Recurrent and ϕ-recurrent curvature on mixed 3-Sasakian manifolds

Mohammad Bagher Kazemi Balgeshir ${ }^{1}$ and Fatemeh Raei ${ }^{3}$

Abstract

In this paper we study the equation $\phi_{i}^{2}(\nabla R)=A_{i} R$ on a mixed 3 -structure manifold $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$, where ∇R is the covariant derivative of the curvature tensor and A_{i} 's are some 1 -forms. We give some examples of such manifolds and show that this equation leads to the important equation $\nabla R=A_{i} R$. That means that the manifold is curvature recurrent. Moreover, we prove that on a mixed 3-Sasakian manifold that equation implies $\nabla R=0$.

AMS Mathematics Subject Classification (2010): 53C50;53C15
Key words and phrases: mixed 3 -structure; ϕ-recurrent manifold; Einstein manifold; locally symmetric

1. Introduction

Para-hyper Hermitian and para-quaternionic structures have many applications in theoretical physics and mechanics [8, 11]. Recently, as an odd dimensional analogue of para-quaternionic manifolds, Ianus et al. 9 have introduced the notion of mixed 3 -structures. Some lightlike hypersurfaces of almost paraquaternionic Hermitian manifolds and normal semi invariant submanifolds of para-quaternionic Kaehler manifolds admit mixed 3-structure [10. An important and interesting type of these manifolds is the mixed 3-Sasakian manifold which has been shown to be an Einstein manifold 4].

On the other hand, locally symmetric manifolds, recurrent manifolds and their generalizations were very interesting for many authors [1, 7, 14. It is wellknown that locally symmetric Sasakian manifolds have constant curvature and this condition is too strong. Hence, Takahashi introduced locally ϕ-symmetric Sasakian manifolds [15]. Later, Boeckx and Vanhecke extended this notion to the contact metric structures [3]. As a generalization of this concept, De and collaborators [5] defined ϕ-recurrent Sasakian manifolds. It has been shown that locally ϕ-symmetric and ϕ-recurrent Sasakian manifolds are Einstein and η-Einstein manifolds, respectively [6, 12]. In the present paper, we introduce and investigate ϕ-recurrent mixed 3 -structures. By constructing some nontrivial examples, we show their existence. We also study ϕ-recurrent mixed 3-Sasakian manifolds.

[^0]This paper is organized as follows. In Section 2, we review some basic information about mixed 3 -structures and 3-Sasakian manifolds. In Section 3, we introduce ϕ-recurrent mixed 3 -structures, construct some examples and show that ϕ-recurrent manifolds are recurrent manifolds. Moreover, we prove that ϕ-recurrent mixed 3-Sasakian manifolds are ϕ-symmetric and locally symmetric.

2. Preliminaries

Let (N, g) be a smooth semi-Riemannian manifold. A subbundle σ of $T N$ is said to be almost para-quaternionic Hermitian, if there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ on sections of σ such that for any $X, Y \in T N$
(a) $J_{i}^{2}=\epsilon_{i}$,
(b) $J_{i} J_{j}=-J_{j} J_{i}=\epsilon_{k} J_{k}$,
(c) $g\left(J_{i} X, J_{i} Y\right)=\epsilon_{i} g(X, Y)$,
where (i, j, k) is a permutation of $(1,2,3)$ and $\epsilon_{1}=\epsilon_{2}=-\epsilon_{3}=-1$ 11. If the bundle σ is preserved by the Levi-Civita connection of g, then N is said to be a para-quaternionic Kaehler manifold. It is easy to show that any almost para-quaternionic Hermitian manifolds are of dimension $4 m, m \geq 1$. The counterparts in odd dimension of these manifolds are studied in this paper.

Let M be a $2 n+1$-dimensional semi-Riemannian manifold which admits a vector field ξ, a 1 -form η and a $(1,1)$-tensor field ϕ such that

$$
\begin{equation*}
\phi^{2} X=\epsilon(-X+\eta(X) \xi), \eta(\xi)=1 \quad \forall X \in T M \tag{2.1}
\end{equation*}
$$

then (M, ξ, η, ϕ) is called an almost contact manifold for $\epsilon=1$ and an almost para-contact manifold for $\epsilon=-1$ [2, 13].
Definition 2.1. Let M be a semi-Riemannian manifold which admits two almost para-contact structures $\left(\xi_{i}, \eta_{i}, \phi_{i}\right), i=1,2$, and an almost contact structure $\left(\xi_{3}, \eta_{3}, \phi_{3}\right)$ satisfying

$$
\begin{gather*}
\eta_{i}\left(\xi_{j}\right)=0, \quad \phi_{i}\left(\xi_{j}\right)=\epsilon_{j} \xi_{k}, \quad \phi_{j}\left(\xi_{i}\right)=-\epsilon_{i} \xi_{k}, \quad \eta_{i}\left(\phi_{j}\right)=-\eta_{j}\left(\phi_{i}\right)=\epsilon_{k} \eta_{k} \tag{2.2}\\
\phi_{i} o \phi_{j}-\epsilon_{i} \eta_{j} \otimes \xi_{i}=-\phi_{j} o \phi_{i}+\epsilon_{j} \eta_{i} \otimes \xi_{j}=\epsilon_{k} \phi_{k} \tag{2.3}
\end{gather*}
$$

where $(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is an even permutation of $(1,2,3)$. Then $\left(M, \xi_{i}, \eta_{i}, \phi_{i}\right)_{i \in\{1,2,3\}}$ is called a mixed 3 -structure manifold [9].

In addition, if there is a semi-Riemannian metric g on M such that

$$
\begin{equation*}
g\left(\phi_{i} X, \phi_{i} Y\right)=\epsilon_{i}\left[g(X, Y)-\tau_{i} \eta_{i}(X) \eta_{i}(Y)\right], \quad \forall X, Y \in T M \tag{2.4}
\end{equation*}
$$

in which $\tau_{i}=g\left(\xi_{i}, \xi_{i}\right)= \pm 1$, then $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is called a metric mixed 3 -structure manifold. In such a manifold, (2.4) implies,

$$
\begin{equation*}
g\left(\phi_{i} X, Y\right)=-g\left(X, \phi_{i} Y\right) \tag{2.5}
\end{equation*}
$$

We can choose a local basis $\left\{e_{i}, \phi_{1} e_{i}, \phi_{2} e_{i}, \phi_{3} e_{i}, \xi_{1}, \xi_{2}, \xi_{3}\right\}$ for $T_{p} M$, and the dimension of manifold is $4 n+3$.
Moreover, a metric mixed 3-structure manifold is said to be a mixed 3-Sasakian manifold if

$$
\begin{equation*}
\left(\nabla_{X} \phi_{i}\right) Y=\epsilon_{i}\left[g(X, Y) \xi_{i}-\tau_{i} \eta_{i}(Y) X\right], \forall X, Y \in T M, i \in\{1,2,3\} \tag{2.6}
\end{equation*}
$$

If the Ricci tensor of a manifold satisfies $S(X, Y)=f g(X, Y)$, for a scalar function f, then it is called an Einstein manifold.

Theorem 2.2. [4] Let $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ be a mixed 3-Sasakian manifold. Then M is an Einstein manifold

3. ϕ-recurrent mixed 3 -structures

A Riemannian manifold M is called a recurrent manifold, if there exists a 1-form A such that

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y, Z)=A(W) R(X, Y) Z \tag{3.1}
\end{equation*}
$$

for any vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in T M$, in which R is the curvature tensor of M [1].

Definition 3.1. An almost contact manifold (M, ξ, η, ϕ) is called a ϕ-recurrent manifold, if there exists a 1 -form A such that

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y, Z)=A(W) R(X, Y) Z \tag{3.2}
\end{equation*}
$$

for any vector fields $X, Y, Z, W \in T M$ [5].
Moreover, if the 1 -form A is equal to zero in (3.1) and $(3.2$, then M is said to be locally symmetric and ϕ-symmetric, respectively. Now, we introduce the notion of ϕ-recurrent mixed 3 -structure manifolds and give some examples.

Definition 3.2. Let $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ be a metric mixed 3-structure manifold. We say that M is a $3-\phi$-recurrent manifold, if

$$
\begin{equation*}
\phi_{i}^{2}\left(\nabla_{W} R\right)(X, Y, Z)=A_{i}(W) R(X, Y) Z, \quad i=1,2,3, \tag{3.3}
\end{equation*}
$$

where $X, Y, Z, W \in T M$ and A_{i} s are 1-forms.
Example 3.3. Let $M=\left\{\left(x_{i}\right)_{i=\overline{1,7}} \in \mathbb{R}^{7} \mid x_{1}+x_{2}+x_{3}+x_{4} \neq 0\right\}$, and ϕ_{i} 's are defined as follows

$$
\begin{gathered}
\phi_{1}\left(\left(x_{i}\right)_{i=\overline{1,7}}\right)=\left(-x_{2},-x_{1},-x_{4},-x_{3}, 0, x_{7}, x_{6}\right), \\
\phi_{2}\left(\left(x_{i}\right)_{i=\overline{1,7}}\right)=\left(x_{4},-x_{3},-x_{2}, x_{1},-x_{6},-x_{5}, 0\right), \\
\phi_{3}\left(\left(x_{i}\right)_{i=\overline{1,7}}\right)=\left(x_{3},-x_{4},-x_{1}, x_{2}, x_{7}, 0,-x_{5}\right) .
\end{gathered}
$$

Suppose that $q=x_{1}+x_{2}+x_{3}+x_{4}$ and

$$
g=\sum_{i=1}^{4}(-1)^{i} q^{2} d x_{i} d x_{i}+d x_{5} d x_{5}-d x_{6} d x_{6}+d x_{7} d x_{7}
$$

Let $\xi_{1}=\partial x_{5}, \xi_{2}=\partial x_{7}, \xi_{3}=-\partial x_{6}$ and η_{i} 's be the duals of ξ_{i} 's. Then $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is a metric mixed 3 -structure manifold. By some computation, we obtain the non-zero Christoffel symbols and components of curvature tensor R as follows

$$
\begin{gathered}
\Gamma_{i i}^{i}=\Gamma_{i j}^{i}=\frac{1}{q}, i \neq j, i, j=1, \ldots, 4 \\
-\Gamma_{i i}^{r}=-\Gamma_{r r}^{i}=\Gamma_{i i}^{j}=\Gamma_{r r}^{s}=-\frac{1}{q}, i \neq j, r \neq s, i, j \in\{1,3\}, r, s \in\{2,4\} . \\
R_{r s s r}=-R_{i j j i}=4, \quad i \neq j, r \neq s, i, j \in\{1,3\}, r, s \in\{2,4\} \\
-R_{r i i s}=-R_{j i i r}=R_{i r r j}=R_{s r r i}=2
\end{gathered}
$$

By computing covariant derivative of R, we get

$$
\begin{gathered}
R_{r s s r, k}=-R_{i j j i, k}=\frac{-24}{q} \\
R_{r i i s ; k}=R_{j i i r ; k}=-R_{i r r j ; k}=-R_{s r r i ; k}=\frac{12}{q}
\end{gathered}
$$

for $i \neq j, r \neq s, i, j \in\{1,3\}, r, s \in\{2,4\}$ and $k=1, \ldots, 4$.
Thus by taking

$$
A\left(\partial x_{k}\right)= \begin{cases}\frac{-6}{q}, & k=1, \ldots, 4 \\ 0, & k=5,6,7\end{cases}
$$

for any $X, Y, Z, W \in T M$, we have

$$
\phi_{i}^{2}\left(\nabla_{W} R\right)(X, Y, Z)=A_{i}(W) R(X, Y, Z, U), i=1,2,3
$$

where $A_{1}(W)=A_{2}(W)=-A_{3}(W)=A(W)$. So, M is a 3 - ϕ-recurrent.
Example 3.4. Let $\left(M, \xi_{i}, \eta_{i}, \phi_{i}\right)_{i \in\{1,2,3\}}$ be the manifold in Example 3.3 and

$$
g=\sum_{i=1}^{4}(-1)^{i} e^{2 q} d x_{i} d x_{i}+d x_{5} d x_{5}-d x_{6} d x_{6}+d x_{7} d x_{7}
$$

Then it is easy to check that $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is a metric mixed 3structure manifold and the non-zero Christoffel symbols are

$$
\begin{gathered}
\Gamma_{i i}^{i}=\Gamma_{i j}^{i}=1, i \neq j, i, j=1, \ldots, 4 \\
-\Gamma_{i i}^{r}=-\Gamma_{r r}^{i}=\Gamma_{i i}^{j}=\Gamma_{r r}^{s}=-1, i \neq j, r \neq s, i, j \in\{1,3\}, r, s \in\{2,4\} .
\end{gathered}
$$

So, the non-zero components of curvature tensor R and its covariant derivatives are obtained as follows

$$
\begin{gathered}
R_{r s s r}=-R_{i j j i}=2 e^{2 q} \\
-R_{r i i s}=-R_{j i i r}=R_{i r r j}=R_{s r r i}=e^{2 q} \\
R_{r s s r, k}=-R_{i j j i, k}=-8 e^{2 q} \\
-R_{r i i s ; k}=-R_{j i i r ; k}=R_{i r r j ; k}=R_{s r r i ; k}=-4 e^{2 q}
\end{gathered}
$$

for $i \neq j, r \neq s, i, j \in\{1,3\}, r, s \in\{2,4\}$ and $k=1, \ldots, 4$.
By putting

$$
A\left(\partial x_{k}\right)= \begin{cases}-4, & k=1, \ldots, 4 \\ 0, & k=5,6,7\end{cases}
$$

we can see that $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is a 3 - ϕ-recurrent manifold.
Lemma 3.5. Let $\left(M, \xi_{i}, \eta_{i}, \phi_{i}\right)_{i \in\{1,2,3\}}$ be a metric mixed 3-structure manifold. Then

$$
\begin{equation*}
\phi_{i}^{2} o \phi_{j}^{2}=-\epsilon_{k}\left[\epsilon_{i} \phi_{i}^{2}+\eta_{j} \otimes \xi_{j}\right]=-\epsilon_{k}\left[\epsilon_{j} \phi_{j}^{2}+\eta_{i} \otimes \xi_{i}\right], \tag{3.4}
\end{equation*}
$$

where $-\epsilon_{1}=-\epsilon_{2}=\epsilon_{3}=1$ and (i, j, k) is an even permutation of $(1,2,3)$.
Proof. Since the composition of tensors is associative, by using (2.3) and straightforward computation, we have

$$
\begin{equation*}
\phi_{i} o\left(\left(\phi_{i} o \phi_{j}\right) o \phi_{j}\right)=-\epsilon_{k}\left[\epsilon_{i} \phi_{i}^{2}+\eta_{j} \otimes \xi_{j}\right] . \tag{3.5}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\left(\phi_{i} o\left(\phi_{i} o \phi_{j}\right)\right) o \phi_{j}=-\epsilon_{k}\left[\epsilon_{j} \phi_{j}^{2}+\eta_{i} \otimes \xi_{i}\right] . \tag{3.6}
\end{equation*}
$$

So, comparing (3.5) and (3.6) completes the proof.
Theorem 3.6. Let $\left(M, \xi_{i}, \eta_{i}, \phi_{i}\right)_{i \in\{1,2,3\}}$ be a non-flat 3- ϕ-recurrent manifold. Then $A_{j}(W)=\epsilon_{k} A_{i}(W)$, where $\{i, j, k\}$ is an even permutation of $\{1,2,3\}$.

Proof. Suppose

$$
\begin{equation*}
\phi_{j}^{2}\left(\nabla_{W} R\right)(X, Y, Z)=A_{j}(W) R(X, Y) Z \tag{3.7}
\end{equation*}
$$

By applying ϕ_{i}^{2} on 3.7) and using Lemma 3.5 we have

$$
\begin{gathered}
-\epsilon_{k}\left[\epsilon_{i} \phi_{i}^{2}\left(\nabla_{W} R\right)(X, Y, Z)+\eta_{j}\left(\left(\nabla_{W} R\right)(X, Y, Z)\right) \xi_{j}\right]= \\
\epsilon_{i} A_{j}(W)\left[-R(X, Y) Z+\eta_{i}(R(X, Y) Z) \xi_{i}\right]
\end{gathered}
$$

Since

$$
\phi_{i}^{2}\left(\nabla_{W} R\right)(X, Y, Z)=A_{i}(W) R(X, Y) Z,
$$

from (3.8) we have

$$
\begin{align*}
\left(\epsilon_{i} A_{j}(W)-\epsilon_{k} \epsilon_{i} A_{i}(W)\right) R(X, Y) Z & =\epsilon_{k} \eta_{j}\left(\left(\nabla_{W} R\right)(X, Y, Z)\right) \xi_{j} \\
& +\epsilon_{i} \eta_{i}\left(A_{j}(W) R(X, Y) Z\right) \xi_{i} \tag{3.9}
\end{align*}
$$

Now, by applying ϕ_{j} and then ϕ_{k} on (3.9), we get

$$
\begin{equation*}
\left(\epsilon_{i} A_{j}(W)-\epsilon_{k} \epsilon_{i} A_{i}(W)\right) \phi_{k} o \phi_{j}(R(X, Y) Z)=0 \tag{3.10}
\end{equation*}
$$

Assume $\phi_{k} o \phi_{j}(R(X, Y) Z)=0$. Then 2.3) implies

$$
\begin{equation*}
\epsilon_{i} \phi_{i}(R(X, Y) Z)=-\epsilon_{k} \eta_{j}(R(X, Y) Z) \xi_{k} \tag{3.11}
\end{equation*}
$$

we apply η_{j} on 3.11) and obtain $\phi_{k}(R(X, Y) Z)=0$. This means

$$
\begin{equation*}
R(X, Y) Z=\eta_{k}(R(X, Y) Z) \xi_{k} \tag{3.12}
\end{equation*}
$$

On the other hand, applying η_{k} on (3.9) implies, $\eta_{k}(R(X, Y) Z)=0$ and therefore, $R(X, Y) Z=0$. This contradicts the assumption that M is a non-flat manifold. Therefore, from 3.10 we get $A_{j}(W)=\epsilon_{k} A_{i}(W)$.

Theorem 3.7. Let $\left(M, \xi_{i}, \eta_{i}, \phi_{i}\right)_{i \in\{1,2,3\}}$ be a 3- ϕ-recurrent manifold. Then M is a recurrent manifold.

Proof. Since M is a $3-\phi$-recurrent manifold, by using Theorem 3.6, we put $A(W)=A_{1}(W)=A_{2}(W)=-A_{3}(W)$ and get

$$
\begin{equation*}
\left[-\left(\nabla_{W} R\right)(X, Y, Z)+\eta_{i}\left(\left(\nabla_{W} R\right)(X, Y, Z)\right) \xi_{i}\right]=A(W) R(X, Y) Z \tag{3.13}
\end{equation*}
$$

for $i=1,2,3$. We obtain $\eta_{i}(A(W) R(X, Y) Z)=0$ and $\eta_{j}\left(\left(\nabla_{W} R\right)(X, Y, Z)\right)=$ $-\eta_{j}(A(W) R(X, Y) Z)$, by applying η_{i} and η_{j} on (3.13), respectively. Therefore,

$$
\begin{equation*}
\eta_{i}\left(\left(\nabla_{W} R\right)(X, Y, Z)\right)=-\eta_{i}(A(W) R(X, Y) Z)=0 \tag{3.14}
\end{equation*}
$$

so, (3.13) and (3.14) imply $\left(\nabla_{W} R\right)(X, Y, Z)=-A(W) R(X, Y) Z$.
The following example shows that the inverse of the previous theorem is not necessarily correct.

Example 3.8. Let $M=\left\{\left(x_{i}\right)_{i=\overline{1,7}} \in \mathbb{R}^{7} \mid x_{1}+x_{2} \neq 0\right\},\left(\xi_{i}, \eta_{i}, \phi_{i}\right)$ be the same in Example 3.3 and

$$
g=e^{2\left(x_{1}+x_{2}\right)}\left[\sum_{i=1}^{4}(-1)^{(i)} d x_{i} d x_{i}+d x_{5} d x_{5}-d x_{6} d x_{6}+d x_{7} d x_{7}\right]
$$

$\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is a metric mixed 3 -structure manifold.
For $i \neq k, i \in\{1,2\}, k \in\{1, . ., 7\}, j \in\{2,4,5,7\}, r \in\{1,3,6\}$, we have

$$
\Gamma_{i i}^{i}=\Gamma_{i k}^{i}=\Gamma_{i k}^{k}=1,
$$

$$
\begin{gathered}
\Gamma_{j j}^{1}=-\Gamma_{r r}^{1}=-\Gamma_{j j}^{2}=\Gamma_{r r}^{2}=1 \\
-R_{r i i r}=R_{j i i j}=-R_{1 r r 2}=R_{1 j j 2}=e^{2\left(x_{1}+x_{2}\right)} .
\end{gathered}
$$

By taking

$$
A\left(\partial x_{k}\right)= \begin{cases}-4, & k=1,2 \\ 0, & k=3, . ., 7\end{cases}
$$

M is a recurrent manifold with associated 1-form A. Since ∇R has only two non-zero components, it is not ϕ_{i}-recurrent for any $i=1,2,3$.

Theorem 3.9. Let $\left(M, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ be a mixed 3-Sasakian manifold. If M is a 3- ϕ-recurrent manifold, then M is a ϕ-symmetric and locally symmetric manifold.

Proof. Since M is a mixed 3-Sasakian manifold, Theorem 2.2 implies that is an Einstein manifold. Thus its Ricci tensor S satisfies $S(X, Y)=f g(X, Y)$. By contracting this formula, we have $r=f(\operatorname{dim} M)$, where r is the scalar curvature of M and $\operatorname{dim} M=4 n+3$. On the other hand, from contracted Bianchi Identity, we obtain $\frac{1}{2} d r=\frac{1}{4 n+3} d r$, hence for $n \geq 0, r$ is constant and therefore f is constant. So,

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, Z)=f\left(\nabla_{W} g\right)(Y, Z)=0, \forall W, Y, Z \in T M \tag{3.15}
\end{equation*}
$$

On the other hand, M is a 3 - ϕ-recurrent manifold and from Theorem 3.7, we conclude

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y, Z)=-A(W) R(X, Y, Z) \tag{3.16}
\end{equation*}
$$

By contracting (3.16), we obtain

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, Z)=-A(W) S(Y, Z) \tag{3.17}
\end{equation*}
$$

Since $S(Y, Z) \neq 0$, comparing (3.15) and (3.17) implies $A(W)=0$. Therefore, M is locally symmetric and ϕ-symmetric.

References

[1] Arslan, K., De, U. C., Murathan, C., and Yildiz, A. On generalized recurrent Riemannian manifolds. Acta Math. Hungar. 123, 1-2 (2009), 27-39.
[2] Blair, D. E. Riemannian geometry of contact and symplectic manifolds, vol. 203 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2002.
[3] Boeckx, E., and Vanhecke, L. Characteristic reflections on unit tangent sphere bundles. Houston J. Math. 23, 3 (1997), 427-448.
[4] Caldarella, A. V., and Pastore, A. M. Mixed 3-Sasakian structures and curvature. Ann. Polon. Math. 96, 2 (2009), 107-125.
[5] De, U. C., Shaikh, A. A., and Biswas, S. On Ф-recurrent Sasakian manifolds. Novi Sad J. Math. 33, 2 (2003), 43-48.
[6] De, U. C., Yildiz, A., and Yali niz, A. F. Locally ϕ-symmetric normal almost contact metric manifolds of dimension 3. Appl. Math. Lett. 22, 5 (2009), 723-727.
[7] Deszcz, R., G乇 ogowska, M. g., Hotloś, M., and Zafindratafa, G. Hypersurfaces in space forms satisfying some curvature conditions. J. Geom. Phys. 99 (2016), 218-231.
[8] Dunajski, M. Hyper-complex four-manifolds from the Tzitzéica equation. J. Math. Phys. 43, 1 (2002), 651-658.
[9] Ianuş, S., Mazzocco, R., and Vîlcu, G. E. Real lightlike hypersurfaces of paraquaternionic Kähler manifolds. Mediterr. J. Math. 3, 3-4 (2006), 581-592.
[10] Ianuş, S., and Vîlcu, G. E. Semi-Riemannian hypersurfaces in manifolds with metric mixed 3-structures. Acta Math. Hungar. 127, 1-2 (2010), 154-177.
[11] Ivanov, S., and Zamkovoy, S. Parahermitian and paraquaternionic manifolds. Differential Geom. Appl. 23, 2 (2005), 205-234.
[12] Jun, J.-B., Yildiz, A., and De, U. C. On ϕ-recurrent (k, μ)-contact metric manifolds. Bull. Korean Math. Soc. 45, 4 (2008), 689-700.
[13] Kazemi Balgeshir, M. B. Point-wise slant submanifolds in almost contact geometry. Turkish J. Math. 40, 3 (2016), 657-664.
[14] Shaikh, A. A., Roy, I., and Kundu, H. On some generalized recurrent manifolds. Bull. Iranian Math. Soc. 43, 5 (2017), 1209-1225.
[15] Takahashi, T. Sasakian ϕ-symmetric spaces. Tohoku Mathematical Journal 29, 1 (1977), 91 - 113.

Received by the editors March 7, 2020
First published online January 21, 2023

[^0]: ${ }^{1}$ Department of Mathematics, University of Zanjan, Zanjan, Iran, e-mail: mbkazemi@znu.ac.ir
 ${ }^{2}$ Corresponding author
 ${ }^{3}$ Department of Mathematics, Farhangian University, Tehran, Iran, e-mail: f.raei@cfu.ac.ir

