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On a connection between fuzzy subgroups and F -inverse
covers of inverse monoids

Elton Pasku1

Abstract. We define two categories, the category FG of fuzzy sub-
groups, and the category FC of F -inverse covers of inverse monoids, and
prove that there is a full and faithful embedding of FG into FC. As a
by-product of this embedding we get that the level subgroups of a given
fuzzy subgroup can be realized as the H-classes of a Clifford monoid that
is canonically constructed from the fuzzy subgroup. This connection we
find between fuzzy subgroups and inverse monoids is new and unexplored
before and shows that, at least from a categorical viewpoint, fuzzy sub-
groups belong to the standard mathematics as much as they do to the
fuzzy one.
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1. Introduction and preliminaries

The theory of fuzzy sets originates with the article [11] of Zadeh and has
aimed since than to help other branches of mathematics that study ambiguity
or uncertainty. Along with fuzzy sets, fuzzy analogues have been developed,
in particular the theory of fuzzy groups which started with the paper [8] of
Rosenfeld. Given a set X, a fuzzy subset A of X is a function A : X → [0, 1].
For every x ∈ X, the value A(x) represents the degree of membership of x in
A. This is what makes A look like an uncertain set. On the other hand, the
definition of fuzzy groups is a bit more complex and is given below.

Definition 1.1. Let G be a group. A fuzzy subgroup of G is a map µ : G →
[0, 1] such that:

(i) for all x, y ∈ G, µ(xy) ≥ min{µ(x), µ(y)}, and

(ii) for all x ∈ G, µ(x−1) ≥ µ(x).

It turns out that for all x ∈ G, µ(x) = µ(x−1), and µ(e) ≥ µ(x) where e is
the unit of G. There is no restriction if we replace [0, 1] in this definition by
µ([0, 1]), and in this way the definition may be restated as follows.

Definition 1.2. A fuzzy subgroup of G is a triple (G,µ, U) where G is a group,
U ⊆ [0, 1] and µ : G→ U is a surjective map satisfying the properties:
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(1) for all x, y ∈ G, µ(xy) ≥ min{µ(x), µ(y)}, and

(2) for all x ∈ G, µ(x−1) = µ(x).

We will revisit this definition in a while in order to show that a fuzzy
subgroup of G can be interpreted as a dual premorphism from G onto a certain
inverse monoid, and it is this interpretation that will lead us to the proof of
our main theorem. Before doing that, let us first recall a few basic concepts
from semigroup theory. We assume throughout that every semigroup (S, ·) is a
monoid, thus having a unit element denoted by 1. This is not a real restriction,
since every semigroup S can be embedded into a monoid by simply adjoining
a unit 1 to S and defining 1 · x = x = x · 1 for every x ∈ S. Given a monoid
(S, ·) there are always defined Green’s relations L,R and H in S by setting for
every a, b ∈ S,

(a, b) ∈ L ⇔ Sa ∪ {a} = Sb ∪ {b},
(a, b) ∈ R ⇔ aS ∪ {a} = bS ∪ {b}.

and H = L∩R. There is a special class of monoids which are of particular in-
terest, the so called Clifford monoids. They are those monoids which satisfy the
properties: (1) each H-class contains a unique idempotent, (2) the idempotents
are central. It turns out that in Clifford monoids the relations L,R,H coincide
and that every H-class forms a group. Clifford monoids are in fact a special
case of a very much studied class of monoids, the so called inverse monoids.
An inverse monoid is a monoid M such that for every x ∈M there is a unique
x−1 ∈ M , called the inverse of x, such that xx−1x = x and x−1xx−1 = x−1.
An obvious example of an inverse monoid is a lower semilattice with a greatest
element where the multiplication is the usual meet operation. Every inverse
monoid M comes equipped with a natural partial order ⪯ defined by: x ⪯ y
if and only if there is an idempotent e ∈ M such that x = ye. Every inverse
monoid M has a smallest group congruence which is denoted by σ and is char-
acterized by (x, y) ∈ σ if and only if there is an idempotent e ∈ M such that
xe = ye. The name minimum group congruence comes from the fact that S/σ
is a group with the following universal property. If γ is another group congru-
ence in S, then there is a unique homomorphism ξ : S/σ → S/γ such that the
following diagram commutes

S

γ♯

��

σ♯
// S/σ

ξ}}
S/γ

where σ♯ and γ♯ are the canonical epimorphisms. An elementary but important
consequence of this property is that every homomorphism φ : S → T of inverse
monoids induces a unique homomorphism φσ : S/σ → T/σ such that the
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following diagram is commutative

S

σ♯

��

φ // T

σ♯

��
S/σ

φσ
// T/σ.

An explicit description of φσ is given in [10]. An inverse monoid satisfying
the property that each σ-class contains a greatest element with respect to the
natural partial order is called an F -inverse monoid. An F -inverse monoid F is
called an F -inverse cover of an inverse monoid M over the group F/σ if there
exists a surjective idempotent separating homomorphism F →M , that is a sur-
jective homomorphism of monoids F →M whose restriction on the semilattice
of idempotents of F is also a surjection onto the semilattice of idempotents
of M . There are a number of important results concerning F -inverse monoids
which are related with covers and expansions of inverse monoids. The reader
can find useful material in papers [1], [4] and [10]. Regarding F -inverse covers
of inverse monoids, they are closely related with dual premorphisms between
inverse monoids. The respective definition reads as follows.

Definition 1.3. (see [1]) A dual premorphism ψ : M → N between inverse
monoids is a map such that:

(i) ψ(xy) ⪰ ψ(x)ψ(y) for all x, y ∈M , and

(ii) ψ(x−1) = (ψ(x))−1 for all x ∈M .

The following is Theorem VII.6.11 of [7] and gives a relationship between
dual premorphisms and F -inverse covers.

Theorem 1.4. Let H be a group and M an inverse monoid. If ψ : H → M
is a dual premorphism such that for every u ∈ M , there is an h ∈ H with
u ⪯ ψ(h), then

F = {(u, h) ∈M ×H|u ⪯ ψ(h)},

is an F -inverse cover of M over H. Conversely, every F -inverse cover of M
over H can be so constructed (up to isomorphism).

Now we are ready to show that Definition 1.2 of a fuzzy subgroup as a
triple, matches with Definition 1.3 in the special case when the domain of the
premorphism is a group and the codomain is a subsemilattice of [0, 1] with a
unit element, although at a first glance it seems that the two are unrelated since,
unlike a premorphism as a map with codomain an inverse monoid, in Definition
1.2, the map µ has codomain U which is not given an inverse monoid structure.
Luckily, we can overcome this difficulty very easily. The fact that for all x ∈ G,
µ(x) ≤ µ(e) says exactly that sup(U) = µ(e) and that this belongs to U . Also
U is clearly a poset, where the order is the one inherited by the usual order in
[0, 1], and as explained above, U has a greatest element. We remark here the
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general fact that each poset U ⊆ [0, 1] which has a greatest element α can be
regarded as an inverse monoid with multiplication ∧ defined by

u ∧ v = min{u, v}.

The unit of (U,∧) is clearly the greatest element α and so (U,∧) becomes a
lower semilattice with a unit element. This fact will be used several times in our
future proofs without further mention. Now we explain how a fuzzy subgroup
(G,µ, U) as in Definition 1.2 can be interpreted as a dual premorphism from
the group G onto the inverse monoid (U,∧) and conversely. First, we observe
that the order ≤ in U coincides with the natural order ⪯ in the inverse monoid
(U,∧). Indeed, for every x, y ∈ U ,

x ≤ y ⇔ x ∧ x = y ∧ x
⇔ x ⪯ y (since x is an idempotent of (U,∧)).

Secondly, as a result of this observation we see that the map µ : G→ U which
satisfies (1) and (2) of definition 1.2 is nothing but a dual premorphism from the
group G onto the inverse monoid (U,∧), and conversely. Indeed, it is obvious
that if µ satisfies (1) of Definition 1.2, then it satisfies (i) of Definition 1.3, and
conversely. Also, if µ satisfies (2) of Definition 1.2, then for all x ∈ G,

µ(x−1) = µ(x) = (µ(x))−1,

where the second equality holds true since in (U,∧) every element coincides with
its own inverse. This proves that µ satisfies (ii) of Definition 1.3. Conversely,
any map µ : G → U that satisfies (ii) of Definition 1.3, satisfies also (2) of
Definition 1.2 since

µ(x−1) = (µ(x))−1 = µ(x),

for every x ∈ G.
Finally, for everything unexplained here on semigroups in general and in-

verse semigroups in particular, we refer the reader to the monographs [2], [3]
and [7]. While for basics on fuzzy sets and fuzzy groups we refer the reader to
[6], [8] and [11]. The book of Mac Lane [5] contains the necessary material on
categories and functors.

2. The definitions of FG and FC

We define the category of fuzzy subgroups FG in the following way. The
objects of FG are triples (G,µ, U) as defined in Definition 1.2, and if (G,µ1, U)
and (H,µ2, V ) are two such triples, a morphism from (G,µ1, U) to (H,µ2, V )
is a pair (f, λ) where f : G→ H is a group homomorphism, and λ : U → V is
an order preserving map with the property that λ(sup(U)) = sup(V ), and, for
all x ∈ G

µ2f(x) = λµ1(x).

The unit morphism on an object (G,µ, U) is defined to be the pair (1G, 1U ).
Now if (K,µ3,W ) is another object from FG, and (g, λ′) : (H,µ2, V ) →
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(K,µ3,W ) is another a morphism, we define the composition (g, λ′) ◦ (f, λ)
as the pair (gf, λ′λ). We will show that this pair is indeed a morphism from
(G,µ1, U) to (K,µ3,W ). For every x ∈ G,

µ3gf(x) = λ′µ2f(x)

= λ′λµ1(x).

Also λ′λ is order preserving, and λ′λ(sup(U)) = λ′(sup(V )) = sup(W ). The
properties that FG should satisfy to be a category are straightforward. In
the introduction we remarked that in the definition of an object (G,µ, U) we
can regard U as an inverse monoid with multiplication ∧ and µ as a premor-
phism. But then, the definition of a morphism in FG between any two such
objects would involve mixed concepts, because on the one hand we have homo-
morphisms of groups, and on the other hand, order preserving maps between
posets. This is not an inconsistency since for any two posets U and V with
respective greatest elements α and β, it holds true that every order preserv-
ing map λ : U → V which sends α to β, is in fact a homomorphism between
monoids (U,∧) and (V,∧). Indeed, let u, v ∈ U such that u ≤ v, then

λ(u ∧ v) = λ(u) (since u ≤ v)

= λ(u) ∧ λ(v) (since λ(u) ≤ λ(v)).

In addition to that, the fact that λ(α) = β says that λ is a homomorphism
of monoids. The converse is also true, that is, any homomorphism of monoids
λ : (U,∧) → (V,∧), is an order preserving map since for every u, v ∈ [0, α] such
that u ≤ v,

λ(u) = λ(u ∧ v) (since u ≤ v)

= λ(u) ∧ λ(v) (since λ is a homomorphism),

which implies that λ(u) ≤ λ(v). The condition that λ(α) = β follows from the
fact that λ is a monoid homomorphism. Finally, we remark that λ maps the
greatest element α of the single σ-class of (U,∧) to the greatest element β of
the single σ-class of (V,∧).

The definition of the category FC of F -inverse covers of inverse monoids
is an extension of the definition of the category F of F -inverse semigroups
made in [10]. The objects of FC are triples (T,M,φ) where T is an F -inverse
monoid, M is an inverse monoid, and φ is a homomorphism of monoids which
is surjective and idempotent separating. We say that T is an F -inverse cover
of M over T/σ. If now (T ′,M ′, φ′) is another triple as above, then a morphism
from (T,M,φ) to (T ′,M ′, φ′) is a pair (f∗, λ) with f∗ : T → T ′ and λ :
M → M ′ monoid morphisms which map the greatest element of every σ-class
onto the greatest element of some σ-class, and that satisfy the commutativity
condition φ′f∗ = λφ. The identity morphism on the object (T,M,φ) is defined
as the pair (1T , 1M ) which clearly satisfies the above commutativity condition.
The composition of morphisms is defined in the following fashion. If (f∗, λ) :
(T,M,φ) → (T ′,M ′, φ′) and (f ′∗, λ

′) : (T ′,M ′, φ′) → (T ′′,M ′′, φ′′) are two
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morphisms, then their composition is defined to be the pair (f ′∗f∗, λ
′λ). This

is indeed a morphism from (T,M,φ) to (T ′′,M ′′, φ′′) since

φ′′(f ′∗f∗) = (φ′′f ′∗)f∗

= (λ′φ′)f∗ = λ′(φ′f∗)

= λ′(λφ) = (λ′λ)φ,

and that both compositions f ′∗f∗ and λ′λ map the greatest element of a σ-class
onto the greatest element of some σ-class since their respective components do
so. Finally, it is easy to see that FC is indeed a category.

3. The embedding

Looking back to the definition of an object (G,µ, U) from FG, but with U
regarded now as an inverse monoid (U,∧), we have already observed that the
map µ : G → U is nothing but a dual premorphism between inverse monoids.
We also note that µ satisfies the extra property that for every u ∈ U , there
exists x ∈ G such that u ≤ µ(x). One such x is for instance the unit of G. It
follows from Theorem 1.4, that there is an F -inverse cover of U over G which
we write with the long notation C(G,µ, U). More explicitly,

C(G,µ, U) = {(u, x) ∈ U ×G|u ≤ µ(x)}

is an inverse monoid whose idempotents turn out to be all the pairs (u, 1),
where 1 is the unit of G, in particular the unit element is (µ(1), 1). The
natural order has a simple description: (u, x) ⪯ (v, y) if and only if y = x and
u ≤ v. The σ-class of an element (u, x) consists of all the elements (v, x) with
v ≤ µ(x) and its greatest element with respect to the natural order is (µ(x), x).
Finally note that the projection in the first coordinate φ : C(G,µ, U) → U ,
(u, x) 7→ u is a surjective homomorphism and idempotent separating. We
call the triple (C(G,µ, U), φ, U) the F -inverse cover associated with the fuzzy
subgroup (G,µ, U). The monoid C(G,µ, U) seems to be useful in connecting
inverse semigroups with fuzzy subgroups. An argument which goes in favor
of this is that the H-classes of C(G,µ, U) correspond in a way that will be
made precise below, to the so called level subsets of (G,µ, U). Level subsets
are defined in [9] as follows. Given a fuzzy subgroup (G,µ, U) and u ∈ U , then
the level subset µu of the fuzzy subset µ is defined by

µu = {h ∈ G|µ(h) ≥ u}.

It is proved in Theorem 2.1 of [9] that such subsets are in fact subgroups of G.
Before we see the connection they have with the H-classes of C(G,µ, U), we
note that C(G,µ, U) is a Clifford monoid. Indeed, it is an inverse monoid by
its definition, and its idempotents are central. To see the latter, let (u, 1) be
an idempotent, and (v, h) an arbitrary element, then

(u, 1)(v, h) = (u ∧ v, h) = (v ∧ u, h) = (v, h)(u, 1).
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To see what an H-class looks like, we recall first that the relations H and
R coincide in Clifford semigroups. Let now (v, h) ∈ C(G,µ, U) be such that
(v, h)R(u, 1) where (u, 1) is some idempotent. There are (w, a), (w′, b) ∈ C(G,µ, U)
such that

(v ∧ w, ha) = (v, h)(w, a) = (u, 1)

and
(u ∧ w′, b) = (u, 1)(w′, b) = (v, h),

which together imply that u = v. Therefore, if (v, h) ∈ H(u,1), then necessarily
v = u. Conversely, any (u, h) ∈ C(G,µ, U) is R (hence H)-equivalent with
(u, 1). Indeed, this follows easily from the fact that (u, h−1) ∈ C(G,µ, U) and
since the following hold true

(u, h)(u, h−1) = (u, 1) and (u, 1)(u, h) = (u, h).

All we said means that for any fixed u ∈ U , H(u,1) = {(u, h)|u ≤ µ(h)} and
this forms a subgroup of C(G,µ, U). Now we show that each level subgroup µu

is in fact isomorphic to H(u,1). Indeed, the map

ϕ : H(u,1) → µu such that (u, h) 7→ h,

is clearly bijective and a homomorphism.
Now we prove our main result.

Theorem 3.1. There is a full and faithful embedding of the category FG of
fuzzy subgroups into the category FC of F -inverse covers of inverse monoids.

Proof. Define Ω : FG → FC on objects by sending each fuzzy subgroup (G,µ, U)
to its corresponding F -inverse cover (C(G,µ, U), φ, U). Further, for each mor-
phism (f, λ) : (G,µ1, U) → (H,µ2, V ) in FG, if the corresponding F -inverse
covers are respectively (C(G,µ1, U), φ1, U) and (C(H,µ2, V ), φ2, V ), then we
define

f∗ : (C(G,µ1, U) → C(H,µ2, V )

by setting
f∗(u, x) = (λ(u), f(x)).

This map is correct since λ(u) ≤ µ2(f(x)). Indeed, from the definition of the
morphism (f, λ), we see that

µ2f(x) = λµ1(x)

≥ λ(u) (since µ1(x) ≥ u).

Also f∗ is a monoid homomorphism since if (u, x), (v, y) ∈ C(G,µ1, U) such
that u ≤ v, then

f∗((u, x)(v, y)) = f∗(u ∧ v, xy)
= f∗(u, xy)

= (λ(u), f(xy))

= (λ(u) ∧ λ(v), f(x)f(y)) (since λ(u) ≤ λ(v))

= (λ(u), f(x))(λ(v), f(y))

= f∗(u, x)f∗(v, y).
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Also if α, β are the respective units of U, V , and e1, e2 the units of G,H respec-
tively, then

f∗(α, e) = (λ(α), f(e1)) = (β, e2),

so that f∗ preserves the unit element. Further, we see that for every (u, x) ∈
C(G,µ1, U),

φ2f∗(u, x) = φ2(λ(u), f(x))

= λ(u)

= λφ1(u, x).

Lastly, if (µ1(x), x) is the greatest element of its σ-class, then

f∗(µ1(x), x) = (λ(µ1(x)), f(x)) = (µ2(f(x)), f(x)),

where (µ2(f(x)), f(x)) is the greatest element of its σ-class. Since in addition to
what we said, λ is a homomorphism of inverse monoids that maps the greatest
element α of the only σ-class of U to the greatest element β of the only σ-
class of V , then it follows that the pair Ω(f, λ) = (f∗, λ) is a morphism from
(C(G,µ1, U), φ1, U) to (C(H,µ2, V ), φ2, V ). Next we show that Ω is functorial.
It is obvious that when (f, λ) = (1G, 1U ) is the identity on (G,µ, U), then
Ω(1G, 1U ) = id(C(G,µ,U),φ,U). Let now

(f, λ) : (G,µ1, U) → (H,µ2, V )

and
(f ′, λ′) : (H,µ2, V ) → (K,µ3,W )

be two morphisms in FG, and

(f ′f, λ′λ) : (G,µ1, U) → (K,µ3,W )

their composition, and we want to prove that

Ω(f ′f, λ′λ) = Ω(f ′, λ′)Ω(f, λ),

or equivalently that
((f ′f)∗, λ

′λ) = (f ′∗, λ
′)(f∗, λ).

This is the same as to prove that (f ′f)∗ = f ′∗f∗. The latter is true since for
every (u, x) ∈ C(G,µ1, U) we have that

(f ′f)∗(u, x) = ((λ′λ)(u), (f ′f)(x))

= (λ′(λ(u)), f ′(f(x)))

= f ′∗(λ(u), f(x))

= f ′∗(f(u, x)).

Next we prove that Ω is faithful. Let (G,µ1, U) and (H,µ2, V ) be two objects
in FG and

(f, λ), (f ′, λ′) : (G,µ1, U) → (H,µ2, V )
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be two parallel morphisms, and assume that Ω(f, λ) = Ω(f ′, λ′). Then, from
the definition of Ω, (f∗, λ) = (f ′∗, λ

′), consequently λ = λ′ and f∗ = f ′∗. The
second equality implies that for every x ∈ G and every (u, x) ∈ C(G,µ1, U) we
have that f∗(u, x) = f ′∗(u, x). It follows that (λ(u), f(x)) = (λ′(u), f ′(x)), con-
sequently f(x) = f ′(x). Since the second coordinates of pairs from C(G,µ1, U)
cover the whole of G, then it follows that f = f ′.

Finally we prove that Ω is full. Let again (G,µ1, U) and (H,µ2, V ) be two
objects in FG and

(g, λ) : (C(G,µ1, U), φ1, U) → (C(H,µ2, V ), φ2, V )

be a morphism from Ω(G,µ1, U) to Ω(H,µ2, V ). We show that g induces a
homomorphism f : G → H such that g = f∗ and µ2f = λµ1. This would
prove that (f, λ) : (G,µ1, U) → (H,µ2, V ) is a morphism in FG such that
(g, λ) = Ω(f, λ). For every x ∈ G, let (µ1(x), x) be the greatest element of
its σ-class in C(G,µ1, U), and let (µ2(x

′), x′) = g(µ1(x), x) which is, from the
assumption on g, the greatest element of its σ-class in C(H,µ2, V ). It follows
that

µ2(x
′) = φ2(µ2(x

′), x′) = φ2g(µ1(x), x) = λφ1(µ1(x), x) = λµ1(x).(3.1)

We derive from [10] that g induces a unique homomorphism

f̃ : C(G,µ1, U)/σ → C(H,µ2, V )/σ

which maps the σ-class [(µ1(x), x)] to the σ-class [(µ2(x
′), x′)], where from

above (µ2(x
′), x′) = g(µ1(x), x). Considering now the ismorphisms

γ : G→ C(G,µ1, U)/σ such that x 7→ [(µ1(x), x)],

and
κ : H → C(H,µ2, V )/σ such that y 7→ [(µ2(y), y)],

we obtain a homomorphism

f = κ−1f̃γ : G→ H

such that f(x) = x′ where x′ is determined as above. Using (3.1) we see
that µ2f(x) = λµ1(x), hence (f, λ) is a morphism in FG from (G,µ1, U) to
(H,µ2, V ). Now we prove that (g, λ) = Ω(f, λ) = (f∗, λ) which amounts to
saying that g = f∗. Before we prove this, we observe that for every (u, x) ∈
C(G,µ1, U), the second coordinate of g(u, x) is x′ = f(x) as determined above,
since g preserves σ-classes, while the first coordinate is

φ2g(u, x) = λφ1(u, x) = λ(u).

So
g(u, x) = (λ(u), f(x)) = f∗(u, x),

consequently, g = f∗ as claimed. This completes the proof.
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