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A study on convergence of sequences of functions in
asymmetric metric spaces using ideals

Argha Ghosh1

Abstract. We introduce and study the notions of backward and for-
ward I(α)-convergence and I-exhaustiveness of sequences of functions
between asymmetric metric spaces. We establish a relation between
backward (resp. forward) I(α)-convergent and backward (resp. forward)
I-exhaustiveness. Also, we introduce and study ideal versions of some
classical notions (Alexandroff and strong uniform) of convergence of se-
quences of functions in this context. We give some examples to ensure
the alternation of basic results from the metric case.
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1. Introduction

The need to find necessary and sufficient conditions to preserve continuity
of the pointwise limit function of a sequence of continuous functions led to
the discovery of several notions of convergence of sequences of functions. In
1883/1884, Arzelà [2] gave a necessary and sufficient condition under which the
pointwise limit of a sequence of real-valued continuous functions on a compact
interval is continuous, and in [1], Alexandroff carried out a similar investigation
for a sequence of continuous functions from a topological space to a metric
space. Recently, in 2009, Beer and Levi [5] gave another such condition via
the notion of strong uniform convergence on the bornology of all finite subsets
of a metric space. Later, Caserta et al. [7] proved, the Beer-Levi condition is
equivalent to that of Arzelà and Alexandroff conditions.

In this direction, the notion of α-convergence (also known as continuous
convergence) of real-valued sequences of functions was introduced in [6] (see
also [19, 26]). The notion of α-convergence is stronger than the notion of
pointwise convergence, and the notion of α-convergence is equivalent to the
notion of uniform convergence on the compact domain if and only if the limit
function is continuous. In [18], Gregoriades and Papanastassiou introduced
the notion of exhaustiveness of sequences of functions from a metric space to
a metric space, and they proved a sequence of functions is α-convergent to a
function if and only if it is exhaustive and pointwise convergent to the same
function.
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Recently, in 2011, Caserta et al. [8] introduced and studied some statistical
versions of Arzelà convergence, Alexandroff convergence and strong uniform
convergence. Further, in 2012, Caserta et al. [9] introduced and studied sta-
tistical α-convergence and statistical exhaustiveness. As a generalization of
the notion of usual convergence of sequences of real numbers, Fast [16] and
Steinhaus [25] individually introduced the idea of statistical convergence of se-
quences of real numbers. Since then the researchers have done several works in
this context (see [17, 14, 28] for instance).

One of the most important generalization of statistical convergence is the
notion of I-convergence (ideal convergence) introduced by Kostyrko et al. [20],
where I is an ideal of N. Like statistical convergence, ideal convergence has
applications in different fields of mathematics. In 2005, Lahiri et al. [21] stud-
ied ideal convergence in topological spaces. And in 2007, Balcerzak et al. [4]
introduced the notions of statistical and ideal convergence for the sequences
of functions. Recently, the notions of I(α)-convergence and I-exhaustiveness
were introduced by Papachristodoulos et al. [24], and these notions were a gen-
eralization of the notions of statistical α-convergence and statistical exhaustive-
ness, respectively. Further, Athanassiadou et al. [3] studied ideal versions of
Arzelà convergence, Alexandroff convergence and strong uniform convergence.
For more applications of I-convergence in Functional Analysis and Topology,
see the book edited by Dutta and Rhoades [15] (see also [12, 13] and references
therein).

On the other hand, in 1931, Wilson [29] introduced the idea of asymmetric
metric spaces in the name of quasi metric spaces. If one drops the axiom
of symmetry in the definition of metric spaces, then one gets the definition
of asymmetric metric spaces. Different studies revealed that the notions of
convergence and compactness in asymmetric metric spaces differ from that of
metric spaces.

It is not a surprise that asymmetric metric spaces have many applications in
applied mathematics and materials science (see [22, 23] and references therein).
To provide a more general framework for applications, Collins et al. [10] studied
compactness and completeness in asymmetric metric spaces, and thus estab-
lished an asymmetric Arzelà-Ascoli theorem. Further, in 2015, Toyganözü and
Pehlivan [27] introduced the notions of forward and backward exhaustiveness
and statistical exhaustiveness. But one may notice the absence of some afore-
mentioned classical notions of convergence of sequences of functions in the same
paper. So one may ask for an investigation on that direction. And we do the
same in this paper via the notion of ideals.

In Section 3, we introduce the notions of backward and forward I(α)-
convergence and I-exhaustiveness of sequences of functions from an asymmetric
metric space to an asymmetric metric space. And in Section 4, we introduce
uniform I-convergence and weak I-exhaustiveness in the context of asymmet-
ric metric spaces. Moreover, we establish a connection between all these new
concepts.

In Section 5, we introduce the notions of backward and forward I-strong
uniform convergence of sequences of functions from an asymmetric metric space
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to an asymmetric metric space. We establish a connection between backward
and forward I-strong uniform convergence, pointwise I-convergence and weak
I-exhaustiveness.

In Section 6, we introduce the notions of backward and forward I-Alexandroff
convergence of sequences of functions from an asymmetric metric space to an
asymmetric metric space. We establish a connection between backward and
forward I-strong uniform convergence and I-Alexandroff convergence.

2. Basic Definitions and Notations

Throughout the article, we write N and R to denote the set of all natural
numbers and the set of all real numbers, respectively. In this section, we recall
some definitions and notations, which we need later.

2.1. Ideals and Filters

Definition 2.1. [17] A subset K of N is said to have natural density (or
asymptotic density) d(K) if

d(K) = lim
n→∞

|K(n)|
n ,

where K(n) = {j ∈ K : j ≤ n} and |K(n)| represents the number of elements
in K(n).

Definition 2.2. [20] If X is a non-empty set, then a family I ⊂ 2X is said to
be an ideal of X if
(a) ∅ ∈ I,
(b) A ; B ∈ I implies A ∪B ∈ I, and
(c) A ∈ I ; B ⊂ A implies B ∈ I.

The ideal I is said to be a non-trivial ideal if I ≠ {∅} and X /∈ I.

Definition 2.3. [20] If X is a non-empty set, then a family F ⊂ 2X is said to
be a filter of X if
(a) ∅ /∈ F ,
(b) A ; B ∈ F implies A ∩B ∈ F , and
(c) A ∈ F ; A ⊂ B implies B ∈ F .

Clearly, if I ⊂ 2X is a non-trivial ideal of X, then

F(I) = {A ⊂ X : X \A ∈ I}

is a filter of X, called the filter associated with I.
A non-trivial ideal of X(̸= ∅) is said to be admissible if {x} ∈ I for each

x ∈ X.

Example 2.4. (a) Let Ifin be the collection of all finite subsets of N. Then
Ifin is an ideal of N.
(b) Let Id be the collection of all subsets of N with asymptotic density zero.
Then Id is an ideal of N.
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Definition 2.5. [24] An admissible ideal I is said to be good if for every
sequence {An}n∈N of sets such that An /∈ I there exists a sequence {Bn}n∈N
of pairwise disjoint sets such that Bn ⊂ An, Bn ∈ I and ∪∞

n=1Bn /∈ I.

From now on throughout the paper, we assume I as an admissible ideal of
N unless otherwise mentioned.

2.2. Asymmetric metric spaces

We now recall some definitions and concepts on asymmetric metric spaces
(see [10, 11, 27]).

Definition 2.6. An asymmetric metric space is an ordered pair (X, d) where
X is a non-empty set and d is an asymmetric metric on X, that is, a function
d : X ×X → R such that for all x, y, z ∈ X, the following hold:

(a) d(x, y) ≥ 0

(b) d(x, y) = 0 if and only if x = y

(c) d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.7. The forward topology τ+ induced by d is the topology gen-
erated by the forward open balls B+(x, ε) = {y ∈ X : d(x, y) < ε} for x ∈ X,
ε > 0.

Similarly, the backward topology τ− induced by d is the topology generated
by the backward open balls B−(x, ε) = {y ∈ X : d(y, x) < ε} for x ∈ X, ε > 0.

Definition 2.8. An asymmetric metric space (X, d) is said to satisfy approx-
imate metric axiom (or (AMA)) if there exists a function c : X ×X → R such
that for every z, y ∈ X,

d(y, z) ≤ c(z, y)d(z, y),

where c satisfies the following condition:
∀z ∃δz > 0 such that y ∈ B+(z, δz) =⇒ c(z, y) ≤ C(z), where C(z) > 0

is a real number.

Note 2.9. Observe that every metric space satisfies (AMA), however, there
is an asymmetric metric space which satisfies (AMA) without being a metric
space (see Example 2.1, [11]).

Definition 2.10. A sequence {xk}k∈N in an asymmetric metric space X is
said to be backward I-convergent to x ∈ X if, for every ε > 0,

{k ∈ N : d(xk, x) ≥ ε} ∈ I.

In this case, we write
I−

xk → x .
Similarly, a sequence {xk}k∈N in an asymmetric metric space X is said to

be forward I-convergent to x ∈ X if, for every ε > 0,

{k ∈ N : d(x, xk) ≥ ε} ∈ I.

In this case, we write
I+

xk → x .
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Note 2.11. (a) When I = Ifin, the concept of backward (resp. forward) I-
convergence coincides with that of backward (resp. forward) convergence of
sequences in the asymmetric metric space (X, d) introduced in [10].
(b) When I = Id, the concept of backward (resp. forward) I-convergence coin-
cides with that of backward (resp. forward) statistical convergence of sequences
in the asymmetric metric space (X, d) introduced in [27].
(c) If I is an admissible ideal, then the notion of backward (resp. forward)
convergence implies the notion of backward (resp. forward) I-convergence of
sequences in the asymmetric metric space (X, d).

The above definitions of backward and forward I-convergence can be re-
stated in the following form:

Definition 2.12. A sequence {xk}k∈N in an asymmetric metric space X is
said to be backward I-convergent to x ∈ X if, for every ε > 0,

{k ∈ N : d(xk, x) < ε} ∈ F(I).

Similarly, a sequence {xk}k∈N in an asymmetric metric space X is said to
be forward I-convergent to x ∈ X if, for every ε > 0,

{k ∈ N : d(x, xk) ≥ ε} ∈ F(I).

In [11], Das et al. proved the following proposition, which states a relation
between the forward I-convergence and backward I-convergence.

Proposition 2.13. Let (X, d) be an asymmetric metric space satisfying the
property (AMA). Then forward I-convergence of a sequence implies the back-
ward I-convergence and the limits are same.

Definition 2.14. Let (X, d) and (Y, ρ) be asymmetric metric spaces. A func-
tion f : X → Y is said to be backward continuous (or, f− continuous ) at
x ∈ X, if for every ε > 0 there exists δ > 0 such that

y ∈ B−(x, δ) =⇒ ρ(f(y), f(x)) < ε.

Similarly, a function f : X → Y is said to be forward continuous (or, f+

continuous ) at x ∈ X, if for every ε > 0 there exists δ > 0 such that

y ∈ B+(x, δ) =⇒ ρ(f(x), f(y)) < ε.

Definition 2.15. (Sequential version of continuity) A function f : X → Y is
said to be f− continuous at x ∈ X, if whenever a sequence {xk}k∈N backward
converges to x in (X, d), the sequence {f(xk)}k∈N backward converges to f(x)
in (Y, ρ).

Similarly, a function f : X → Y is said to be f+ continuous at x ∈ X, if
whenever a sequence {xk}k∈N forward converges to x in (X, d), the sequence
{f(xk)}k∈N forward converges to f(x) in (Y, ρ).
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Definition 2.16. Let (X, d) be an asymmetric metric space. Let M ⊂ X.
Then M is said to be backward compact if every open cover of M in the
backward topology has a finite subcover.

The statement holds analogously for the other types, that is, M is said to
be forward compact if every open cover of M in the forward topology has a
finite subcover.

3. I(α)-convergence and I-exhaustiveness in asymmetric
metric spaces

From now on throughout the article, we write X = (X, d) and Y = (Y, ρ)
to denote asymmetric metric spaces. Given spaces X and Y , we write Y X to
denote the set of all functions from X to Y .

First, we introduce the concepts of forward and backward I(α)-convergence
of sequences of functions from X to Y .

Definition 3.1. A sequence of functions {fk}k∈N ⊂ Y X is said to be backward
I(α)-convergent to f ∈ Y X at x ∈ X if for every sequence {xk}k∈N in X back-
ward I-converging to x ∈ X, the sequence {fk(xk)}k∈N backward I-converges
to f(x). A sequence {fk}k∈N is said to be backward I(α)-convergent to f if it
is backward I(α)-convergent to f at every x ∈ X.

Similarly, a sequence of functions {fk}k∈N ⊂ Y X is said to be forward I(α)-
convergent to f ∈ Y X at x ∈ X if for every sequence {xk}k∈N in X forward
I-converging to x ∈ X, the sequence {fk(xk)}k∈N forward I-converges to f(x).
A sequence {fk}k∈N is said to be forward I(α)-convergent to f if it is forward
I(α)-convergent to f at every x ∈ X.

Note 3.2. (a) When I = Ifin, the backward (resp. forward) I(α)-convergence
is said to be backward (resp. forward) α-convergence of sequences of functions
(see [18] when X and Y are metric spaces).
(b) When I = Id, the backward ( resp. forward) I(α)-convergence is said to be
backward (resp. forward) statistically α-convergence of sequences of functions
(see [9] when X and Y are metric spaces).
(c) If I is an admissible ideal, then the notion of backward (resp. forward) α-
convergence implies the notion of backward (resp. forward) I(α)-convergence
of sequences of functions.

Remark 3.3. The notion of backward I(α)-convergence and the notion of for-
ward I(α)-convergence are not equivalent. To show this, we cite the following
example.

Example 3.4. Consider the Sorgenfrey asymmetric metric space (R, d), where
R is the set of all real numbers and d : R×R → [0,∞) is a function defined by

d(x, y) =

{
y − x if y ≥ x
1 if y < x.
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Here B+(x, δ) = [x, x + δ) and B−(x, δ) = (x − δ, x] provided δ ≤ 1. Let
I be any admissible ideal of N. Now for each k ∈ N, consider the function
fk : R → R defined by

fk(x) =

{
0 if x ≥ 0
k if x < 0

Let f : R → R be defined by f(x) = 0 for all x ∈ R. Let {xk}k∈N forward
I-converge to 0. We show A = {k ∈ N : xk < 0} ∈ I. If possible, let A /∈ I.
Then {k ∈ N : d(0, xk) ≥ 1

2} contains the set A and thus {k ∈ N : d(0, xk) ≥
1
2} /∈ I, which contradicts the fact that {xk}k∈N forward I-converges to 0.
Hence A = {k ∈ N : xk < 0} ∈ I. Now, {k ∈ N : d(f(0), fk(xk)) ≥ ε} ⊂ A
for every ε > 0. Since A ∈ I, thus {k ∈ N : d(f(0), fk(xk)) ≥ ε} ∈ I for
every ε > 0. Thus {fk(xk)}k∈N forward I-converges to f(0). Hence {fk}k∈N is
forward I(α)-convergent to f at x = 0.

Now the sequence {− 1
k}k∈N is backward I-convergent to 0. But

{k ∈ N : d(fk(−
1

k
), f(0)) ≥ 1

2
} = N /∈ I.

Thus {fk(− 1
k )}k∈N is not backward I-convergent to f(0). Consequently, {fk}k∈N

is not backward I(α)-convergent to f at x = 0.

Definition 3.5. A sequence of functions {fk}k∈N ⊂ Y X is said to be backward
I-exhaustive at x ∈ X if, for each ε > 0 there are δ > 0 and A ∈ F(I) such that
for each y ∈ B−(x, δ) we have ρ(fk(y), fk(x)) < ε for each k ∈ A. A sequence
{fk}k∈N is said to be backward I-exhaustive if it is backward I-exhaustive at
every x ∈ X.

Similarly, a sequence of functions {fk}k∈N ⊂ Y X is said to be forward I-
exhaustive at x ∈ X if, for each ε > 0 there are δ > 0 and A ∈ F(I) such that
for each y ∈ B+(x, δ) we have ρ(fk(x), fk(y)) < ε for each k ∈ A. A sequence
{fk}k∈N is said to be forward I-exhaustive if it is forward I-exhaustive at every
x ∈ X.

Note 3.6. (a) When I = Ifin, the above notion of backward (resp. forward)
I-exhaustiveness coincides with the notion of backward (resp. forward) ex-
haustiveness of sequences of functions introduced in [27].
(b) When I = Id, the above notion of backward (resp. forward) I-exhaustiveness
coincides with the notion of backward (resp. forward) statistical exhaustive-
ness of sequences of functions introduced in [27].
(c) If I is an admissible ideal, then the notion of backward (resp. forward) ex-
haustiveness implies the notion of backward (resp. forward) I-exhaustiveness
of sequences of functions.

Definition 3.7. A sequence of functions {fk}k∈N ⊂ Y X is said to be back-

ward (resp. forward) pointwise I-convergent to f ∈ Y X if
I−

fk(x) → f(x) (resp.
I+

fk(x) → f(x)) for each x ∈ X.
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Note 3.8. (a) When I = Ifin, the above notion of backward (resp. forward)
pointwise I-convergence coincides with the notion of backward (resp. forward)
pointwise convergence of sequences of functions introduced in [27].
(b) When I = Id, the above notion of backward (resp. forward) pointwise I-
convergence coincides with the notion of backward (resp. forward) statistical
pointwise convergence of sequences of functions introduced in [27].
(c) If I is an admissible ideal, then the notion of backward (resp. forward)
pointwise convergence implies the notion of backward (resp. forward) pointwise
I-convergence of sequences of functions.

Compare the next theorem to [24, Proposition 2.3]. In this context, we need
both the concepts of backward and forward I-convergence to get the analogous
result.

Theorem 3.9. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Let x ∈
X and {fk}k∈N be backward pointwise I-convergent to f at x. If {fk}k∈N is
forward pointwise I-convergent to f at every z ∈ X \ {x} and {fk}k∈N is
backward I-exhaustive at x, then f is f−-continuous at x.

Proof. Let ε > 0 be given. Since {fk}k∈N is backward I-exhaustive at x,
there are δ > 0 and A ∈ F(I) such that for every y ∈ B−(x, δ) we have
ρ(fk(y), fk(x)) <

ε
3 for all k ∈ A. Now let y ∈ B−(x, δ) \ {x}. Since {fk}k∈N

is forward pointwise I-convergent to f at every z ∈ X \ {x}, so
I+

fk(y) → f(y).
Then there exists Ay ∈ F(I) such that ρ(f(y), fk(y)) <

ε
3 for all k ∈ Ay. Again,

since {fk}k∈N is backward pointwise I-convergent to f at x, there exists Ax ∈
F(I) such that ρ(fk(x), f(x)) <

ε
3 for all k ∈ Ax. Now since A∩Ax∩Ay ∈ F(I),

so A∩Ax ∩Ay ̸= ∅. Choose j ∈ A∩Ax ∩Ay. Then, for y ∈ B−(x, δ) \ {x}, we
have

ρ(f(y), f(x)) ≤ ρ(f(y), fj(y))+ρ(fj(y), fj(x))+ρ(fj(x), f(x)) <
ε

3
+
ε

3
+
ε

3
= ε.

Also, ρ(f(x), f(x)) < ε. Hence f is f−-continuous at x.

Compare the next two theorems respectively to [24, Theorem 2.5] and [24,
Theorem 2.7], which state relations between backward I-exhaustiveness and
backward I(α)-convergence.

Theorem 3.10. Let (X, d) and (Y, ρ) be asymmetric metric spaces. If {fk}k∈N
is backward pointwise I-convergent to f at x ∈ X and {fk}k∈N is backward I-
exhaustive at x, then {fk}k∈N is backward I(α)-convergent to f at x.

Proof. Let ε > 0 be given. Then there are δ > 0 and A1 ∈ F(I) such that when-

ever d(y, x) < δ we have ρ(fk(y), fk(x)) <
ε
2 for all k ∈ A1. And

I−

fk(x) → f(x)
implies the existence of a set A2 ∈ F(I) such that ρ(fk(x), f(x)) < ε

2 for all

k ∈ A2. Let
I−

xk → x. Then there exists A3 ∈ F(I) such that d(xk, x) < δ for
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all k ∈ A3. Now A1 ∩A2 ∩A3 ∈ F(I). Then, for k ∈ A1 ∩A2 ∩A3, we have

ρ(fk(xk), f(x)) ≤ ρ(fk(xk), fk(x)) + ρ(fk(x), f(x)) <
ε

2
+

ε

2
= ε.

Hence {fk}k∈N is backward I(α)-convergent to f at x.

Theorem 3.11. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that backward I-convergence implies forward I-convergence in Y . If the ideal I
is good and {fk}k∈N is backward I(α)-convergent to f at x ∈ X, then {fk}k∈N
is backward pointwise I-convergent to f at x ∈ X and {fk}k∈N is backward
I-exhaustive at x.

Proof. Clearly, {fk}k∈N is backward pointwise I-convergent to f at x. If pos-
sible, let {fk}k∈N be not backward I-exhaustive at x. Then there exists ε′ > 0
such that for all δ > 0 and A ∈ F(I) there exist z ∈ B−(x, δ) and k ∈ A
such that ρ(fk(z), fk(x)) ≥ ε′. Consider A = N and δ = 1

k . Then there exists
nk ∈ N such that ρ(fnk

(xk), fnk
(x)) ≥ ε′ for some xk ∈ B−(x, 1

k ). We consider
only one such xk corresponding to each such nk. Let Ak denote all such nk ∈ N
satisfying the above inequality and Bk denote the collection of corresponding
unique xk’s. We claim that Ak /∈ I. Suppose Ak ∈ I. Then N \ Ak ∈ F(I).
Thus there exists nk

0 ∈ N \ Ak such that ρ(fnk
0
(xk

0), fnk
0
(x)) ≥ ε′ for some

xk
0 ∈ B−(x, 1

k ), which contradicts the definition of Ak. Thus Ak /∈ I for each
k ∈ N. Since I is good, there exists a countable sequence {Pk}k∈N of pairwise
disjoint sets such that Pk ⊂ Ak, Pk ∈ I for each k ∈ N and ∪∞

k=1Pk /∈ I.
Now let Pk = {pk1 < pk2 < ...}. Consider a sequence {zn}n∈N as follows:

zn = x if n /∈ ∪∞
k=1Pk and zn = xk

j if n ∈ Pk and n = pkj , where xk
j ∈ Bk

corresponds to the natural number pkj ∈ Ak.

Let ε > 0 be given. Then there exists a least k0 ∈ N such that 1
k0

< ε. Now

{n ∈ N : d(zn, x) ≥ ε} ⊂ ∪k0−1
k=1 Pk.

Since ∪k0−1
k=1 Pk ∈ I, thus {n ∈ N : d(zn, x0) ≥ ε} ∈ I. Thus I− − limzn = x.

On the other hand, since {n ∈ N : ρ(fn(zn), fn(x)) ≥ ε′} = ∪∞
k=1Pk /∈ I,

therefore {fn(zn)} does not backward I-converge to f(x), which is a contra-
diction. Hence {fk}k∈N is backward I-exhaustive at x.

One can get the above results analogously for the other types.

4. Weak I-exhaustiveness and Uniform I-convergence

In [24, Definition 2.13], Papachristodoulos et al. introduced the notion of
weak I-exhaustiveness of sequences of functions from a metric space to a metric
space. They proved the I-pointwise limit function of a sequence of continuous
functions is continuous if and only if the sequence of functions is weakly I-
exhaustive. We give a similar result in the realm of asymmetric metric spaces.
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Definition 4.1. A sequence of functions {fk}k∈N ⊂ Y X is said to be backward
weakly I-exhaustive at x ∈ X if, for each ε > 0, there is δ > 0 such that for
each y ∈ B−(x, δ) there exists Ay ∈ F(I) such that ρ(fk(y), fk(x)) < ε for
each k ∈ Ay. A sequence {fk}k∈N is said to be backward weakly I-exhaustive
if it is backward weakly I-exhaustive at every x ∈ X.

Similarly, a sequence of functions {fk}k∈N ⊂ Y X is said to be forward
weakly I-exhaustive at x ∈ X if, for each ε > 0, there is δ > 0 such that for
each y ∈ B+(x, δ) there exists Ay ∈ F(I) such that ρ(fk(x), fk(y)) < ε for
each k ∈ Ay. A sequence {fk}k∈N is said to be forward weakly I-exhaustive if
it is forward weakly I-exhaustive at every x ∈ X.

Compare the following theorem to [24, Proposition 2.14], which states that
the backward pointwise I-limit function of a sequence of backward continuous
functions is backward continuous if and only if the sequence of functions is
backward weakly I-exhaustive under some assumptions.

Theorem 4.2. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume that
backward I-convergence implies forward I-convergence in Y and {fk}k∈N ⊂
Y X be backward pointwise I-convergent to f ∈ Y X . Then {fk}k∈N is backward
weakly I-exhaustive at x ∈ X if and only if f is f−-continuous at x.

Proof. Let ε > 0 be given and f be f−-continuous at x. Then there exists
δ > 0 such that ρ(f(y), f(x)) < ε

3 whenever y ∈ B−(x, δ). Let y ∈ B−(x, δ).

Since {fk}k∈N is backward pointwise I-convergent to f , thus
I−

fk(x) → f(x) and
I−

fk(y) → f(y). Now
I−

fk(y) → f(y) implies the existence of a set By ∈ F(I) such

that ρ(fk(y), f(y)) < ε
3 , ∀k ∈ By. Again by the assumption

I−

fk(x) → f(x)

implies
I+

fk(x) → f(x). And
I+

fk(x) → f(x) implies the existence of a set Ax ∈
F(I) such that ρ(f(x), fk(x)) < ε

3 , ∀k ∈ Ax. Now Ax ∩ By ∈ F(I). Set
Ay = Ax ∩By. Then, for all k ∈ Ay, we have

ρ(fk(y), fk(x)) ≤ ρ(fk(y), f(y))+ρ(f(y), f(x))+ρ(f(x), fk(x)) <
ε

3
+
ε

3
+
ε

3
= ε.

Hence {fk}k∈N is backward weakly I-exhaustive at x.
Conversely, let {fk}k∈N be backward weakly I-exhaustive at x. Let ε > 0

be given. Then there exists a δ > 0 such that for each y ∈ B−(x, δ) there
exists Ay ∈ F(I) such that ρ(fk(y), fk(x)) < ε

3 for each k ∈ Ay. Since

{fk}k∈N ⊂ Y X is backward pointwise I-convergent to f , thus
I−

fk(x) → f(x) and
I−

fk(y) → f(y). Now
I−

fk(x) → f(x) implies the existence of a set Bx ∈ F(I) such

that ρ(fk(x), f(x)) <
ε
3 , ∀k ∈ Bx. Again by the assumption

I−

fk(y) → f(y) im-

plies
I+

fk(y) → f(y). And
I+

fk(y) → f(y) implies the existence of a set By ∈ F(I)
such that ρ(f(y), fk(y)) <

ε
3 , ∀k ∈ By. Pick an arbitrary z ∈ B−(x, δ). Then
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Bx ∩Bz ∩Az ∈ F(I). Choose j ∈ Bx ∩Bz ∩Az. Thus, we have

ρ(f(z), f(x)) ≤ ρ(f(z), fj(z))+ρ(fj(z), fj(x))+ρ(fj(x), f(x)) <
ε

3
+
ε

3
+
ε

3
= ε.

Similarly, we have the following result.

Corollary 4.3. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that forward I-convergence implies backward I-convergence in Y and {fk}k∈N ⊂
Y X is forward pointwise I-convergent to f ∈ Y X . Then {fk}k∈N is forward
weakly I-exhaustive at x ∈ X if and only if f is f+-continuous at x.

We show in the very next example that if backward I-convergence does not
imply forward I-convergence in Y, then the above Theorem 4.2 may not hold.

Example 4.4. Consider the Sorgenfrey asymmetric metric space (R, d), where
R is the set of all real numbers and d : R×R → [0,∞) is a function defined by

d(x, y) =

{
y − x if y ≥ x
1 if y < x.

Let I be any admissible ideal of N. In this asymmetric metric space back-
ward I-convergence does not imply forward I-convergence. Indeed, the se-
quence {xk}k∈N where xk = 2(1 − 1

k ) is backward I-convergent to 2, but
{xk}k∈N is not forward I-convergent to 2.

Now consider a sequence of functions {fk}k∈N, where fk : R → R is defined
by

fk(x) =

 − 1
2k if x < 0

− 1
k if x = 0

1 if x > 0.

Then {fk}k∈N is backward pointwise I-convergent to

f(x) =

{
0 if x ≤ 0
1 if x > 0.

Clearly, f is f−-continuous at x = 0, however, {fk}k∈N is not backward weakly
I-exhaustive at x = 0.

Remark 4.5. If a sequence of functions is backward (resp. forward) I-exhaustive,
then the sequence of functions is backward (resp. forward) weakly I-exhaustive.
In the very next example, we show that there is a sequence of functions which
is forward weakly I-exhaustive without being forward I-exhaustive.
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Example 4.6. Let X = R with the asymmetric metric

d(x, y) =

{
y − x if y ≥ x
1 if y < x.

Also let Y = [−1, 1] with the asymmetric metric

ρ(x, y) =

{
y − x if y ≥ x
2(y − x) if y < x.

Let I be any admissible ideal of N. In Y, forward I-convergence implies
backward I-convergence (see [11, Theorem 3.2]).

Let A ∈ I. Now consider a sequence of functions {fk}k∈N in Y X defined as
follows:

If k ∈ A, then fk(x) = 0 for all x ∈ X.
If k /∈ A, then

fk(x) =

 0 if x ∈ (−∞,− 1
k ) ∪ {0} ∪ ( 1k ,∞)

kx+ 1 if x ∈ [− 1
k , 0)

−kx+ 1 if x ∈ (0, 1
k ].

Clearly, the sequence of functions {fk}k∈N forward pointwise I-convergent to
the zero function in Y X . Then by Corollary 4.3, the sequence of functions
{fk}k∈N is forward weakly I-exhaustive.

Now we show that {fk}k∈N is not forward I-exhaustive at x = 0. Let
M ∈ F(I) and δ > 0. Choose j ∈ M ∩ (N \ A). Let y ∈ B+(0, δ) in X be
such that y < 1

2j . Then −jy + 1 > 1
2 , that is, ρ(fj(0), fj(y)) >

1
2 . Therefore,

{fk}k∈N is not forward I-exhaustive at 0.

We now give a generalization of [27, Theorem 2.9]. To do this, we need to
introduce the following definition.

Definition 4.7. A sequence of functions {fk}k∈N ⊂ Y X is said to be backward
(resp. forward) I-convergent uniformly to f ∈ Y X on X if, for each ε > 0 there
exists A ∈ F(I) such that ρ(fk(x), f(x)) < ε (resp. ρ(f(x), fk(x)) < ε ) for
each k ∈ A and x ∈ X.

Lemma 4.8. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume that
backward I-convergence implies forward I-convergence in Y . Let x ∈ X. If
for every ε > 0 there exists δ > 0 be such that for all y ∈ B−(x, δ) we have
ρ(f(y), f(x)) < ε, then ρ(f(x), f(y)) < ε for all y ∈ B−(x, δ).

Proof. Suppose not, then there exists ε′ > 0 such that for all δ > 0 there exists
y0 ∈ B−(x, δ) such that ρ(f(y0), f(x)) < ε′ but ρ(f(x), f(y0)) ≥ ε′. Therefore,
for each n ∈ N there exists xn ∈ B−(x, 1/n) such that ρ(f(xn), f(x)) < ε′ but
ρ(f(x), f(xn)) ≥ ε′. Clearly, {xn}n∈N backward converges to x. By the given
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hypothesis f is backward continuous function at x. Therefore, {f(xn)}n∈N is
backward convergent to f(x) in Y . Since I is an admissible ideal, {f(xn)}n∈N
is backward I-convergent to f(x) in Y . Thus by the assumption {f(xn)}n∈N
is forward I-convergent to f(x) in Y . But this is impossible because for each
n ∈ N, we have ρ(f(x), f(xn)) ≥ ε′. Hence ρ(f(x), f(y)) < ε for all y ∈
B−(x, δ).

From the next example, we can conclude that if backward I-convergence
does not imply forward I-convergence in Y , then the above lemma may not
hold.

Example 4.9. Let X = R with the asymmetric metric

d(x, y) =

{
y − x if y ≥ x
1 if y < x.

Let f : R → R be defined by f(x) = x. Let 0 < ε < 1 be given. Now at
x = 1, choose 0 < δ < ε. Then for each y ∈ B−(x, δ), we have d(f(y), f(x)) =
d(y, x) < δ < ε. But d(f(x), f(y)) = d(x, y) = 1 > ε.

Theorem 4.10. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that backward I-convergence implies forward I-convergence in Y . If {fk}k∈N ⊂
Y X is backward pointwise I-convergent to f ∈ Y X and {fk}k∈N ⊂ Y X is
backward I-exhaustive on X, then f is f−-continuous on X and {fk}k∈N ⊂ Y X

is backward I-convergent uniformly to f on every backward compact subset of
X.

Proof. First, we show that f is f− continuous on X. Let ε > 0 be given and
x ∈ X. Then {fk}k∈N ⊂ Y X is backward I-exhaustive at x, which implies the
existence of δ > 0 and A ∈ F(I) such that for every y ∈ B−(x, δ) we have
ρ(fk(y), fk(x)) <

ε
3 for each k ∈ A. Let y ∈ B−(x, δ). Since {fk}k∈N is back-

ward pointwise I-convergent to f , thus
I−

fk(x) → f(x) and
I−

fk(y) → f(y). Now
I−

fk(x) → f(x) implies the existence of a setAx ∈ F(I) such that ρ(fk(x), f(x)) <

ε
3 for all k ∈ Ax. Again by assumption

I−

fk(y) → f(y) implies
I+

fk(y) → f(y).
Thus there exists Ay ∈ F(I) such that ρ(f(y), fk(y)) <

ε
3 for all k ∈ Ay. Now

since A∩Ax ∩Ay ∈ F(I), therefore A∩Ax ∩Ay ̸= ∅. Choose j ∈ A∩Ax ∩Ay.
Then, for y ∈ B−(x, δ), we have

ρ(f(y), f(x)) ≤ ρ(f(y), fj(y))+ρ(fj(y), fj(x))+ρ(fj(x), f(x)) <
ε

3
+
ε

3
+
ε

3
= ε.

Hence f is f−-continuous at x.
Let K be a backward compact subset of X. Let ε > 0 be given and x ∈ K.

Then f is f−-continuous at x. Therefore, there exists δ > 0 such that for
y ∈ B−(x, δ), we have ρ(f(y), f(x)) < ε

3 . Since backward I-convergence implies
forward I-convergence in Y , by Lemma 4.8, we have ρ(f(x), f(y)) < ε

3 .
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Now {fk}k∈N is backward I-exhaustive at x. Therefore, there are δx(< δ) >
0 and Ax ∈ F(I) such that for every y ∈ B−(x, δx) we have ρ(fk(y), fk(x)) <

ε
3

for each k ∈ Ax.

Since K ⊂
⋃

x∈K B−(x, δx) and K is backward compact, there exist some

elements x1, x2,.., xt in K such that K ⊂
⋃t

i=1 B
−(xi, δxi

). Now by the back-
ward pointwise I-convergence of {fk}k∈N to f , for each i there are Ai ∈ F(I)
such that ρ(fk(xi), f(xi)) <

ε
3 for each k ∈ Ai.

Consider B=
⋂t

i=1(Ai∩Axi
). Then B ∈ F(I). Let z ∈ K. Then there exist

some i ∈ {1, 2, ..., t} such that z ∈ B−(xi, δxi
). Therefore d(z, xi) < δxi

< δ.
Thus ρ(f(xi), f(z)) <

ε
3 and ρ(fk(z), fk(xi)) <

ε
3 for all k ∈ B. Therefore for

all k ∈ B, we have

ρ(fk(z), f(z)) ≤ ρ(fk(z), fk(xi))+ρ(fk(xi), f(xi))+ρ(f(xi), f(z)) <
ε

3
+
ε

3
+
ε

3
= ε.

Hence {fk}k∈N ⊂ Y X is backward I-convergent uniformly to f on K.

All the above results hold similarly for the other types.

5. I-strong uniform convergence in asymmetric metric
spaces

In [3], the notion of I-strong uniform convergence of a sequence of functions
was introduced, and it turns out to be equivalent to the continuity of the point-
wise I-limit function of such a sequence of continuous functions [3, Proposition
2.10]. In this section, we introduce the notions of backward and forward I-
strong uniform convergence of sequences of functions, and we show that under
some considerations the notion of backward (resp. forward) I-strong uniform
convergence is equivalent to the notion of backward (resp. forward) continuity
of the backward (resp. forward) pointwise I-limit function of such a sequence.

Let (X, d) be an asymmetric metric space. For δ > 0, the backward (resp.

forward) δ-enlargement of A ⊂ X is Aδ− :=
⋃

x∈A B−(x, δ) (resp. Aδ+ :=⋃
x∈A B+(x, δ)).

Definition 5.1. Let N be the family of all finite subsets of an asymmetric
metric space (X, d). Let fk, f be functions from X to an asymmetric metric
space (Y, ρ). Then {fk}k∈N is said to be backward (resp. forward) I-strongly
uniformly convergent to f on X if for every ε > 0 and B ∈ N there are
δ > 0 and A ∈ F(I) such that for each z ∈ Bδ− ( resp. z ∈ Bδ+) we have
ρ(fk(z), f(z)) < ε (resp. ρ(f(z), fk(z)) < ε) for all k ∈ A.

Theorem 5.2. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume that
backward I-convergence implies forward I-convergence in Y . If {fk}k∈N ⊂ Y X

is backward pointwise I-convergent to f ∈ Y X and {fk}k∈N is backward weakly
I-exhaustive on X, then {fk}k∈N is backward I-strongly uniformly convergent
to f on X.
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Proof. Let ε > 0 be given and B = {x1, x2, ..., xt} ∈ N . By the given hypothe-
sis {fk}k∈N is backward weakly I-exhaustive at every xj , 1 ≤ j ≤ t. Therefore
for xj there is δj such that for every z ∈ B−(xj , δj) there is a set Mz ∈ F(I)
such that ρ(fk(z), fk(xj)) <

ε
3 for all k ∈ Mz. Again for every xj , the sequence

{fk(xj)}k∈N in Y is backward I-convergent to f(xj). Therefore there exists
a set Mj ∈ F(I) such that ρ(fk(xj), f(xj)) < ε

3 for all k ∈ Mj . Also, by
Theorem 4.2 f is f− continuous at every xj , so for every xj there is ηj > 0
such that for each y ∈ B−(xj , ηj), we have ρ(f(y), f(xj)) <

ε
3 and by Lemma

4.8 ρ(f(xj), f(y)) <
ε
3 . Take

δ = min{δ1, δ2, ..., δt, η1, η2, ..., ηt}

and let x ∈ Bδ− . Then x ∈ B−(xi, δ) for some 1 ≤ i ≤ t. Put M = Mx ∩
(
⋂t

j=1 Mj). Then M ∈ F(I). Thus for all k ∈ M , we have

ρ(fk(x), f(x)) ≤ ρ(fk(x), fk(xi))+ρ(fk(xi), f(xi))+ρ(f(xi), f(x)) <
ε

3
+
ε

3
+
ε

3
= ε.

Hence {fk}k∈N is backward I-strongly uniformly convergent to f on X.

Corollary 5.3. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that backward I-convergence implies forward I-convergence in Y . If {fk}k∈N ⊂
Y X is backward pointwise I-convergent to f ∈ Y X and f is backward contin-
uous function, then {fk}k∈N is backward I-strongly uniformly convergent to f
on X.

Proof. The corollary holds because of Theorem 4.2 and Theorem 5.2.

Similarly, the following result holds for the other types.

Corollary 5.4. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that forward I-convergence implies backward I-convergence in Y . If {fk}k∈N ⊂
Y X is forward pointwise I-convergent to f ∈ Y X and {fk}k∈N is forward weakly
I-exhaustive on X, then {fk}k∈N is forward I-strongly uniformly convergent
to f on X.

Theorem 5.5. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that (Y, ρ) satisfies the property (AMA) and the corresponding function C is
bounded. Let {fk}k∈N be a sequence of backward continuous functions from X
to Y . If {fk}k∈N is backward I-strongly uniformly convergent to f on X, then
f is backward continuous on X.

Proof. Let x ∈ X and ε > 0 be given. We show that f is f−-continuous at x.
Since C is bounded, we can choose a positive real number r such that C(z) < r,
∀z ∈ X. Now since {fk}k∈N is backward I-strongly uniformly convergent to f ,

there are δx > 0 and A ∈ F(I) such that for every z ∈ {x}δ−x = B−(x, δx), we
have ρ(fk(z), f(z)) <

ε
3(r+1) for all k ∈ A. Again every fk, k ∈ N, is backward

continuous. Thus for every k ∈ A there exists δk > 0 such that for every
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z ∈ B−(x, δk), we have ρ(fk(z), fk(x)) <
ε
3 . Let n ∈ A. Set δ = min{δx, δn}.

Since (Y, ρ) satisfies the property (AMA), therefore for y ∈ B−(x, δ), we have

ρ(f(y), f(x)) ≤ ρ(f(y), fn(y)) + ρ(fn(y), fn(x)) + ρ(fn(x), f(x))

< c(fn(y), f(y))ρ(fn(y), f(y)) +
ε

3
+

ε

3(r + 1)

< C(fn(y))ρ(fn(y), f(y)) +
2ε

3

< rρ(fn(y), f(y)) +
2ε

3

< r
ε

3(r + 1)
+

2ε

3

< ε.

Hence f is backward continuous at x.

Corollary 5.6. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that (Y, ρ) satisfies the property (AMA) and the corresponding function C is
bounded. Let {fk}k∈N be a sequence of backward continuous functions from
X to Y . If {fk}k∈N is backward I-strongly uniformly convergent to f on X,
then {fk}k∈N is backward pointwise I-convergent to f and {fk}k∈N is backward
weakly I-exhaustive.

Proof. The Corollary holds because of Theorem 4.2 and Theorem 5.5.

One can get the above results analogously for the other types.

6. I-Alexandroff convergence in asymmetric metric spaces

In [3], Athanassiadou et al. introduced another notion of convergence, the
notion of I-Alexandroff convergence, and studied it with other types of con-
vergence. In this section, we introduce the notions of backward and forward
I-Alexandroff convergence. And we show backward I-Alexandroff preservers
backward continuity of the limit function. In this continuation backward I-
Alexandroff turns out to be equivalent to backward I-strong uniform conver-
gence under some considerations.

Definition 6.1. Let (X, d) and (Y, ρ) be asymmetric metric spaces. A sequence
{fk}k∈N ⊂ Y X of backward ( resp. forward) continuous functions is said to
be backward (resp. forward) I-Alexandroff convergent to f ∈ Y X if {fk}k∈N
is backward (resp. forward) pointwise I-convergent to f and for every ε > 0
and any A ∈ F(I) there exist an infinite set MA = {m1 < m2 < ...} ⊂
A and an open cover U = {Uk : k ∈ A} in the backward (resp. forward)
topology of X such that for every x ∈ Uk we have ρ(fmk

(x), f(x)) < ε (resp.
ρ(f(x), fmk

(x)) < ε).
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Theorem 6.2. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that (Y, ρ) satisfies the property (AMA) and the corresponding function C is
bounded. If {fk}k∈N ⊂ Y X is backward I-Alexandroff convergent to f ∈ Y X ,
then f is backward continuous.

Proof. Let {fk}k∈N ⊂ Y X be backward I-Alexandroff convergent to f ∈ Y X .
Let x ∈ X and {xj}j∈N be a sequence in X backward converging to x. It is
sufficient to prove that {f(xj)}j∈N backward converges to f(x). Let ε > 0 be

given. Since fk(x)
I−

→ f(x), there exists Ax ∈ F(I) such that ρ(fk(x), f(x)) <
ε
3

for all k ∈ Ax. Again since C(z) is bounded, we can choose a positive real
number r such that C(z) < r, ∀z ∈ X. Now Ax ∈ F(I). Therefore there are an
infinite setMAx

= {m1 < m2 < ...} ⊂ Ax and an open cover U = {Uk : k ∈ Ax}
in the backward topology of X such that y ∈ Uk, ρ(fmk

(y), f(y)) < ε
3(r+1) .

Since U = {Uk : k ∈ Ax} is an open cover, we can choose k ∈ N such that
x ∈ Uk. Now since fmk

is backward continuous at x and {xj}j∈N is backward
convergent x, thus there exists j0 ∈ N such that for all j ≥ j0, xj ∈ Uk we have
ρ(fmk

(xj), fmk
(x)) < ε

3 . Since (Y, ρ) satisfies the property (AMA), thus for all
j ≥ j0, we have

ρ(f(xj), f(x)) ≤ ρ(f(xj), fmk
(xj)) + ρ(fmk

(xj), fmk
(x)) + ρ(fmk

(x), f(x))

< c(fmk
(xj), f(xj))ρ(fmk

(xj), f(xj)) +
ε

3
+

ε

3

≤ C(fmk
(xj))ρ(fmk

(xj), f(xj)) +
2ε

3

< rρ(fmk
(xj), f(xj)) +

2ε

3

< r
ε

3(r + 1)
+

2ε

3

< ε.

Hence {f(xj)}j∈N is backward convergent to f(x).

Theorem 6.3. Let (X, d) and (Y, ρ) be asymmetric metric spaces. If {fk}k∈N
is backward I-strongly uniformly convergent to f on X, then {fk}k∈N is back-
ward I-Alexandroff convergent to f on X.

Proof. Let ε > 0 and B ∈ F(I) be given. Since {fk}k∈N is backward I-
strongly uniformly convergent to f , thus there are δx > 0 and Ax ∈ F(I) such
that for each y ∈ B−(x, δx) and each k ∈ Ax we have ρ(fk(y), f(y)) < ε. Set
A =

⋃
x∈X Ax. Now for each k ∈ B ∩A, we define

Mk = {x ∈ X : ρ(fm(y), f(y)) < ε∀m ∈ Ax ∩B,m ≥ k, ∀y ∈ B−(x, δx)}.

Clearly, X =
⋃

k∈B∩A Mk. For each k ∈ B, we define the open set Uk in the
backward topology of X as follows:

Uk =

{
∅ if k ∈ B \A⋃

x∈Mk
B−(x, δx) if k ∈ B ∩A.
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Then {Uk : k ∈ B} is an open cover of X in the backward topology of X.
Let n ∈ B and y ∈ Un. Then n ∈ A and y ∈ B−(x, δx) for some x ∈ Mn.
Thus for each y ∈ Un, we have ρ(fm(y), f(y)) < ε for some m ∈ A ∩ B
and m ≥ n. Hence for given ε > 0 and B ∈ F(I), there are an infinite set
A∩B = {m1 < m2 < ...} ⊂ B and an open cover {Un : n ∈ B} in the backward
topology of X such that for every y ∈ Un we have ρ(fmn

(y), f(y)) < ε. This
completes the proof.

Corollary 6.4. Let (X, d) and (Y, ρ) be asymmetric metric spaces. Assume
that backward I-convergence implies forward I-convergence in Y . If the se-
quence of backward continuous functions {fk}k∈N ⊂ Y X is backward pointwise
I-convergent to f ∈ Y X and f is backward continuous function, then {fk}k∈N
is backward I-Alexandroff convergent to f on X.

Proof. The corollary holds because of Corollary 5.3 and Theorem 6.3.

One can get the above results analogously for the other types.

Open problem: It is not clear whether Theorem 5.5 and Theorem 6.2 can be
proved without the condition (AMA) and boundedness of the corresponding
function in the target space. Thus it is reasonable to ask whether these the-
orems can be proved under weaker condition or without any condition in the
target space.
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