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Coverings with horo- and hyperballs generated by simply
truncated orthoschmes

Miklós Eper1 and Jenő Szirmai23

Abstract. After having investigated the packings derived by horo- and
hyperballs related to simple frustum Coxeter orthoscheme tilings, we
consider the corresponding covering problems (briefly hyp-hor coverings)
in n-dimensional hyperbolic spaces Hn (n = 2, 3).

In the 2− and 3−dimensional hyperbolic spaces we construct hyp-hor
coverings generated by simply truncated Coxeter orthochemes, and we
determine their thinnest covering configurations and their densities.

We prove, that in the hyperbolic plane (n = 2) the density of the
above thinnest hyp-hor covering arbitrarily approximates the universal

lower bound of the hypercycle or horocycle covering density
√
12
π

, and
in H3 the optimal configuration belongs to the {7, 3, 6} Coxeter tiling
with density ≈ 1.27297, that is less than the previously known famous
horosphere covering density 1.280 due to L. Fejes Tóth and K. Böröczky.

Moreover, we study the hyp-hor coverings in truncated orthosche-
mes {p, 3, 6} (6 < p < 7, p ∈ R), whose density function attains its
minimum at parameter p ≈ 6.45962, with density ≈ 1.26885. That
means, that this locally optimal hyp-hor configuration provide smaller
covering density than the former determined ≈ 1.27297, but this hyp-hor
packing configuration can not be extended to the entire hyperbolic space
H3.
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1. Introduction

The packing and covering problems with solely horo- or hyperballs (horo-
or hypespheres) are intensively investigated in earlier works in n-dimensional
(n ≥ 2) hyperbolic space Hn.

In n-dimensional hyperbolic space Hn (n ≥ 2) there are 3 kinds of ”balls
(spheres)”: the classical balls (spheres), horoballs (horospheres) and hyperballs
(hyperspheres).

In this paper we consider the coverings with horo- and hyperballs and their
densities in 2- and 3-dimensional hyperbolic space, where the coverings are
derived from simply truncated Coxeter orthoscheme tilings.
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A Coxeter simplex is an n-dimensional simplex in X ∈ {Sn,Hn,En} with
dihedral angles either submultiples of π or zero. The group generated by re-
flections on the sides of a Coxeter simplex is called a Coxeter simplex reflection
group. Such reflections determine a discrete group of isometries of X with
the Coxeter simplex as its fundamental domain; hence such groups generate a
tessellation of X.

First we shortly survey the previous results related to this topic.

1. On horoball packings and coverings

In the case of periodic ball or horoball packings and coverings, the local
density defined e.g. in [3] can be extended to the entire hyperbolic space.
This local density is related to the simplicial density function, that was
generalized in [18] and [19]. In this paper we will use such definition of
covering density.

In the n-dimensional space X ∈ {En,Sn,Hn} of constant curvature (n ≥
2), define the simplicial density function dn(r) to be the density of n+ 1
spheres of radius r mutually touching one another with respect to the
regular simplex spanned by the centers of the spheres. L. Fejes Tóth
and H. S. M. Coxeter conjectured, that the packing density of balls of
radius r in X cannot exceed dn(r). Rogers [13] proved this conjecture
in Euclidean space En. The 2-dimensional spherical case was settled by
L. Fejes Tóth [6], and Böröczky [3], who proved the following extension:

Theorem 1.1 (K. Böröczky). In an n-dimensional space of constant
curvature, consider a packing of spheres of radius r. In the case of spher-
ical space, assume that r < π

4 . Then the density of each sphere in its
Dirichlet–Voronoi cell cannot exceed the density of n + 1 spheres of ra-
dius r mutually touching one another with respect to the simplex spanned
by their centers.

In hyperbolic spaceH3, the monotonicity of d3(r) was proved by Böröczky
and Florian in [4].

This upper bound for packing density in hyperbolic spaceH3 is≈ 0.85327,
which is not realized by packing regular balls. However, it is attained by

a horoball packing of H3
, where the ideal centers of horoballs lie on the

absolute figure of H3
; for example, they may lie at the vertices of the ideal

regular simplex tiling with Coxeter-Schläfli symbol {3, 3, 6}. The known
least dense ball or horoball covering configuration with density ≈ 1.280
can be derived from this regular ideal tetrahedron tiling (see [6]).

The authors proved in [9], that the optimal ball packing arrangement

in H3
, mentioned above, is not unique, and gave several new examples

of horoball packing arrangements based on totally asymptotic Coxeter
tilings, that yield the Böröczky–Florian upper bound [4].

Furthermore, in [18], [19] the author found, that by allowing horoballs of
different types at each vertex of a totally asymptotic simplex and gen-
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eralizing the simplicial density function to Hn (n ≥ 2), the Böröczky-
type density upper bound is no longer valid for the fully asymptotic

simplices for n ≥ 3. For example, in H4
the locally optimal packing den-

sity is ≈ 0.77038, higher than the Böröczky-type density upper bound
≈ 0.73046. However these ball packing configurations are only locally
optimal and cannot be extended to the entirety of the hyperbolic spaces
Hn

. Further open problems and conjectures on 4-dimensional hyper-
bolic packings are discussed in [5] and [1]. Using horoball packings in
H4, allowing horoballs of different types, the authors in [10] found seven
counterexamples (realized by allowing up to three horoball types) to one
of L. Fejes Tóth’s conjectures stated in his foundational book Regular
Figures.

Continuing the investigations of ball packings in hyperbolic spaces of
dimensions n = 4, . . . , 9, using horoball packings, allowing horoballs of
different types when applicable, the authors found several interesting and
dense packing configuratons with respect to the Coxeter simplex cells in
[10], [11] and [12].

The second-named author has several additional results on globally and
locally optimal ball packings in the eight Thurston geometries arising
from Thurston’s geometrization conjecture see e.g. [17], [20].

2. On hyperball packings and coverings

In hyperbolic plane H2 the universal upper bound of the congruent hy-
percycle packing density is 3

π , proved by I. Vermes in [30]. He initiated
this topic and determined also the universal lower bound of the congruent

hypercycle covering density in [31], equal to
√
12
π .

The author analyzed in [15], [16] and [22] the regular prism tilings (sim-
ple truncated Coxeter orthoscheme tilings) and the corresponding optimal
hyperball packings in Hn (n = 3, 4, 5). Recently (to the best of authors’
knowledge) these have been the densest packings with congruent hyper-
balls.

The n-dimensional hyperbolic regular prism honeycombs and the corre-
sponding coverings by congruent hyperballs were studied in [21], and the
author determined their least dense covering. Furthermore, there were
formulated conjectures for the candidates of the least dense covering by
congruent hyperballs in the 3- and 5-dimensional hyperbolic space.

Congruent and non-congruent hyperball packings to the truncated regu-
lar tetrahedron tilings were discussed in [24]. These are derived from the
truncated Coxeter simplex tilings {3, 3, p} (7 ≤ p ∈ N) and {3, 3, 3, 3, 5}
in 3- and 5-dimensional hyperbolic space, respectively. The author deter-
mined the densest packing arrangement and its density with congruent
hyperballs in H5, and determined the smallest density upper bounds of
non-congruent hyperball packings generated by the above tilings.
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Packings by horo- and hyperballs (briefly hyp-hor packings) in Hn (n =
2, 3) were considered in [23].

The author studied in [25] a large class of hyperball packings in H3, that
can be derived from truncated tetrahedron tilings. It is proved, that if the
truncated tetrahedron is regular {3, 3, p}, but allowing also 6 < p ∈ R,
then the density of the locally densest packing is ≈ 0.86338. This is larger
than the Böröczky-Florian density upper bound, but the locally optimal
hyperball packing configuration obtained in [25] cannot be extended to
the entirety of H3. However, a hyperball packing construction was de-
scribed by the regular truncated tetrahedron tiling under the extended
Coxeter group {3, 3, 7}, with maximal density ≈ 0.82251.

The author developed a decomposition algorithm in [28] that for each
saturated hyperball packing provides a decomposition of H3 into trun-
cated tetrahedra. Therefore, in order to get a density upper bound for
hyperball packings, it is sufficient to determine the density upper bound
of hyperball packings in truncated simplices.

It is proved, that the density upper bound of the saturated congruent hy-
perball packings, related to corresponding truncated tetrahedron cells is
locally realized in a regular truncated tetrahedon with density ≈ 0.86338
([26]). Furthermore, the author in [26] proved, that the density of locally
optimal congruent hyperball arrangement in regular truncated tetrahe-
dron is not monotonically increasing function of the height of correspond-
ing optimal hyperball, contrary to the ball and horoball packings.

Hyperball packings related to truncated regular cube and octahedron
tilings, that are derived from the Coxeter truncated orthoscheme tilings
{4, 3, p} (6 < p ∈ N) and {3, 4, p} (4 < p ∈ N) in hyperbolic space H3,
were considered in [29]. If we allow p ∈ R as well, then the locally dens-
est (non-congruent half) hyperball configuration belongs to the truncated
cube, with density ≈ 0.86145. This is larger than the Böröczky-Florian
density upper bound for balls and horoballs. But the locally optimal
non-congruent hyperball packing configuration obtained in [29] cannot
be extended to the entire H3. The extendable densest non-congruent hy-
perball packing arrangement related to the truncated cube tiling {4, 3, 7}
was determined in [29], and the density is ≈ 0.84931.

In [27] the author studied congruent and non-congruent hyperball pack-
ings generated by doubly truncated Coxeter orthoscheme tilings in the
3-dimensional hyperbolic space. It is proved, that the densest congruent
hyperball packing belongs to the Coxeter orthoscheme tiling of parameter
{7, 3, 7} with density ≈ 0.81335. This density is equal – by our conjec-
ture – with the upper bound density of the corresponding non-congruent
hyperball arrangements.

We have considered in this paper the coverings with horo- and hyperballs
(briefly hyp-hor coverings) in the n-dimensional hyperbolic spaces Hn (n =
2, 3), which form a new class of the classical covering problems.
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We construct in the 2− and 3−dimensional hyperbolic spaces hyp-hor cov-
erings, that are generated by complete Coxeter tilings of degree 1 i.e. the
fundamental domains of these tilings are simple frustum orthoschemes with a
principal vertex lying on the absolute quadric and the other principal vertex is
outer point. We determine their thinnest covering configurations and their den-
sities. These considered Coxeter tilings exist in the 2−, 3− and 5−dimensional
hyperbolic spaces (see [7], [14]) and are given by their Coxeter-Schläfli graph
in Fig. 1.

Figure 1: Coxeter-Schläfli graph of Coxeter tilings of degree 1.

We prove that in the hyperbolic plane n = 2 the density of the above
hyp-hor coverings arbitrarily approximate the universal upper bound of the

hypercycle or horocycle packing density
√
12
π and in H3 the thinnest hyp-hor

configuration belongs to the {7, 3, 6} Coxeter tiling with density ≈ 1.27297.
Moreover, we consider the hyp-hor coverings in truncated orthoschemes

{p, 3, 6} (6 < p < 7, p ∈ R). Its density function is attained its minimum
for parameter p ≈ 6.45962, and the corresponding minimal covering density is
≈ 1.26885 less than ≈ 1.280. That means, that this locally optimal hyp-hor
configurations provide less densities than the previously known Fejes Tóth-
Böröczky-Florian covering density for ball and horoball packings but this hyp-
hor covering configurations can not be extended to the entirety of hyperbolic
space H3.

2. Basic notions

For Hn we use the projective model in the Lorentz space E1,n of signature
(1, n), i.e. E1,n denotes the real vector space Vn+1 equipped with the bilinear
form of signature (1, n): ⟨ x, y⟩ = −x0y0 + x1y1 + · · ·+ xnyn, where the non-
zero vectors x = (x0, x1, . . . , xn) ∈ Vn+1 and y = (y0, y1, . . . , yn) ∈ Vn+1 are
determined up to real factors, for representing points of Pn(R). Then, Hn can
be interpreted as the interior of the quadric Q = {[x] ∈ Pn|⟨ x, x⟩ = 0} =: ∂Hn

in the real projective space Pn(Vn+1,Vn+1).
The points of the boundary ∂Hn in Pn are called points at infinity of Hn,

the points lying outside ∂Hn are said to be outer points of Hn relative to Q.
Let P ([x]) ∈ Pn, a point [y] ∈ Pn is said to be conjugate to [x] relative to Q if
⟨ x, y⟩ = 0 holds. The set of all points which are conjugate to P ([x]) form a
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projective (polar) hyperplane x = pol(x) := {[y] ∈ Pn|⟨ x, y⟩ = 0}. Thus the
quadric Q induces a bijection (linear polarity Vn+1 → Vn+1) from the points
of Pn onto its hyperplanes.

The distance s of two proper points [x] and [y] is calculated by the formula:

(2.1) cosh
s

k
=

−⟨ x, y⟩√
⟨ x, x⟩⟨ y, y⟩

,

The constant k =
√

−1
K is the natural length unit in Hn. K will be the constant

negative sectional curvature. In the following we assume that k = 1.

2.1. Complete orthoschemes

A n-dimensional tiling P (or solid tessellation, honeycomb) is an infinite set
of congruent polyhedra (polytopes), that fit together to fill all space (Hn (n ≧
2)) exactly once, so that every face of each polyhedron (polytope) belongs to
another polyhedron as well. At present the cells are congruent orthoschemes
(see [8]).

Geometrically, complete orthoschemes of degree d can be described as fol-
lows:

1. For d = 0, they coincide with the class of classical orthoschemes intro-
duced by Schläfli. The initial and final vertices, A0 and An of the orthog-
onal edge-path AiAi+1, i = 0, . . . , n − 1, are called principal vertices of
the orthoscheme.

2. A complete orthoscheme of degree d = 1 can be interpreted as an or-
thoscheme with one outer principal vertex, say An, which is truncated by
its polar plane pol(An) (see Fig. 2 and 5). In this case the orthoscheme
is called simply truncated with outer vertex An.

3. For degree d = 2 a complete orthoscheme can be interpreted as an
orthoscheme with two outer principal vertices, A0, An, which is trun-
cated by its polar hyperplanes pol(A0) and pol(An). In this case the
orthoscheme is called doubly truncated. We distinguish two different
types of orthoschemes, but we will not enter into the details (see [8]).

The complete Coxeter orthoschemes were classified by Im Hof in [7] by
generalizing the method of Coxeter and Böhm, who showed that they exist
only for dimensions ≤ 9. From this classification it follows, that the complete
orthoschemes of degree d = 1 exist up to 5 dimensions.

In this paper we consider the orthoschemes of degree 1 where the initial
vertex A0 lies on the absolute quadric Q. These orthoschemes and the cor-
responding Coxeter tilings exist in the 2-, 3− and 5−dimensional hyperbolic
spaces and are characterized by their Coxeter-Schläfli symbols and graphs (see
Fig. 1).

It can be seen that in n-dimensional hyperbolic space Hn (n ≥ 2) S
is a complete orthoscheme of degree d = 1, with vertices A0A1A2 . . . An−1
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P0P1P2 . . . Pn−1. A simply frustum orthoscheme where An is an outer vertex
of Hn and then the points Pi (i ∈ 0, . . . , n − 1) lie in intersection the polar
hyperplane π with AiAn.

We consider the images of S under reflections on its side facets. The union
of these n-dimensional orthoschames (having the common π hyperplane) forms
an infinite polyhedron denoted by G. G and its images under reflections on
its ,,cover facets” fill hyperbolic space Hn without overlap and generate n-
dimensional tilings T .

2.2. Volumes of the n-dimensional
Coxeter orthoschemes

1. 2-dimensional hyperbolic space H2

In the hyperbolic plane a simple frustum orthoscheme is a Lambert
quadrilateral with exactly three right angles and its fourth angle is acute
π
q (q ≥ 3) (see Fig. 1 and 2). In our case the Lambert quadrilateral has
a vertex at the infinity i.e. the angle at this vertex is 0. Its area can be
determined by the well-known defect formula of hyperbolic triangles:

(2.2) V ol2(S) =
π

2
.

2. 3-dimensional hyperbolic space H3:

Our polyhedron A0A1A2P0P1P2 is a simple frustum orthoscheme with
outer vertex A3 (see Fig. 5.a) whose volume can be calculated by the
following theorem of R. Kellerhals [8]:

Theorem 2.1. The volume of a three-dimensional hyperbolic complete
orthoscheme (except Lambert cube cases) S is expressed with the essential
angles α01, α12, α23, (0 ≤ αij ≤ π

2 ) (Fig. 1 and 2) in the following form:

V ol3(S) =
1

4
{L(α01 + θ)− L(α01 − θ) + L(π

2
+ α12 − θ)+

+ L(π
2
− α12 − θ) + L(α23 + θ)− L(α23 − θ) + 2L(π

2
− θ)},(2.3)

where θ ∈ [0, π
2 ) is defined by the following formula:

tan(θ) =

√
cos2 α12 − sin2 α01 sin

2 α23

cosα01 cosα23

and where L(x) := −
x∫
0

log |2 sin t|dt denotes the Lobachevsky function.

For our prism tilings Tpqr we have: α01 = π
p , α12 = π

q , α23 = π
r .
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2.3. On hyperballs

The equidistant surface (or hypersphere) is a quadratic surface that lies
at a constant distance from a plane in both halfspaces. The infinite body
of the hypersphere is called a hyperball. The n-dimensional half-hypersphere
(n = 2, 3) with distance h to a hyperplane π is denoted by Hh

n. The volume of a
bounded hyperball piece Hh

n(An−1) bounded by an (n−1)-polytope An−1 ⊂ π,
Hh

n and by hyperplanes orthogonal to π derived from the facets of An−1 can
be determined by the formulas (2.4) and (2.5) that follow from the suitable
extension of the classical method of J. Bolyai ([2]):

(2.4) V ol2(Hh
2 (A1)) = V ol1(A1) sinh (h),

(2.5) V ol3(Hh
3 (A2)) =

1

4
V ol2(A2) [sinh (2h) + 2h] ,

where the volume of the hyperbolic (n − 1)-polytope An−1 lying in the plane
π is V oln−1(An−1).

2.4. On horoballs

A horosphere in Hn (n ≥ 2) is a hyperbolic n-sphere with infinite radius
centered at an ideal point on ∂Hn. Equivalently, a horosphere is an (n − 1)-
surface orthogonal to the set of parallel straight lines passing through a point
of the absolute quadratic surface. A horoball is a horosphere together with its
interior.

We consider the usual Beltrami-Cayley-Klein ball model of Hn centered
at O(1, 0, 0, . . . , 0). The equation of a horosphere with center T0(1, 0, . . . , 1)
passing through the point S(1, 0, . . . , s) is derived from the equation of the the
absolute sphere −x0x0+x1x1+x2x2+· · ·+xnxn = 0, and the plane x0−xn = 0
tangent to the absolute sphere at T0. The general equation of the horosphere
in cartesian coordinates is the following:

(2.6)
2
(∑n−1

i=1 h2
i

)
1− s

+
4
(
hn − s+1

2

)2
(1− s)2

= 1.

In n-dimensional hyperbolic space any two horoballs are congruent in the
classical sense. However, it is often useful to distinguish between certain horo-
balls of a packing. We use the notion of horoball type with respect to the packing
as introduced in [18].

The intrinsic geometry of a horosphere is Euclidean, so the (n− 1)-dimen-
sional volume A of a polyhedron A on the surface of the horosphere can be
calculated as in En−1. The volume of the horoball piece H(A) determined by
A and the aggregate of axes drawn from A to the center of the horoball is ([2])

(2.7) V ol(H(A)) =
1

n− 1
A.
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3. Hyp-hor coverings in hyperbolic plane

We consider the usual Beltrami-Cayley-Klein ball modell of H2 centered at
O(1, 0, 0) with a given vector basis ei (i = 0, 1, 2) and set the 2-dimensional Cox-
eter orthoschemeA0A1A2 in this coordinate system with coordinatesA0(1, 0, 1);
A1(1, 0, 0);A2(1,

1
a , 0). Here the initial principal vertex of the orthoscheme A0

is lying on the absolute quadric Q and the other principal vertex A2 is an outer
point of the model, so 0 < a < 1, a ∈ R.

The polar line of the outer vertex A2 is π = u2(1,− 1
a , 0)

T . By the trun-
cation of the orthoscheme A0A1A2 by the polar line π we get the Lambert
quadrilateral A0A1P1P0 (see Fig. 2), where the further vertices are: π∩A0A2 =
P0(1, a, 1− a2);π∩A1A2 = P1(1, a, 0). Its images under reflections on its sides
fill hyperbolic plane H2 without overlap, hence we get the previously described
2-dimensional Coxeter tilings, given by the Coxeter symbol [∞] (see Fig. 1).
The tilings contain the free parameter a, so we denote the tilings by Ta, and
the Lambert quadrilaterals A0A1P0P1 by Fa, which serve as the fundamental
domain of the above tilings.

a) b)

Figure 2: a) C1
a-type hyp-hor covering at present a = 0.7, t = 0.5 b) C2

a-type
hyp-hor covering at present a = 0.4, t = 0.5

We construct hyp-hor coverings to Fa, by the following:

1. Let M be the intersection point of the horo- and hypercycle which lies
on the A0P0 or P0P1 side of Fa (see Fig. 2).

2. The center of the horocycle can only be the vertex A0. Let the intersection
of the horocycle with A0A1 line be S1 = (1, 0, s1) (−1 < s1 < 1) and with
A0P0 line the intersection is T = (1, ta, 1−ta2) (0 < t < 2

1+a2 ). We denote
by Ha(t) the horocycle-piece determined by points A0, S1, T (see Fig. 2a
with M = T , and Fig. 2b).

3. Let A1P1 be the base straight line of a hypercycle, and let the intersection
of the hypercycle with the positive segment of A0A1 line be S2 = (1, 0, s2)
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(0 < s2 < 1) and with P0P1 line is R = (1, a, r) (0 < r <
√
1− a2). We

denote by Ha(t) the hypercycle-piece settled by points P1, R, S2, A1 (see
Fig. 2a, and Fig. 2b with M = R).

We can see, that if the horo- and hypercycles satisfy the above requirements,
than they cover Fa. Thus the images of Ha(t) and Ha(t) under reflection
on the sides of Fa provide a hyp-hor covering of hyperbolic plane H2. The
fundamental domain Fa (i.e. parameter a) and point M (i.e. point T, and
parameter t, because the position of T determines the position of M) determine
the covering. We distinguish two main types of hyp-hor coverings, denoted by
C1
a(t) if M ∈ A0P0 and by C2

a(t) if M ∈ P0P1 (see Fig. 2).

Definition 3.1. The density of the above hyp-hor coverings Ci
a(t) (i = 1, 2)

are:

(3.1) δ(Ci
a(t)) =

V ol(Ha(t)) + V ol(Ha(t))

V ol(Fa)

It is obvious, that if the point M lies on the perimeter of Fa, the density
of the covering is smaller, than if it lies out of Fa. Thus we get the coverings
with minimal densities in the above two main cases.

3.1. The densities of coverings C1
a(t).

In this case M ∈ A0P0 is the intersection point of the cycles, so M =
(1, ta, 1− ta2) (0 < t ≤ 1). The coordinates of S1 can be expressed using (2.6)
and the distance of M and S1 can be calculated by (2.1), thus we can determine
the volume of Ha(t) by formula (2.6). The length of A1P1 and the distance of
M and the x−axis can be calculated also by (2.1), thus we can determine the
volume of Ha(t) by formula (2.4). We obtain by 3.1, that the density of C1

a(t)
can be expressed by the following formula:

δ(C1
a(t)) =

arccosh
(

1√
1−a2

)
1−ta2

a
√
2t−t2−a2t2

+ 2 sinh
(

1
2arccosh

(
2ta2+t−4
2t−4+2ta2

))
π
2

where 0 < a < 1, 0 < t ≤ 1.
Analyzing the above density formula we obtain the following.

Theorem 3.2. In the hyperbolic plane H2 the universal lower bound density
of ball and horoball coverings can be arbitrary accurate approximate with the
densities δ

(
C1
a

(
1
2

))
of hyp-hor packings of type 1:

lim
a→0

δ

(
C1
a

(
1

2

))
=

√
12

π

and δ
(
C1
a

(
1
2

))
>

√
12
π for parameter 0 < a < 1 (see Fig. 3a).
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a) b)

Figure 3: a) The density function of hyp-hor covering C1
a(t) in case t =

0.5 b) The density function of hyp-hor covering C2
a(t) in case t ≈ 1.142

3.2. The densities of coverings C2
a(t).

In this caseM ∈ P0P1 the intersection point of the cycles, so the intersection
point of the horocycle and line A0P0 is (1, ta, 1−ta2) (0 < t < 2

1+2a2−a4 ), by the
condition, that M lies on the positive segment of P0P1. We get the volume of
Ha(t) just like in the previous section. The coordinates of M and the h2 length
of MP1 can be calculated by (2.6) and (2.1). We can determine the volume
of Ha(t) by formula (2.4). We obtain by Definition (3.1), that the density of
C2
a(t) can be expressed by the following formula:

δ(C2
a(t)) =

arccosh
(

1√
1−a2

)
sinhh2 + 2 sinh

(
1
2arccosh

(
2ta2+t−4
2t−4+2ta2

))
π
2

where 0 < a < 1, 0 < t < 2
1+2a2−a4 .

Analyzing the above density formula (using also numerical approximation
methods) we obtain that it provides its minimum in case t ≈ 1.142, a → 0 (see

Fig. 3b), and the minimum value is
√
12
π . Therefore, we obtain the following

Theorem 3.3. In the hyperbolic plane H2 the universal lower bound density of
ball coverings can be arbitrary accurate approximated with densities δ

(
C2
a(t)

)
of hyp-hor packings of type 2.

4. Hyp-hor coverings in hyperbolic space H3

In the 3-dimensional hyperbolic space H3 there are 3 infinite series of the
simple frustum Coxeter orthoschemes with vertex at the infinity, that are listed
in Fig. 1, and characterized in Section 2.1. The Coxeter-Schläfli symbol of
these orthoschemes are {p, q, r}, where (q, r) = (3, 6), (4, 4), (6, 3), and p is an
appropriate integer parameter: p ≥ 7 if (q, r) = (3, 6), p ≥ 5 if (q, r) = (4, 4),
p ≥ 4 if (q, r) = (6, 3). These conditions came from the geometry of the
orthoschemes and can be computed by the inverse Coxeter-Schläfli matrix. We



176 Miklós Eper, Jenő Szirmai

denote the orthoscheme by F (q,r)
p , and its vertices are denoted by A0, A1, A2,

P0, P1, P2 (see Fig. 5.a).
We consider the usual Beltrami-Cayley-Klein ball modell of H3 centred at

O(1, 0, 0, 0) with a given vector basis ei (i = 0, 1, 2, 3) (see Section 2.1) and
with the 3-dimensional complete Coxeter orthoscheme A0A1A2A3 in which
initial principal vertex A0 is lying on the absolute quadric Q and the other
principal vertex A3 is an outer point of the model. By the truncation of the
orthoscheme with π (the polar plane of A3) we get the proper vertices Pk[pk] =
π ∩AkA3, (i = 0, 1, 2), therefore pk ∼ c · a3 + ak for some c ∈ R. Pk[pk] lies on
a3 = pol(a3) if and only if pka

3 = 0, thus:

(4.1) c · a3a3 + aka
3 = 0 ⇔ c = −aka

3

a3a3

(4.2) ⇔ pk ∼ −aka
3

a3a3
· a3 + ak ∼ ak(a3a

3)− a3(aka
3)

We consider the Coxeter-Schläfli matrix (cij) of the orthoscheme, and its
inverse (hij), where the elements of the matrices: cij = aiaj , hij = aiaj .
The polar hyperplane of A3 is a3, thus hk3 = aka

3, hence by (4.1) pk =
akh33 − a3hk3.

We set the above simple frustum orthoscheme F (q,r)
p in the usual coordinate

system with vertices: P0(1, 0, 0, 0), P1(1, 0, y, 0), P2(1, x, y, 0), A0(1, 0, 0, 1),
A1(1, 0, y, z1), A2(1, x, y, z2) (see Fig. 5.a). We get the following equations,
using the formulas (2.1), (4.1) and hij = aiaj :

cosh(d(P0P1)) =
h03h13 − h01h33√

(h11h33 − h2
13)(h00h33 − h2

03)
=

1√
(−1)(−1 + y2)

,(4.3)

cosh(d(P0P2)) =
h03h23 − h02h33√

(h22h33 − h2
23)(h00h33 − h2

03)
=

1√
(−1)(−1 + y2 + x2)

,

(4.4)

cosh(d(A1P1)) =

√
h11h33 − h2

13

h11h33
=

1− y2√
(−1 + y2 + z21)(−1 + y2)

,(4.5)

cosh(d(A2P2)) =

√
h22h33 − h2

23

h22h33
=

1− y2 − x2√
(−1 + y2 + x2 + z22)(−1 + y2 + x2)

.

(4.6)

We can determine the coordinates x, y, zk, (k = 1, 2) by solving these equations,

and the volume of the orthoschemes F (q,r)
p by (2.3).

The images of the above orthoscheme F (q,r)
p under reflections on its facets

fill the hyperbolic space H3 without overlap, so we get the Coxeter tiling T (q,r)
p

of H3 with fundamental domain F (q,r)
p .

We construct hyp-hor coverings to F (q,r)
p using the following requirements:



Coverings with horo- and hyperballs . . . 177

1. The center of the horoball can only be the ideal vertex A0. Let S1, T1, Q1

be the intersection points of the horoball with lines A0P0, A0A2, A0A1

lines, respectively. We denote by H
(q,r)
p the horoball-piece determined by

points A0, S1, T1, Q1 (see Fig. 5.b).

2. Plane P0P1P2 can be the base hyperplane of a hyperball. Let S2, V2, R2

be the intersection points of the hyperball with the line segments of

A0P0, A1P1, A2P2, respectively. We denote by H(q,r)
p the hyperball-piece

bounded by the base hyperplane, the surface of the hyperball and the hy-
perplanes perpendicular to the base hyperplane derived from edges P0P1,
P1P2, P2P0 (see Fig. 5.b).

3. The intersection curve (which is a circle parallel with [xy] plane in Eu-
clidean sense) of the horo- and hyperball passes through one of the edges
of the orthoscheme A0A1, A0A2, A1A2, A0P0, A1P1, A2P2 (see Fig. 5.a).

We can see that, if the horo- and hyperballs satisfy the above requirements,

then they cover F (q,r)
p if and only if they cover all the edges of F (q,r)

p . Hence, if
a covering arrangement covers the edges of the orthoscheme, than the images

of H
(q,r)
p and H(q,r)

p under reflection on the facets of F (q,r)
p provide a hyp-hor

covering of hyperbolic space H3, denoted by C(q,r)
p .

Definition 4.1. The density of the above hyp-hor coverings C(q,r)
p is:

(4.7) δ(C(q,r)
p ) =

V ol(H(q,r)
p ) + V ol(H

(q,r)
p )

V ol(F (q,r)
p )

It is obvious, that if the intersection curve passes through one of the edge

of F (q,r)
p , the density of the covering is smaller, than if it goes out of F (q,r)

p .
Thus we get the coverings with minimal densities if the above requiements hold.
Based on the above, we have to distinguish and study six cases.

4.1. Non-covering cases

� If the intersection curve of the balls passes through A0P0 (see Fig. 5.a),
then the balls touch each other, thus the hyp-hor covering is obviously
not realized.

� If the intersection curve of the balls intersects the edgeA0A2 (see Fig. 5.a),
then we can parametrize their common point: T (t) = (1, tx, ty, tz2+(1−
t)), t ∈ [0, 1]. By substituting this in the equation of the balls, we get
the coordinates of S1 ∈ P0A0, S2 ∈ P0A0 points. If the horoball covers
A1, we can determine the intersection points U1, U2 by solving the cor-
responding equations. By inspecting the z-coordinates of Ui (i = 1, 2) in
the model, we can see, that U1 is always higher than U2, which means
(using the convexity of the ellipsoids) that they together do not cover the
edge A1A2. If the hyperball covers A1, we can determine the intersection
points Q1, Q2 by solving the corresponding equations. By inspecting the
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z-coordinates of Qi (i = 1, 2) in the model, we can see, that Q1 is always
higher than Q2, which means (using the convexity of the ellipsoids) that
they together do not cover the edge A0A1. Thus in this case the hyp-hor
covering is not realized.

� If the intersection curve of the balls contains a point of A1P1 edge (see
Fig. 5.a) then we can parametrize the intersection point V : V (v) =
(1, 0, y, vz1), v ∈ [0, 1]. Very similarly to the above case, we can see,
that if the horoball covers A2, than the balls do not cover the edge A2P2,
and if the hyperball covers A2, than the balls do not cover the edge A1A2.
Thus, in this case the hyp-hor covering is not realized.

4.2. Thinnest covering, if the intersection point lies on A0A1 edge

In this case, A0A1 edge has a common point with the intersection curve
of the balls (see Fig. 5.a), so we can parametrize the intersection point Q:
Q(u) = (1, 0, uy, uz1 +(1− u)), u ∈ [0, 1]. By substituting this in the equation
of the balls, we get the coordinates of S1, S2 ∈ P0A0. After that, we can
determine the intersection points T1, T2 ∈ A0A2 by solving the corresponding
equations. We prove, that the balls cover the edges of the orthoscheme, so the
hyp-hor covering is realized in this case.

Since P0A0A1P1 is a 2-dimensional Coxeter orthoscheme, thus A0A1 is cov-
ered as we have seen in Section 3. The hyperball covers A1. So we can see,
that the hyperbolic length of A1P1 edge is always bigger than the length of
A2P2 edge. That means, the hyperball covers A2, and because of its convexity
A1P1, A2P2, A1A2 edges as well. By inspecting the z-coordinates of Si and Ti

(i = 1, 2) in the model, we can see, that S2 is always “higher” than S1 and T2

is always “higher” than T1, which means (using the convexity of the ellipsoids)
that they together cover the edges A0P0 and A0A2.

We know the coordinates of points Q,Ti, Si (i = 1, 2), so we can determine

the V ol(H(q,r)
p ), V ol(H

(q,r)
p ) using (2.5), (2.7) and the density of the covering

using (4.7), which depends on free parameter u. Analyzing this density func-
tion we can compute the optimal densities (see Fig. 4.a). The results for tiling

T (6,3)
p (which provides the lowest density in this case) are summarized in the

table below.

Type of tiling δmin u

T (6,3)
4 1.3482413 0.7369142

T (6,3)
5 1.4432379 0.7655641

T (6,3)
6 1.5178400 0.7814085

4.3. Thinnest covering, if the intersection point lies on A1A2 edge

Now, the intersection curve of the balls passes through A1A2 (see Fig. 5.a),
so we can parametrize the intersection point U ∈ A1A2: U(u) = (1, ux, y, uz2+
(1 − u)z1), u ∈ [0, 1]. By substituting this in the equation of the balls, we
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a) b)

Figure 4: a) The density function δ(C(6,3)
4 (u)) b) The density function

δ(C(3,6)
7 (u))

get the coordinates of points S1, S2 ∈ P0A0. After that we can determine
the intersection points V1, V2 ∈ A1P1, Q1, Q2 ∈ A0A1 and T1, T2 ∈ A0A2 by
solving the corresponding equations. We can prove, similarly as in the above
case, that the balls cover the edges of the orthoscheme, so the hyp-hor covering
is realized in this case. The horoball covers A0A1, the hyperball covers A2P2,
and together they cover A1A2 (see Fig. 5.b). By inspecting the z-coordinates
of Si, Vi and Ti (i = 1, 2) in the model, we can see in this case also, that the
balls cover A0P0, A1P1, A0A2 edges (see Fig. 5.b).

We know points Qi, Ti, Si (i = 1, 2), so we can determine the V ol(H(q,r)
p ),

V ol(H
(q,r)
p ) using (2.5), (2.7) and the density of the covering using (4.7), which

depends on free parameter u. Analysing this density function we can compute

the optimal densities (see Fig. 4.b). The results for tiling T (3,6)
p (which provides

the lowest density in this case) are summarized in the next table.

a) b)

Figure 5: a) Simple truncated orthoscheme, and the intersection points of

the balls, in the 6 cases b) Hyp-hor covering of F (3,6)
7 with smallest density

≈ 1.27297
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Type of tiling δmin u

T (3,6)
7 1.27297329 0.3324288

T (3,6)
8 1.288832 0.3337034

T (3,6)
9 1.3065421 0.3358650

Remark 4.2. To any parameter p (6 < p < 7, p ∈ R) belongs a simple frustum

orthoscheme F (3,6)
p as well, therefore we can determine the densities of the cor-

responding hyp-hor coverings using the above computation method. The den-
sity function depends on free parameters u and p, and analyzing this function we
get the minimal density in case p ≈ 6.459617, u ≈ 0.33248 with δ ≈ 1.268853.
This hyp-hor covering is just locally optimal, because the corresponding tiling
can not be extended to H3.

4.4. Thinnest covering, if the intersection point lies on A2P2 edge

In this case, A2P2 passes through the intersection curve of the balls (see
Fig. 5.a), so we can parametrize the intersection point of the curve and the
edge: R(u) = (1, x, y, uz2), u ∈ [0, 1]. The further computations of this case
is very similar to the above two cases. We can determine the coordinates of
Qi, Ti, Si (i = 1, 2) points, see that the horo- and hyperball cover the edges, so
the hyp-hor covering is realized, and compute the density of the covering by

(4.7). The results for tiling T (4,4)
p (which provides the smallest density in this

case) are summarized in the next table.

Type of tiling δmin u

T (4,4)
5 1.8383911 0.8114832

T (4,4)
6 2.3821677 0.7332720

T (4,4)
7 3.0569894 0.7025236

Finally, summarizing the results so far, we get the following theorems

Theorem 4.3. In H3, among the hyp-hor coverings generated by simple trun-

cated orthoschemes, the C(3,6)
7 covering configuration (see Subsection 4.3) pro-

vides the lowest covering density ≈ 1.27297. The above density is smaller than
the so far known lowest covering density ≈ 1.280 in the 3-dimensional hyper-
bolic space, which was described by L. Fejes Tóth and K. Böröczky.

Theorem 4.4. In hyperbolic space H3 the function δ(C(3,6)
p ) (6 < p < 7, p ∈ R)

attains its mimimum in case p ≈ 6.459617, with density δ ≈ 1.268853, but the
corresponding hyp-hor covering can not be extended to the entirety of hyperbolic
space H3.

We note here, that the discussion of the densest horoball packings in the
n-dimensional hyperbolic space n ≥ 3 with horoballs of different types and
hyperballs has not been settled yet.

Optimal sphere packings in other homogeneous Thurston geometries rep-
resent another huge class of open mathematical problems. For these non-
Euclidean geometries only very few results are known (e.g. [17], [20]). Detailed
studies are the objective of ongoing research.
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