o~ “BY;.

Here m; is a non-vanishing covariant vector orthogonal to the element of sup-
port y*. Thus we have

Proposition 2.1. The normalised supporting element l; and angular metric
tensor hy; of an n-dimensional Finsler space F" equipped with a deformed
Randers («, B) metric L are given by (2.1) and (2.2), respectively.

Proposition 2.2. The fundamental metric tensor g;; and its reciprocal tensor
g of an n-dimensional Finsler space F™ equipped with a deformed Randers
(a, B) metric L are given by (2.4) and (2.6), respectively.

Proposition 2.3. The Cartan hv-torsion tensor of an n-dimensional Finsler
space F™ equipped with a deformed Randers (a, ) metric L is given by (2.8).

Let {; &+ be the component of Christoffel symbols for the associated Rieman-

nian space R™ and v/ be the covariant derivative with respect to ¥ relative
to Christoffel symbol. Now we define

(2.10) 2E;; = byj + by, 2F;; = bij — by,
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where bij = ijZ

Let CT = (T4}, T4, T%) be the Cartan connection of F". The difference
tensor D;k = F;,@ - {;k} of the special Finsler space F" is given by

D!, = B'Ejj. + F{Bj + F} By, + Bjbor. + Bjbo;

(2.11) —bomg ™ Bj, — Cli AR — Chp AT + Clitm AT g™
FA(C)n Ok + O C5 — CiChs),
where

By, = poby +p_1Ys,

FF = gM Fy, .
{p-1(aij—a”?Y;Y;)+ 5@ mim;}
(2.12) Bi; = T op 7

ij
B} = ¢g" By,
AZL = B,TEOQ + B™Eyo + BkFén + BoF’:n,
A" = B™Eyo + 2By Fy",

Bo = .BzyZ

Here ‘0’ denotes contraction with y* except the quantities pg, go and s,. Thus,
we have

Proposition 2.4. The difference tensor D;k of the Cartan connection CT' for
the n-dimensional Finsler space F™ is equipped with a deformed Randers («, ()
metric L is given by (2.12).

3. Induced Cartan connection

Let F("=1 be a hypersurface of F™ given by the equation 2t = 2t (u®)
where {a =1,2,3,...,(n —1)}. The element of support y* of F™ is to be taken
as tangential to F("~1 that is [6],

(3.1) y' = B’ (u)v™.
The metric tensor gog and hv-tensor Cogy of F (n=1) are given by
9op = 955BuBY,  Capy = Ciju BB BY,
and at each point (u®) of F(»~1) a unit normal vector N*(u,v) is defined by
gij{z(u,v),y(u,v)}BENT =0, gij{z(u,v),y(u,v)}N' NI = 1.
The angular metric tensor h,g of the hypersurface is given by

(3.2) hap = hijB., B’

% hyBLNT =0, hiN'N7 =1,

The relations between the components of (B%, N;) and its inverse (Bf,, N%) is
given by
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Bf = g*%g;BY,  BLB] =08, B{N'=0, BiN;=0.
N; =gi; N7, BF=g"Bj;,  B\BY+ N'N; =0
The induced Cartan connection ICT = (I'}5,G3,Cf) of F("=1 from the
Cartan’s connection CT = (I, Tgp, C7i) is given by [6],
xa _ po(ni «i pJ Rk o
55 = Bi (B, + T5iB3By) + Mg H,y,
GY = B (Biy + TiiBY), C%, = BeCi, BiBE,
where
Mg, = N;Ci,B,BY, Mg = g*"My,, Hs = Ni(Bjy+T5B}) and

. OB? . .
By = 5.5, B = By zv*.
The quantities Mg, and Hg are called the second fundamental v-tensor and

normal curvature vector, respectively [6]. The second fundamental h-tensor
Hg., is defined as [0]

(3.3) Hgy = Ni(Bjy, + T3, BLBY) + MgH.,,
where
(3.4) Mg = N;C}, B, N*.

The relative h and v-covariant derivatives of projection factor B! with respect
to ICT are given by

Bl s =HasN',  Bils = MasN'.
It is obvious from the equation (3.3) that Hg, is generally not symmetric and
(3.5) Hpy — Hyp = MpH, — M, Hp.
From above equation, we get
(3.6) Hyy = Hy, Hy = H,+ M, H,.

We shall use the following lemmas which are due to Matsumoto [6] in the next
section

Lemma 3.1. The normal curvature Hy = H@’UB vanishes if and only if the
normal curvature vector Hg vanishes.

Lemma 3.2. A hypersurface F("V is a hyperplane of the first kind with
respect to connection CT if and only if H, = 0.

Lemma 3.3. A hypersurface F("=Y) is a hyperplane of the second kind with
respect to connection CTI' if and only if Hy, =0 and H,z = 0.

Lemma 3.4. A hypersurface F("=V) is a hyperplane of the third kind with
respect to connection CT' if and only if Hy, =0 and Hog = Mg = 0.
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4. Hypersurface F("~Y(c) of a Finsler space with deformed
Randers (o, §)-metric

In this section, we have assumed that the vector field b;(x) = 52’1. is
a gradient of some scalar function b(x) in a deformed Randers (o, 8) metric
L(a, B) = o+ af. Later, we considered a hypersurface F("~1(c) given by the
equation b(x) = ¢ [10].

From the parametric equation z* = 2*(u®) of F("~1)(c), we get

Ple) —g, B0 _  and BB, =0.

The above equation shows that b;(z) is covariant component of a normal
vector field of hypersurface F("~1)(¢). Further, we have

(4.1) b;B, =0, and by'=0 ie B=0,

and the induced metric L(u,v) of F("~1(¢) is given by

(4.2) L(u,v) = aapv®0®,  ans = aijBéBé.
Writing 8 = 0 in the equations (2.3), (2.5) and (2.7) we have

p= 20(27 qo = 07

q-1 = @, q-2 = 07

po=a? p_1=3a,

(43) pP—2 = 4, 37' = *10018(2 + bz)b2,
S0 = W7

$-1= ~10a7(24062)02

5. o — 5b%—8
=2 = 20a%b2(24b%) "

From equation (2.6) we have,

g 1 1] 3 AN 3 i, ) o0
(4.4) 9" = 5220" — GiEEmn V'Y + e e (0 + VYY)
. 5 8 8,7
~a0asrery Y Y
Thus along F(™~1(c), equations (4.3) and (4.4) lead to

i 7 b2 (1062417)
ijp.p. — b (1067+17)
g7bib; = 2002(2462) *

So, we get

b [100% — 17

(4.5) bi(z(u)) = 2\ 21

where b% = aijbibj, and b is the length of the vector b*.

Again from the equations (4.4) and (4.5), we get

200%(2 4+ b%) 6
(1062 1 17) aB(1002 + 17

)

(4.6) b =ab; = v

Thus, we have
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Theorem 4.1. The induced Riemannian metric in a Finslerian hypersurface
F=1(c) of a Finsler space with deformed Randers (c, B) metric L = o+ af3
is given by (4.2) and the scalar function b(x) is given by (4.5) and (4.6).

Now the angular metric tensor h;; and metric tensor g;; of F'" are given by

(4.7) { hij = 20%ai; + a(biYj + b;Y3),

gij = 20[204‘3‘ + Oz2bibj + 30z(bin + iji)~

If hfjg denotes the angular metric tensor of the Riemannian a,;(z) along Fins-
lerian hypersurfaces F("~1)(c), then from equations (4.1), (4.7) and (3.2), we
have hag = h').

Thus along the Finslerian hypersurface F("~1(c), %Lg =0.

Now, using equations (2.3), (2.9), (4.1) and %—’;30 =0, we get
=0, m;=b.

Again using above result the hv-torsion tensor for the Finslerian hypersurfaces
F(™=1(¢) of the Finsler space with deformed Randers (o, ) metric is given by

3
(4.8) Cijk = Ealijbk + hjkbi + hkibj).
From equations (3.2), (3.3), (3.5), (4.1) and (4.8), we have

3b (1062 — 17

19 Mag = — has  and My =0,
(4.9) P T Raz\ B

Therefore, equation (3.6) shows that H,g is symmetric. Thus, we have

Theorem 4.2. The second fundamental v-tensor in a Finslerian hypersurface
F=1(c) of a Finsler space with deformed Randers (o, B) metric L = o+ af3
is given by (4.9) and the second fundamental h-tensor Hypg is symmetric.

Now from (4.1) we have b; B!, = 0. Then we have
bi‘ﬁBé + biBtill,é’ =0.
Therefore, from equation (3.5) and by use of b;3 = bi\ng +b;|; N7 Hg, we have
(4.10) by BLBY + by BLNHg + b;HogN' = 0.

Since b;|; = —b,CI, we get

170
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Using above result and equation (4.5) in equation (4.10), we have

b (1062 — 17

(4.11) 20\ 5(2+1?)

Hep + by BLBS =0,
because b;|; is symmetric. Now contracting equation (4.11) with v” and using
(3.1), we get

b [100% — 17 .
412 A Al T i —0.
(4.12) 2\l 52+ T isBay’ =0

Again contracting equation (4.12) by v® and by use of equation (3.1), we have

b (1002 — 17

(4.13) 20\ 52+ b?)

HO + bi|jyiyj =0.

From Lemmas 3.1 and 3.2, it is clear that the deformed Randres (o, ) metric
of the Finsler hypersuface F (”_1)(0) is a hyperplane of the first kind, if and
only if Hy = 0. Thus from equation (4.13) it is obvious that F(*~1(c) is a
hyperplane of the first kind, if and only if b;;3'y’ = 0. This b;; being the
covariant derivative with respect to CI' of F™ defined on ¥, b;; = “/;b; is
the covariant derivative with respect to Riemannian connection {;k} and is
constructed from a;;(z). Hence b;; does not depend on y’. We shall consider
the difference b; ; —b;; where b;; = 7;b;. The difference tensor Di =17 { .
is given by (2.11). Since b; is a gradient vector, then from (2. 10) we have

Ei]’ = bij7 Fij =0 and Fjl =0.
Thus, equation (2.11) reduces to

D;‘k = Bibjk + B'bOk + B‘boj bOmg. Bjk

(4.14) —C’; C’}m 7 "4+ Cikm AT g is
+)‘S( Jlm sk +Ckm0m C_] ms)
where
B; = o?b; + 3aY;,
Bi — 4b2(10b2+19)+18bl 32562 (1062 +17)—a>(5b% —8)+6b>
= T 20a7b%(2+07) 2007bZ(21b2) v
AT = B™,
4.15 005
(4.15) Bij = %(au - a”%yY;),
Bl 40a3b2(b2+2) bzb]v
A};ﬂ = Bk boo + B™big.

In view of equations (4.3) and (4.4), the relation in equation (2.12) becomes
possible and by virture of equation (4.15) we have B{ = 0, B;p = 0 and
A = Bby.

Now, contracting equation (4.14) by y*, we get
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Diy = Bibjo + Biboy — B™Ci, boo -

Again by contracting the above equation with respect to 37, we have

472 2 632 2 2 2 2
i pir patb?(1002419)418 15 |, 3a5b2(1062417)—a(5b2—8)+6b2 ;
Do = B'boo = {~paageioren 0 + 3070 (2162) Y }boo

Paying attention to equation (4.1), along F("~V(c), we get

4712 2
i otb?(106°+19)+18; 9 )
{ bZDjO - 2007 (b2 +2) bjo 40a3(b2+2)b]b00

a*b?(1062419)+18 1 1 i
T T 2004(b212) bib™ C%,,b00-

(4.16)

Contracting (4.16) with y7 implies that

a*b2(10b2 + 19) + 18

4.1 D, =
(4.17) biDoo 2004(2 + b2)

From equations (3.3), (4.5), (4.6), (4.9) and M, = 0, we have
bib™Cl BY, = b2 M, = 0.

Thus, the relation of b;; = b;; — b.Dj; the equations (4.16) and (4.17) gives

|7

a*(40—10b*4-3b%)—18 b
2004 (62 +2) 00 -

biy'y’ = boo — b Dy =

Consequently equations (4.12) and (4.13) may be written as

b [10b2—17 o*(40—106*+3b%)—187 i j _
2a \/ 5(2+b2) Ho + 2004 (b2 +2) bij;Bay’ =0,
b [10b2—17 a*(40—10b*4+3b%)—18 _

2a\/ 5(2+b?) Ho + 2004 (62 +2) boo = 0.

(4.18)

Thus, the condition Hy = 0 is equivalent to bgg = 0. Using the fact 8 = b;y’ =
0, the condition bgy = 0 can be written as bijyiyj = bl-yibjyj for some ¢;(z).
Thus we can write,

(4.19) Qbij = biCj + bjCi.
Now from equations (4.1) and (4.19) we get

boo =0, by;BLB, =0, b;Biy’ =0.

e}

Hence from equation (4.18) we get H, = 0, again from equations (4.19) and

(4.15) we get byb® = “, ™ =0, AiB} =0 and By BLB) = 2 hag.

Now with the use of equations (3.3), (4.4), (4.5), (4.6), (4.9) and (4.14) we
have
Cob3

r i RI _
(4.20) bTDijBaBﬁ = _32a4{

(1062 —17) |
5(6% + 2) }2hog.
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Thus the equation (4.11) reduces to

3cob? (1062 — 17)

421 H,
(4.21) 8t T R0a3(52 + 2)

as = 0.

Hence the hypersurface F("~1)(c) is umbilic.

Theorem 4.3. The necessary and sufficient condition for a Finslerian hy-
persurface F=Y(c) of a Finsler space with Randers deformed (o, 8)- metric
L = a? + af to be a hyperplane of the first kind is (4.19).

Corollary 4.4. The second fundamental h-tensor in a Finslerian hypersurface
F=1(c) of a Finsler space with Randers deformed (c, B)- metric L = o®+af3
is directly proportional to its angular metric tensor.

Now from Lemma 3.3, F("~1(¢) is a hyperplane of the second kind if and
only if H, =0 and H,g = 0. Thus from (4.20), we get

co = ci(z)y" = 0.
Now, there exists a function 9 (x) such that
ci(x) = Y(a)bi(x).
Therefore, from equation (4.19), we get
2bij = bi(x)Y(2)bj(x) + bj(x)(2)bi(z).

This can also be written as

bij = P (x)bib;.
Theorem 4.5. The necessary and sufficient condition for a Finslerian hy-

persurface F~Y(c) of a Finsler space with Randers deformed (., 8)- metric
L = a? + af to be a hyperplane of the second kind is (4.21).

Again Lemma 3.4, together with (4.9) and M,, = 0 shows that F("~1(c) is
not a hyperplane of the third kind.

Theorem 4.6. The Finslerian hypersurface F("’l)(c) of a Finsler space with
Randers deformed (a, 8)- metric L = o® + af is not a hyperplane of the third
kind.

5. Conclusion

In the present paper, we have obtained the condition under which a
deformed Randers (o, 8)-metric which is defined by equation (1.1) of a 2-degree
homogeneous function and this metric also formed a nonholonomic frame of a
Finsler space [I12]. Further, we have obtained the Theorems 4.3 and 4.5 and
they state that the condition under which the Finslerian hypersurfaces of this
metric is a hyperplane of the first and the second kind. Again, we have proved
in Theorem 4.6 that it is not a hyperplane of the third kind.

Since the noholonomic frame is defined for the Finsler metric of two-degree
homogeneous function and this work can also be extended for the study of
Finslerian hypersurfaces for those Finsler metric which framed nonholonomic
frame for future studies.
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