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Nonuniform nonstationary wavelets and associated
multiresolution analysis on local fields

Owais Ahmad12 and Neyaz A. Sheikh3

Abstract. In this paper, we introduce the notion of nonuniform non-
stationary wavelets and the associated multiresolution analysis on lo-
cal fields. We provide the characterization of nonuniform nonstationary
wavelets by virtue of dimension function.
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1. Introduction

In order to systematically construct orthonormal wavelet bases Mallat and
Meyer introduced in 1986 the multiresolution analysis (or multiscale approxi-
mation) as a general tool in approximation theory and signal analysis. Thus
they provided a natural framework for understanding of wavelet bases and
provided a well structured scheme which describes the various refinement steps
clearly, such that this technique became accessible to engineers for practical
implementation [21]. The concept of MRA has been extended in various ways
in recent years. These concepts are generalized to L2

(
Rd

)
, to lattices differ-

ent from Zd, allowing the subspaces of MRA to be generated by Riesz basis
instead of orthonormal basis, admitting a finite number of scaling functions,
replacing the dilation factor 2 by an integer M ≥ 2 or by an expansive matrix
A ∈ GLd(R) as long as A ⊂ AZd. All these concepts are developed on regular
lattices, that is the translation set is always a group. Recently, Gabardo and
Nashed [16] considered a generalization of Mallat’s [22] celebrated theory of
MRA based on spectral pairs, in which the translation set acting on the scaling
function associated with the MRA to generate the subspace V0 is no longer a
group, but is the union of Z and a translate of Z. Based on one-dimensional
spectral pairs, Gabardo and Yu [17] considered sets of nonuniform wavelets in
L2(R). In real life application all signals are not obtained from uniform shifts;
so there is a natural question regarding analysis and decompositions of this
types of signals by a stable mathematical tool. Gabardo and Nashed [16] and
Gabardo and Yu [17] filled this gap by the concept of nonuniform multires-
olution analysis. The notion of nonstationary wavelet system is introduced
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independently by M. Z. Berkolayko, I. Y. Novikov [13] and by C. de Boor, R.
DeVore, A. Ron [14]. In [14], the nonstationary system (called almost-wavelets)
is used to construct an orthonormal shift invariant basis consisting of infinitely
differentiable compactly supported functions. It is well known that it is impo-
ssible to construct stationary wavelet basis satisfying these properties. Further,
nonstationary wavelets are studied in [11]

During the last two decades, there is a substantial body of work that was
concerned with the construction of wavelets on local fields. Even though the
structures and metrics of local fields of zero and positive characteristics are simi-
lar, their wavelet and MRA (multiresolution analysis) theory are quite different.
For example, R. L. Benedetto and J. J. Benedetto [12] developed a wavelet the-
ory for local fields and related groups. They did not develop the multiresolution
analysis (MRA) approach, their method is based on the theory of wavelet sets
and only allows the construction of wavelet functions whose Fourier transforms
are characteristic functions of some sets. Khrennikov, Shelkovich and Skopina
[19] constructed a number of scaling functions generating an MRA of L2(Qp).
But later on in [10], Albeverio, Evdokimov and Skopina proved that all these
scaling functions lead to the same Haar MRA and that there exist no other
orthogonal test scaling functions generating an MRA except those described
in [19]. Some wavelet bases for L2(Qp) different from the Haar system were
constructed in [9, 15] . These wavelet bases were obtained by relaxing the basis
condition in the definition of an MRA and form Riesz bases without any dual
wavelet systems. Jiang et al.[18] pointed out a method for constructing orthog-
onal wavelets on local field K with a constant generating sequence and derived
necessary and sufficient conditions for a solution of the refinement equation to
generate a multiresolution analysis of L2(K).

Recently, Shah and Abdullah [25] have generalized the concept of multires-
olution analysis on Euclidean spaces Rn to nonuniform multiresolution analysis
on local fields of positive characteristic, in which the translation set acting on
the scaling function associated with the multiresolution analysis to generate
the subspace V0 is no longer a group, but is the union of Z and a translate of
Z, where Z = {u(n) : n ∈ N0} is a complete list of (distinct) coset representa-
tion of the unit disc D in the locally compact Abelian group K+. The notion
of nonuniform wavelet frames on non-Archimedean local fields was introduced
by Ahmad and Sheikh [7] and established a complete characterization of tight
nonuniform wavelet frames on non-Archimedean local fields. More results in
this direction can also be found in [3, 2, 8, 1, 5, 6, 4, 20, 23, 24] and the refer-
ences therein. Drawing the inspiration from the above work, we intoduce the
notion of nonuniform nonstationary wavelets, their characterization and the
associated multirersolution analysis on local fields.

The remainder of the paper is as follows. In Section 2, we discuss pre-
liminary results on local fields and some basic definitions. In Section 3, we
obtain the characterization of orthonormal nonuniform nonstationary wavelets
and the associated multiresolution analysis is established.
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2. Preliminaries on Non-Archimedean Local Fields

2.1. Non-Archimedean Fields

A non-Archimedean local field K is a locally compact, non-discrete and
totally disconnected field. If it is of characteristic zero, then it is a field of
p-adic numbers Qp or its finite extension. If K is of positive characteristic,
then K is a field of formal Laurent series over a finite field GF (pc). If c = 1,
it is a p-series field, while for c ̸= 1, it is an algebraic extension of degree
c of a p-series field. Let K be a fixed non-Archimedean local field with the
ring of integers D = {x ∈ K : |x| ≤ 1}. Since K+ is a locally compact Abelian
group, we choose a Haar measure dx for K+. The field K is locally compact,
non-trivial, totally disconnected and complete topological field endowed with
non–Archimedean norm | · | : K → R+ satisfying

(a) |x| = 0 if and only if x = 0;
(b) |x y| = |x||y| for all x, y ∈ K;
(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.
Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1}

be the prime ideal of the ring of integers D in K. Then, the residue space D/B
is isomorphic to a finite field GF (q), where q = pc for some prime p and c ∈ N.
Since K is totally disconnected and B is both prime and principal ideal, so
there exist a prime element p of K such that B = ⟨p⟩ = pD. Let D∗ = D\B =
{x ∈ K : |x| = 1}. Clearly, D∗ is a group of units in K∗ and if x ̸= 0, then we
can write x = pny, y ∈ D∗. Moreover, if U = {am : m = 0, 1, . . . , q − 1} denotes
the fixed full set of coset representatives of B in D, then every element x ∈ K
can be expressed uniquely as x =

∑∞
ℓ=k cℓ p

ℓ with cℓ ∈ U . Recall that B is
compact and open, so each fractional ideal Bk = pkD =

{
x ∈ K : |x| < q−k

}
is also compact and open and is a subgroup of K+. We use the notation in
Taibleson’s book [26]. In the rest of this paper, we use the symbols N,N0 and Z
to denote the sets of naturals, non-negative integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but non-trivial on
B−1. Therefore, χ is constant on cosets of D so if y ∈ Bk, then χy(x) =
χ(y, x), x ∈ K. Suppose that χu is any character on K+, then the restriction
χu|D is a character on D. Moreover, as characters on D, χu = χv if and
only if u− v ∈ D. Hence, if {u(n) : n ∈ N0} is a complete list of distinct coset
representatives ofD inK+, then, as was proved in [26], the set

{
χu(n) : n ∈ N0

}
of distinct characters on D is a complete orthonormal system on D.

We now impose a natural order on the sequence {u(n)}∞n=0. We have
D/B ∼= GF (q) where GF (q) is a c-dimensional vector space over the field

GF (p). We choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that span{ζj}c−1
j=0

∼=
GF (q). For n ∈ N0 satisfying

0 ≤ n < q, n = a0+a1p+ · · ·+ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c−1,

we define

u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p
−1.
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Also, for n = b0+b1q+b2q
2+· · ·+bsqs, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s,

we set

u(n) = u(b0) + u(b1)p
−1 + · · ·+ u(bs)p

−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m+ n) =
u(m)+u(n). But, if r, k ∈ N0 and 0 ≤ s < qk, then u(rqk+s) = u(r)p−k+u(s).
Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
{u(s) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed s ∈ N0. Hereafter we use
the notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as
above. We define a character χ on K as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j ̸= 1.

2.2. Fourier Transforms on Non-Archimedean Local Fields

The Fourier transform of f ∈ L1(K) is denoted by f̂(ξ) and defined by

F
{
f(x)

}
= f̂(ξ) =

∫
K
f(x)χξ(x) dx.

It is noted that

f̂(ξ) =

∫
K
f(x)χξ(x)dx =

∫
K
f(x)χ(−ξx) dx.

The properties of Fourier transforms on non-Archimedean local field K are
very similar to those of on the classical field R. In fact, the Fourier transform
on non-Archimedean local fields of positive characteristic have the following
properties:

� The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K),

and
∥∥f̂∥∥∞ ≤

∥∥f∥∥
1
.

� If f ∈ L1(K), then f̂ is uniformly continuous.

� If f ∈ L1(K) ∩ L2(K), then
∥∥f̂∥∥

2
=

∥∥f∥∥
2
.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤qk

f(x)χξ(x) dx,

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore,
if f ∈ L2(D), then we define the Fourier coefficients of f as

f̂
(
u(n)

)
=

∫
D

f(x)χu(n)(x) dx.
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The series
∑

n∈N0
f̂
(
u(n)

)
χu(n)(x) is called the Fourier series of f . From the

standard L2-theory for compact Abelian groups, we conclude that the Fourier
series of f converges to f in L2(D) and Parseval’s identity holds:

∥∥f∥∥2
2
=

∫
D

∣∣f(x)∣∣2dx =
∑
n∈N0

∣∣∣f̂(u(n))∣∣∣2 .
We also denote the test function space on K by Ω, i.e., each function f in Ω

is a finite linear combination of functions of the form 1k(x− h), h ∈ K, k ∈ Z,
where 1k is the characteristic function of Bk. Then, it is clear that Ω is dense
in Lp(K), 1 ≤ p < ∞, and each function in Ω is of compact support and so is
its Fourier transform. Since Ω is dense in L2(K) and closed under the Fourier
transform, the set

Ω0 =
{
f ∈ Ω : suppf̂ ⊂ K\{0}

}
is also dense in L2(K).

2.3. Uniform Stationary MRA on Local Fields

In order to able to define the concepts of uniform MRA and wavelets on
non-Archimedean local fields, we need analogous notions of translation and
dilation. Since

⋃
j∈Z p

−jD = K, we can regard p−1 as the dilation and since
{u(n) : n ∈ N0} is a complete list of distinct coset representatives of D in K,
the set Z = {u(n) : n ∈ N0} can be treated as the translation set. Note that Λ
is a subgroup of K+ and unlike the standard wavelet theory on the real line,
the translation set is not a group. Let us recall the definition of a uniform
MRA on non-Archimedean local fields of positive characteristic introduced by
Jiang et al. in [18].

Definition 2.1. Let K be a non-Archimedean local field of positive character-
istic p > 0 and p be a prime element of K. An MRA of L2(K) is a sequence of
closed subspaces {Vj : j ∈ Z} of L2(K) satisfying the following properties:

(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2(K);

(c)
⋂

j∈Z Vj = {0};
(d) f(x) ∈ Vj if and only if f(p−1x) ∈ Vj+1 for all j ∈ Z;
(e) There exists a function ϕ ∈ V0, such that

{
ϕ
(
x− u(k)

)
: k ∈ N0

}
forms

an orthonormal basis for V0.

According to the standard scheme for construction of MRA-based wavelets,
for each j, we define a wavelet space Wj as the orthogonal complement of Vj
in Vj+1, i.e., Vj+1 = Vj ⊕Wj , j ∈ Z, where Wj ⊥ Vj , j ∈ Z. It is not difficult
to see that

f(x) ∈Wj if and only if f(p−1x) ∈Wj+1, j ∈ Z.
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Moreover, they are mutually orthogonal, and we have the following orthog-
onal decompositions:

L2(K) =
⊕
j∈Z

Wj = V0 ⊕

⊕
j≥0

Wj

 .

As in the case of Rn, we expect the existence of q − 1 number of functions
ψ1, ψ2, . . . , ψq−1 to form a set of basic wavelets. In view of (2.7) and (2.8),
it is clear that if {ψ1, ψ2, . . . , ψq−1} is a set of functions such that the sys-
tem

{
ψℓ

(
x− u(k)

)
: 1 ≤ ℓ ≤ q − 1, k ∈ N0

}
forms an orthonormal basis forW0,

then
{
qj/2ψℓ(p

−jx− u(k)
)
: 1 ≤ ℓ ≤ q − 1, j ∈ Z, k ∈ N0

}
forms an orthonor-

mal basis for L2(K).

2.4. Nonuniform MRA on Non-Archimedean Local Fields

For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1 such that
r and N are relatively prime, we define

Λ =

{
0,
u(r)

N

}
+ Z.

where Z = {u(n) : n ∈ N0}. It is easy to verify that Λ is not a group on non-
Archimedean local field K, but is the union of Z and a translate of Z. Following
is the definition of nonuniform stationary multiresolution analysis (NUSMRA)
on non-Archimedean local fields of positive characteristic given by Shah and
Abdullah [25].

Definition 2.2. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤
qN − 1 such that r and N are relatively prime, an associated NUMRA on
non-Archimedean local field K of positive characteristic is a sequence of closed
subspaces {Vj : j ∈ Z} of L2(K) such that the following properties hold:

(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2(K);

(c)
⋂

j∈Z Vj = {0};
(d) f(·) ∈ Vj if and only if f(p−1N ·) ∈ Vj+1 for all j ∈ Z;
(e) There exists a function ϕ in V0 such that {ϕ(· − λ) : λ ∈ Λ}, is a com-

plete orthonormal basis for V0.

It is worth noticing that, when N = 1, one recovers from the definition
above the definition of an MRA on non-Archimedean local fields of positive
characteristic p > 0. When, N > 1, the dilation is induced by p−1N and
|p−1| = q ensures that qNΛ ⊂ Z ⊂ Λ.

For every j ∈ Z, define Wj to be the orthogonal complement of Vj in Vj+1.
Then we have

Vj+1 = Vj ⊕Wj and Wℓ ⊥Wℓ′ if ℓ ̸= ℓ′.
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It follows that for j > J ,

Vj = VJ ⊕
j−J−1⊕
ℓ=0

Wj−ℓ

where all these subspaces are orthogonal. By virtue of condition (b) in the
Definition 2.2, this implies

L2(K) =
⊕
j∈Z

Wj

a decomposition of L2(K) into mutually orthogonal subspaces.
As in the standard scheme, one expects the existence of qN − 1 many

functions so that their translation by elements of Λ and dilations by the integral
powers of p−1N form an orthonormal basis for L2(K).

3. Main results

We start this section with the following definition

Definition 3.1. Let ψ(j) ∈ L2(K) for all j ∈ Z, then the family of functions

ψj,λ =
{
(qN)

j
2ψ(j)(p−1N)jx− λ

}
j∈Z,λ∈Λ

is called a nonuniform nonstationary wavelet system for L2(K).

Lemma 3.2. If f ∈ S and ψ ∈ L2(K), then

∑
λ∈Λ

∣∣∣〈f, ψj,λ

〉∣∣∣2 =

∫
K
f̂(ξ)ψ̂(j)

(
(p−1N)−jξ

)
×

{∑
s∈N0

f̂
(
ξ + (p−1N)−ju(s)

)
ψ̂(j)

(
(p−1N)−jξ + u(s)

)}
dξ.(3.1)

Proof. For ψ ∈ L2(K), let

ψj,λ(x) = (qN)j/2ψ(j)
(
(p−1N)jx− λ

)
, j ∈ Z, λ ∈ Λ.

Then, we have

(3.2) ψ̂j,λ(ξ) = (qN)−j/2ψ̂(j)
(
(p−1N)−jξ

)
χλ

(
(p−1N)−jξ

)
.

By the Parseval Identity and Equation 3.2, we have∑
λ∈Λ

∣∣∣〈f, ψj,λ〉∣∣∣2

=
∑
λ∈Λ

(qN)j
∫
K

∑
s∈N0

∫
ND

f̂
(
(p−1N)−j

(
x+ u(s)

))
χλ
(
x+ u(s)

)
ψ̂(j)

(
x+ u(s)

)
× f̂

(
(p−1N)−jx

)
χλ(x)ψ̂

(j)(x)dx.
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Since
∑
s∈N0

∫
ND

f̂
(
(p−1N)−j

(
x+ u(s)

))
χλ

(
x+u(s)

)
ψ̂(j)

(
x+u(s)

)
dx contains

only finite non-zero terms for f ∈ S and χλ

(
u(s)

)
= 1, for all λ ∈ Λ, s ∈ N0,

we have∑
λ∈Λ

∣∣∣〈f, ψj,λ〉∣∣∣2

=
∑
λ∈Λ

(qN)j
∫
K

∫
ND

∑
s∈N0

f̂
(
(p−1N)−j

(
x+ u(s)

))
ψ̂(j)

(
x+ u(s)

)χλ(x)dx


× χλ(y) f̂

(
(p−1N)−jy

)
ψ̂(j)(y)dy.

By invoking Convergence theorem of Fourier series on D, we obtain 3.1. This
completes the proof.

Lemma 3.3. Let f ∈ Ω and ψ(j) ∈ L2(K). If ess sup

{∑
j∈Z

∣∣∣ψ(j)
(
(p−1N)jξ

)∣∣∣2} <

∞ for ξ ∈ B−1 \ND, then

(3.3)
∑
j∈Z

∑
λ∈Λ

∣∣∣〈f, ψj,λ〉∣∣∣2 =

∫
K
|f̂(ξ)|2

∑
j∈Z

∣∣∣ψ(j)((p−1N)jξ
)∣∣∣2 +R0(f),

where

R0(f) =
∑
j∈Z

(qN)j
∫
K
f̂
(
(p−1N)−jξ

)
ψ(j)(ξ)

×

{∑
s∈N

f̂
(
(p−1N)−j

(
ξ + u(s)

))
ψ̂(j)

(
ξ + u(s)

)}
dξ

=
∑
j∈Z

∑
s∈N

(qN)j
∫
K
f̂
(
(p−1N)−jξ

)
ψ(j)(ξ)f̂

(
(p−1N)−j

(
ξ + u(s)

))

×ψ̂(j)
(
ξ + u(s)

)
dξ.

Moreover if
∥∥∥ψ̂(j)

∥∥∥
L2(K)

= 1, then the series converges absolutely on K.

Proof. For R0(f), we use the fact that for f ∈ Ω,∑
s∈N0

f̂
(
(p−1N)−j

(
x+ u(s)

))
ψ̂(j)

(
x+ u(s)

)
contains only finite non-zero terms, so we have∑
j∈Z

(qN)j
∫
K
f̂
(
(p−1N)−jξ

)
ψ(j)(ξ)

{∑
s∈N

f̂
(
(p−1N)−j

(
x+ u(s)

))
ψ̂(j)

(
x+ u(s)

)}
dξ

=
∑
j∈Z

∑
s∈N

(qN)j
∫
K
f̂
(
(p−1N)−jξ

)
ψ(j)(ξ)f̂

(
(p−1N)−j

(
x+ u(s)

))

×ψ̂(j)
(
x+ u(s)

)
dξ.
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We claim that for all f ∈ Ω0, (3.3) holds. Moreover, by using Lemma 3.2, we have

∑
j∈Z

∑
λ∈Λ

∣∣∣〈f, ψj,λ〉∣∣∣2
=
∑
j∈Z

∫
K

{∣∣∣f̂(ξ)∣∣∣2 ∣∣∣ψ̂(j)((p−1N)−jξ
)∣∣∣2

+(qN)j

(
f̂
(
(p−1N)−jξ

)
ψ(j)(ξ)

∑
s∈N

f̂
(
(p−1N)−j

(
x+ u(s)

))
ψ̂(j)

(
x+ u(s)

))}
dξ

=
∑
j∈Z

∫
K

∣∣∣f̂(ξ)∣∣∣2 ∣∣∣ψ̂(j)((p−1N)−jξ
)∣∣∣2 +R0(f).

Hence, our claim is true for f ∈ Ω0. Further by applying Levi Lemma and the
given assumption, we obtain (3.3). We now show that the series (3.3) is absolutely
convergent. Since

∣∣∣ψ̂(j)(x)ψ̂(j)(x+ u(s)
)∣∣∣ ≤ 1

2

(∣∣∣ψ̂(j)(x)
∣∣∣2 + ∣∣∣ψ̂(j)(x+ u(s)

)∣∣∣2) ,
it suffices to verify that the series

(3.4)
∑
j∈Z

∑
s∈N

(qN)−j
∫
K

∣∣∣f̂((p−1N)−jx
)
f̂
(
(p−1N)−j

(
x+ u(s)

))∣∣∣ ∣∣∣ψ̂(j)(x)
∣∣∣2 dx

is convergent. As u(s) ̸= 0 for s ∈ N and f ∈ Ω0, there exists a constant J > 0
such that

f̂
(
(p−1N)−jx

)
f̂
(
(p−1N)−j

(
x+ u(s)

))
= 0 ∀ |j| > J.

On the other hand, for each fixed |j| ≤ J , there is a constant L such that

f̂
(
(p−1N)−j

(
x+ u(s)

))
= 0 ∀ s > L.

Hence, it means that there are only finite non-zero terms in the series (3.4). Thus,
there exists a constant C such that

∑
j∈Z

∑
s∈N

(qN)
−j

∫
K

∣∣∣∣f̂((p−1
N)

−j
x
)
f̂

(
(p

−1
N)

−j(
x + u(s)

))
ψ̂
(j)

(x)ψ̂
(j)(

x + u(s)
)∣∣∣∣ dx ≤ C

∥∥∥f̂∥∥∥2
∞

∥∥∥∥ψ̂(j)
∥∥∥∥2
2
.

Thus, it follows that the series
∑
j∈Z
∑
s∈N

∣∣〈f, ψj,λ〉∣∣2 is also convergent.
For given s ∈ N, there is a unique pair (λ,m) with λ ∈ Λ andm ∈ qΛ+Q, where qΛ =
{qλ : λ ∈ Λ} and Q = {1, 2, . . . , qN − 1}, such that s = (qN)λm. Therefore, we have
{u(s)}s∈N =

{
(p−1N)−λu(m)

}
(λ,m)∈Λ×(qΛ+Q)

. Since the series (3.4) is absolutely

convergent, we can estimate R0(f) by rearranging the series, changing the order of
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summation and integration by Levi Lemma as follows

R0(f)

=
∑
j∈Z

(qN)j
∫
K
f̂
(
(p−1N)−jξ

)
ψ(j)(ξ)

×

{∑
s∈N

f̂
(
(p−1N)−j

(
ξ + u(s)

))
ψ̂(j)

(
ξ + u(s)

)}
dξ

=
∑
j∈Z

(qN)j
∫
K
f̂
(
(p−1N)−jξ

){∑
λ∈Λ

∑
m∈qΛ+Q

ψ(j)(ξ)

× f̂
(
(p−1N)−j

(
ξ + (p−1N)−ku(m)

))
ψ̂(j)

(
ξ + (p−1N)−ku(m)

)}
dξ

=

∫
K

∑
j∈Z

(qN)j f̂
(
(p−1N)−jξ

)
×

{∑
λ∈Λ

∑
m∈qΛ+Q

ψ(j)((p−1N)−kξ
)
f̂
(
(p−1N)−j

(
ξ + (p−1N)−ku(m)

))
×ψ̂(j)(p−1N)−k

((
ξ + u(m)

))}
dξ

=

∫
K

∑
j∈Z

(qN)j f̂
(
(p−1N)−jξ

) ∑
m∈qN0+Q

f̂
(
(p−1N)−j

(
ξ + (p−1N)−ku(m)

))

×
∑
λ∈Λ

ψ(j)((p−1N)−kξ
)
ψ̂(j)(p−1N)−k

((
ξ + u(m)

))}
dξ

=

∫
K

∑
j∈Z

(qN)j f̂
(
(p−1N)−jξ

)

×

 ∑
m∈qN0+Q

f̂
(
(p−1N)−j

(
ξ + (p−1N)−ku(m)

))
tψ(j)

(
u(m), ξ

) dξ

=
∑
j∈Z

∑
m∈qN0+Q

(qN)j
∫
K
f̂
(
(p−1N)−jξ

)
f̂
(
(p−1N)−j

(
ξ + (p−1N)−ku(m)

))
×tψ(j)

(
u(m), ξ

)
dξ,

where

tψ(j)

(
u(m), ξ

)
=
∑
k∈N0

ψ(j)((p−1N)−kξ
)
ψ̂(j)(p−1N)−k

((
ξ + u(m)

))
.

Theorem 3.4. Assume that ψ(j) ∈ L2(K) and
∥∥∥ψ̂(j)

∥∥∥
L2(K)

= 1 for j ∈ Z. Then

(3.5)
∑
j∈Z

∣∣∣ψ̂(−j)((p−1N)−jξ
)∣∣∣2 = 1 a.e ξ ∈ K
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and for n ∈ N0 and m ∈ qΛ +Q we have

(3.6)

∞∑
j=0

ψ̂(n−j)((p−1N)−jξ
)
ψ̂(n−j)

(
(p−1N)−j

(
ξ + u(m)

))
= 0 a.e

if and only if {
(qN)j/2ψ(j)((p−1N)−jx− λ

)
, j ∈ Z, λ ∈ Λ

}
is an orthonormal basis of L2(K).

Proof. Sufficiency part: As
∥∥∥ψ̂(j)

∥∥∥
L2(K)

= 1, it is clear that the system
{
ψj,λ : j ∈

Z, λ ∈ Λ
}

is an orthonormal basis if and only if for any f ∈ L2(K), the Parseval
identity holds.
Assume that the conditions (3.5) and (3.6) hold. Then for n ∈ N0,m ∈ qΛ +Q, by
Lemma 3.2 and Lemma 3.3, we have∑

j∈Z

∑
λ∈Λ

∣∣〈f, ψj,λ〉∣∣2 =

∫
K

∣∣∣f̂(ξ)∣∣∣2∑
j∈Z

∣∣∣ψ̂(j)((p−1N)−jξ
)∣∣∣2 dξ

= ∥f∥2L2(K) ∀ f ∈ S.

Necessary condition: We assume that
{
(qN)j/2ψ(j)

(
(p−1N)jx − λ

)
, j ∈ Z, λ ∈ Λ

}
is an orthonormal basis of L2(K) and will prove the conditions (3.5) and (3.6). We

assume ∆j to be the set of regular points of
∣∣∣ψ̂(j)

(
(p−1N)−jξ

)∣∣∣2, so that for each

x ∈ ∆j ,

(qN)n
∫
ξ−x∈Bn

∣∣∣ψ̂(j)((p−1N)−jξ
)∣∣∣2 dξ → ∣∣∣ψ̂(j)((p−1N)−jx

)∣∣∣2 , asn→ ∞

Then
∣∣∆c

j

∣∣ = 0, so that
∣∣∣⋃j∈Z ∆

c
j

∣∣∣ = 0. Let ξ0 ∈ K \
⋃
j∈Z ∆

c
j . For each fixed positive

integer M , set
f̂(ξ) = (qN)m/2Φm(ξ − ξ0), m ≥M,

where Φm(ξ − ξ0) is the characteristic function of ξ0 +Bm. Then it follows that for

s ∈ N and j ≥ −M, f̂(ξ)f̂
(
ξ+(p−1N)−ju(s)

)
= 0, and hence ∥f∥22 = 1. Furthermore,

we have∑
j∈Z

∑
λ∈Λ

∣∣〈f, ψj,λ〉∣∣2 =
∑
j≥−M

∫
ξ0+Bm

(qN)m
∣∣∣f̂(ξ)∣∣∣2 ∣∣∣ψ̂(j)((p−1N)−jξ

)∣∣∣2 dξ ≤ B.

Therefore, in the limiting case, we have∑
j∈Z

∣∣∣ψ̂(−j)((p−1N)−jξ0
)∣∣∣2 = 1 a.e

To prove (3.6), we let ∑
j∈Z

∑
λ∈Λ

∣∣〈f, ψj,λ〉∣∣2 = I1 + I2,

where
I1 =

∑
j>−M

∑
λ∈Λ

∣∣〈f, ψj,λ〉∣∣2 and I2 =
∑
j≤−M

∑
λ∈Λ

∣∣〈f, ψj,λ〉∣∣2 .
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Since, it has been already verified that I1 =
∑
j>−M

∣∣∣ψ̂(−j)((p−1N)−jξ0
)∣∣∣2, so to

prove the result, it is enough to show that limM→+∞ I2 = 0. Using Lemma 3.2 and
the Schwartz Inequality, we have

0 ≤ I2 ≤
∑
j≤−M

∑
r∈N0

{∫
K

∣∣∣f̂(ξ)ψ̂(−j)((p−1N)−jξ
)∣∣∣2 dξ} 1

2

×
{∫

K

∣∣∣f̂(ξ + (p−1N)−ju(r)
)
ψ̂(−j)

(
(p−1N)−jξ + u(r)

)∣∣∣2 dξ} 1
2

.

If ξ+(p−1N)−ju(r) ∈ ξ0+Bm for a fixed j ≤ −M , then it follows that
∣∣(p−1N)−ju(r)

∣∣ ≤
(qN)−m, so |u(r)| ≤ (qN)−m−j . Therefore

I2 ≤
∑
j≤−M

∫
K

∣∣∣f̂(ξ)ψ̂(−j)((p−1N)−jξ
)∣∣∣2 dξ

≤
∑
j≤−M

∫
(p−1N)−jξ0+B−j+m

∣∣∣ψ̂(−j)(ξ)
∣∣∣2 dξ.

If ξ0 ̸= 0, then for given ϵ > 0, we choose M so that

(qN)−M < |ξ0| = (qN)s and

∫
BM−s

∣∣∣ψ̂(−j)(ξ)
∣∣∣2 dξ < ϵ.

Therefore for all j ≤ −M , we have

(3.7) (p−1N)−jξ0 +B−j+m ⊂ BM−s.

Moreover for any j1 < j2 ≤ −M , it can be easily verified that

(3.8)
{
(p−1N)−j1ξ0 +B−j1+m

}
∩
{
(p−1N)−j2ξ0 +B−j2+m

}
= ϕ.

Using (3.7) and (3.8), we have

I2 ≤
∫
BM−s

∣∣∣ψ̂(−j)(x)
∣∣∣2 dx < ϵ,

from which the result follows.

Definition 3.5. Let K be a local field of positive characteristic p ≥ 0 and p be a
prime element of K. A collection of closed subspaces {Vj : j ∈ Z} of L2(K) is called a
nonuniform nonstationary multiresolution analysis (NUNMRA) if the following con-
ditions hold:

(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2(K);

(c)
⋂
j∈Z Vj = {0};

(d) for any j ∈ Z there is a function φ(j) ∈ Vj such that the sequence{
φ(j)( ·+(p−1N)−jλ

)
: λ ∈ Λ

}
forms a Riesz basis (or orthonormal basis) for Vj .
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The sequence
{
φ(j)

}
j∈Z

is called a scaling sequence for the given NUNMRA. If we

denote by Pj , the orthogonal projector on Vj , then condition (b) of the Definition 3.5
implies that limj→∞ Pjf = f for any f ∈ L2(K). It then follows from the condition
(d) that for any f ∈ Vj , the function f

(
x+(p−1N)jλ

)
also belongs to Vj for any λ ∈ Λ.

Without loss of generality, we assume that
{
φ(j)

(
x+ (p−1N)jλ

)}
λ∈Λ

constitutes an

orthonormal basis in Vj .

Proposition 3.6. If {Vj}j∈Z is a NUNMRA, then there exists a nonstationary or-

thonormal wavelet bases {ψj,λ}j∈Z, λ∈Λ, such that for any f ∈ L2(K),

(3.9) Pj+1f = Pjf =
∑
λ∈Λ

〈
f, ψj,λ

〉
ψj,λ

Proof. Let Wj be an orthogonal complement of Vj in Vj+1. Then

(3.10) Wj ⊥Wj′ , for j ̸= j′

and for j0 < j,

(3.11) Vj = Vj0 ⊕

 j−1⊕
ℓ=j0

Wℓ

 .

It then follows from the conditions (b) and (d) of Definition 3.5 that

(3.12) L2(K) =
⊕
j∈Z

Wj .

Equation (3.9) is equivalent to the fact that for fixed j, the sequence {ψj,λ}λ∈Λ

forms an orthonormal basis in Wj . From (3.12), it follows that {ψj,λ}j∈Z, λ∈Λ is an

orthonormal basis in L2(K). Hence the problem of construction of nonstationary

wavelet bases satisfying (3.9) is to find ψ(j) such that
{
ψ(j)

(
x+ (p−1N)jλ

)}
λ∈Λ

constitutes an orthonormal basis in Wj .
For the construction of the function ψ(j), we use the following properties of φ(j)

and Wj .

Since φ(j) ⊂ Vj ⊂ Vj+1 and
{
φ

(j+1)
λ

}
λ∈N0

is an orthonormal basis in Vj+1, it

follows that

(3.13) φ(j)(x) =
∑
λ∈Λ

hj+1,λ φ
(j+1)
λ (x),

where

(3.14) hj+1,λ =
〈
φ(j), φ(j+1)

〉
,
∑
λ∈Λ

|hj+1,λ|2 = 1.

Equation (3.13) can be written in the frequency domain as

(3.15) φ̂(j)(ξ) = mj+1

(
(p−1N)j+1ξ

)
φ̂(j+1)(ξ),

where
mj+1(ξ) =

∑
λ∈N0

hj+1,λ χλ(ξ),
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are called nonuniform nonstationary masks. It can be easily verified that

(3.16)
∑
λ∈Λ

∣∣∣φ(j)(ξ + (p−1N)−jλ
)∣∣∣2 = (qN)−j for a.e ξ ∈ K.

From (3.15) and (3.16), we have∑
λ∈Λ

∣∣∣mj+1

(
(p−1N)j+1ξ + pλ

)
φ(j+1)(ξ + (p−1N)jλ

)∣∣∣2 = (qN)−j .

Partitioning the sum into two parts and taking into account the integral periodicity
of mj+1, we get

(3.17) |mj+1(ξ)|2 +
∣∣mj+1

(
ξ + pu(N)

)∣∣2 = qN.

We now characterize the subspaces Wj . Let f ∈ Wj . Then f is in Vj+1 and is
orthogonal to Vj . Then

(3.18) f(x) =
∑
k∈N0

fkφ
(j+1)
k (x),

where fλ = ⟨f, φ(j+1)
λ ⟩. Applying Fourier transform to equation (3.18), we have

(3.19) f̂(ξ) = mf

(
(p−1N)j+1ξ

)
φ̂(j+1)(ξ),

mf (ξ) =
∑
λ∈Λ

fλ χλ(ξ),

are integral periodic from L2(D). Since f is orthogonal to Vj , we have for λ ∈ Λ,∫
K
f̂(ξ)φ̂(j)(ξ)χλ

(
(p−1N)j−1ξ

)
dξ = 0.

Moreover, ∫
K
f̂(ξ)φ̂(j)(ξ)χλ

(
(p−1N)j−1ξ

)
dξ

=

∫
(p−1N)jD

∑
r∈N0

f̂
(
ξ + (p−1N)−ju(r)

)
× φ̂(j)

(
ξ + (p−1N)−ju(r)

)
χλ
(
(p−1N)j−1ξ

)
dξ

= 0.(3.20)

Since (3.20) holds for all λ ∈ Λ, we have

(3.21)
∑
r∈N0

f̂
(
ξ + (p−1N)−ju(r)

)
φ̂(j)

(
ξ + (p−1N)ju(r)

)
= 0.

The series in (3.21) converges in L2(D). Keeping in view (3.17) and using equations
(3.19) and (3.20) in (3.21), we get

(qN)j+1
∑
r∈N0

f̂
(
ξ + (p−1N)−ju(r)

)
φ̂(j)

(
ξ + (p−1N)−ju(r)

)
= mf

(
(p−1N)j+1ξ

)
mj+1

(
(p−1N)j+1ξ

)
mf

(
(p−1N)j+1ξ + pu(N)

)
×mj+1

(
(p−1N)j+1ξ + pu(N)

)
= 0.
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It is evident from (3.17) that mj+1(ξ) and mj+1

(
ξ + pu(N)

)
can not vanish simul-

taneously. Hence, there exists an integral periodic function λ(ξ) such that

(3.22) mf (ξ) = λ(ξ)mj+1

(
ξ + pu(N)

)
a.e.

and

(3.23) λ(ξ) + λ
(
ξ + pu(N)

)
= 0.

Equation (3.23) can be rewritten as

λ(ξ) = ν
(
p−1Nξ

)
χ(ξ),

where ν is an integral periodic function. Therefore the Fourier transform of any
function of Wj yields

(3.24) f̂(ξ) = mj+1

(
ξ + pu(N)

)
ν
(
(p−1N)jξ

)
φ̂(j+1)(ξ)χ

(
pjξ
)
.

Moreover, it can be seen that ν is square integrable. Having system (3.24) in hand, it
will not be difficult to find functions ψ(j) in the space Wj such that{
ψ(j)

(
x+ (p−1N)−jλ

)}
λ∈Λ

constitutes an orthonormal basis in Wj . Therefore, we

have

ψ̂(j)(ξ) = mj+1

(
ξ + pu(N)

)
νψ(j)

(
(p−1N)jξ

)
φ̂(j+1)(ξ)χ

(
(p−1N)jξ

)
.

Therefore, substituting above expression in (3.16) and using (3.17), we have∣∣νψ(j)

∣∣2 = 1 a.e.

From (3.24), it follows that the integer shifts of ψ(j) defined by

(3.25) ψ̂(j)(ξ) = mj+1

(
ξ + pu(N)

)
φ̂(j+1)(ξ)χ

(
(p−1N)jξ

)
.

form a basis of Wj . Thus having a nonstationary multiresolution analysis {Vj}j∈Z
generated by a scaling function

{
φ(j)

}
, one can construct a nonstationary orthonor-

mal wavelet basis
{
ψj,λ

}
j∈Z, λ∈Λ

in L2(K) satisfying (3.9).

Definition 3.7. Suppose ψ(j) ∈ L2(K) for j ∈ Z. Then dimension function is defined
by

Dψ(j)(ξ) =

∞∑
n=1

∑
λ∈Λ

∣∣∣ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))∣∣∣2 a.e ξ ∈ K

Since ∫
D

∞∑
n=1

∑
λ∈Λ

∣∣∣ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))∣∣∣2 dξ = ∞∑
n=1

(qN)−n
∫
K

∣∣∣ψ̂(j)(ξ)
∣∣∣2 dξ.

Hence Dψ(j) is well defined for a.e. ξ ∈ K.

Proposition 3.8. For all j ∈ Z and for a.e. ξ ∈ K, we have

(3.26)
∣∣∣φ̂(j)

∣∣∣2 =

∞∑
n=1

∣∣∣ψ̂(j−n) ((p−1N)−nξ
)∣∣∣2 .
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Proof. If ψ(j) ∈ L2(K), then equation (3.25) holds. Therefore using (3.17), we have
from equations (3.15) and (3.25),∣∣∣φ̂(j)(ξ)

∣∣∣2 + ∣∣∣ψ̂(j)(ξ)
∣∣∣2 =

∣∣∣mj+1

(
(p−1N)j+1ξ

)
φ̂(j+1)(ξ)

∣∣∣2
+
∣∣∣mj+1

(
ξ + pu(N)

)
φ̂(j+1)(ξ)χ

(
(p−1N)−jξ

)∣∣∣2
= qN

∣∣∣φ̂(j+1)(ξ)
∣∣∣2

=
∣∣∣φ̂(j+1)(p−1Nξ)

∣∣∣2 .
Since the equality holds for a.e. ξ ∈ K, we have∣∣∣φ̂(j)(ξ)

∣∣∣2 =
∣∣∣φ̂(j−1) (p−1Nξ

)∣∣∣2 + ∣∣∣ψ̂(j−1) (p−1Nξ
)∣∣∣2 .

Iterating for any integer L ≥ 1, we get

∣∣∣φ̂(j)(ξ)
∣∣∣2 =

∣∣∣φ̂(j−L)
(
(p−1N)−Lξ

)∣∣∣2 + L∑
n=1

∣∣∣ψ̂(j−L) ((p−1N)−nξ
)∣∣∣2 .

Since
∣∣∣φ̂(j−L)(ξ)

∣∣∣ ≤ 1, the sequence

{
L∑
n=1

∣∣∣ψ̂(j−L) ((p−1N)−nξ
)∣∣∣2 : L ≥ 1

}

of real numbers is bounded by 1, hence it converges. Therefore,

lim
L→∞

∣∣∣φ̂(j−L)
(
(p−1N)−Lξ

)∣∣∣2
also exists. Moreover∫

K

∣∣∣φ̂(j−L)
(
(p−1N)−Lξ

)∣∣∣2 dξ = (qN)−L
∫
K

∣∣∣φ̂(j−L) (ξ)
∣∣∣2 dξ → 0 as L→ ∞.

Therefore, the application of the Fatou’s Lemma yields∫
K

lim
L→∞

∣∣∣φ̂(j−L)
(
(p−1N)−Lξ

)∣∣∣2 dξ ≤ lim
L→∞

∫
K

∣∣∣φ̂(j−L)
(
(p−1N)−Lξ

)∣∣∣2 dξ = 0.

This means that limL→∞

∣∣∣φ̂(j−L)
(
(p−1N)−Lξ

)∣∣∣2 dξ = 0. Hence, we have

∣∣∣φ̂(j)(ξ)
∣∣∣2 =

∞∑
n=1

∣∣∣ψ̂(j−n) ((p−1N)−nξ
)∣∣∣2

This completes the proof.
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Since
{
(qN)j/2φ(j)

(
(p−1N)jx− λ

)
: λ ∈ Λ

}
is an orthonormal basis of L2(K) for

all j ∈ Z, we have

1 =
∑
λ∈Λ

∣∣∣φ̂(j)(ξ + λ
)∣∣∣2 =

∑
λ∈Λ

∞∑
n=1

∣∣∣ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))∣∣∣2 = Dψ(j)(ξ).

Since Dψ(j)(ξ) = 1, we can choose the smallest n ∈ N such that for all j ∈ Z and for
almost all ξ ∈ K, ∑

λ∈Λ

∣∣∣ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))∣∣∣2 ̸= 0

and then for almost all ξ ∈ K, we define φ(j)(ξ) by

φ̂(j)(ξ) =
ψ̂(j−n) ((p−1N)−nξ

)√∑
λ∈Λ

∣∣∣ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))∣∣∣2 .

Moreover for a fixed j ∈ Z and n ∈ N, we define an infinite vector of l2(Λ) as

(3.27) Ψj,n(ξ) =
{
ψ̂(j−n) ((p−1N)−n

(
ξ + λ)

))}
λ∈λ

for a.e ξ ∈ K

Theorem 3.9. Assume that ψ(j) ∈ L2(K) for every j ∈ Z, such that the system{
(qN)j/2ψ(j)

(
(p−1N)jx− λ

)
: λ ∈ Λ

}
is an orthonormal basis of L2(K). Then the

mother wavelets ψ(j), j ∈ Z come from a NUNMRA, if and only if

Dψ(j)(ξ) =

∞∑
n=1

∑
k∈N0

∣∣∣ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))∣∣∣2 = 1 a.e ξ ∈ K

Proof. Necessary part of the theorem follows from Proposition 3.8. For the proof of
the sufficient part, we need the following lemmas:

Lemma 3.10. For all j ∈ Z, and for almost all ξ ∈ K, we have

(3.28) Ψj,n(ξ) =

∞∑
h=1

〈
Ψj,n(ξ),Ψj,h(ξ)

〉
Ψj,h(ξ),

Proof. The series in the Lemma converges absolutely for a.e. ξ ∈ K. Let us first
show that

ψ̂(j−n)((p−1N)−nξ) =

∞∑
h=1

∑
λ∈Λ

ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))
× ψ̂(j−h)

(
(p−1N)−h

(
ξ + λ

))
ψ̂(j−h)((p−1N)−hξ

)
.(3.29)

Let us denote by Γj,n(ξ), the second member of the series (3.29). Then using equations
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(3.6) and (3.29), we have

Γj,n(ξ) =

∞∑
h=1

∑
λ∈Λ

ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))
× ψ̂(j−h)

(
(p−1N)−h

(
ξ + λ

))
ψ̂(j−h)((p−1N)−hξ

)
=
∑
λ∈Λ

ψ̂(j−n) ((p−1N)−n
(
ξ + λ

)){ ∞∑
h=0

ψ̂(j−h)
(
(p−1N)−h

(
ξ + λ

))
ψ̂(j−h)((p−1N)−hξ

)
− ψ̂(j)

(
ξ + λ

)
ψ̂(j)(ξ)

}
=

∞∑
h=0

∑
λq∈Λ

ψ̂(j−n) ((p−1N)−n
(
ξ + u(qλ)

))
× ψ̂(j−h)

(
(p−1N)−h

(
ξ + u(qk)

))
ψ̂(j−h)((p−1N)−hξ

)
=

∞∑
h=1

∑
λ∈Λ

ψ̂

(
(j+1)−(n+1)

) (
(p−1N)n+1(pξ + λ

))
× ψ̂(j−h)

(
(p−1N)−h

(
pξ + λ

))
ψ̂(j−h)((p−1N)−hpξ

)
= Γj+1,n+1(pξ)

The above system is equivalent to

Γj,n(ξ) = Γj−1,n−1(p
−1Nξ).

In consequence, for j ∈ Z, n ∈ N and almost all ξ ∈ K, we have by recursion

Γj,n(ξ) = Γj−(n−1),1((p
−1N)n+1ξ),

from which equation (3.29) follows as Γj−n+1,1(ξ) = ψ̂(j−n)((p−1N)−nξ).

Moreover, since
〈
Ψj,n(ξ),Ψj,h(ξ)

〉
is integral periodic, equation (3.28) holds. This

completes the proof of the lemma.

From the above lemma, it can be seen that

(3.30)

∞∑
n=1

∥Ψj,n(ξ)∥2l2(Λ) =

∞∑
n=1

∑
λ∈Λ

∣∣∣ψ̂(j−n) ((p−1N)−n
(
ξ + λ

))∣∣∣2 = Dψ(j)(ξ) = 1.

For all j ∈ Z, and for almost all ξ ∈ K, we define

(3.31) Fj(ξ) = span{Ψj,n(ξ) : n ≥ 1}.

It is a subspace of l2(Λ) of dimension 1.

Lemma 3.11. Let {αn : n ≥ 1} be a family of vectors in a Hilbert space H such that

∞∑
n=1

∥αn∥2 = C <∞ and vn =

∞∑
m=1

⟨αn, αm⟩αm for all n ≥ 1.

Then dimension of the subspace span{αn : n ≥ 1} of H is equal to C.
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Sufficient part of the Theorem: Using Lemma 3.11, it follows that the family
Fj(ξ), defined by (3.31) is generated by only one unit vector Xj(ξ). To construct it,
we first make a partition of D as follows

Pj,n = {ξ ∈ D : Ψj,n(ξ) ̸= 0 and Ψj,m(ξ) = 0 for m < n} , n ≥ 1,

and the null set
Pj,0 =

{
ξ ∈ D : Dψ(j)(ξ) = 0

}
.

Let us now define the unit vector Xj(ξ) on D by

Xj(ξ) =
Ψj,n(ξ)

∥Ψj,n(ξ)∥l2(Λ)

if ξ ∈ Ej,n.

We write Xj(ξ) =
{
u
(j)
λ (ξ)

}
λ∈Λ

and define φ(j) almost everywhere on K by

φ̂(j)(ξ) = u
(j)
λ

(
ξ − λ

)
if ξ ∈ D+ λ.

These φ(j), j ∈ Z are the required scaling functions.
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