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Clausius theorem for hyperbolic scalar conservation laws

Sylvain Dotti1

Abstract. I give for hyperbolic scalar conservation laws with non-
linear flux, the ideas and the computations behind the definitions of
entropic solution and kinetic solution in different cases (homogeneous,
deterministic source terms, stochastic source terms): they derive from
the Clausius theorem. In conclusion, I give the definitions for a stochastic
source term which is a general Lévy noise.
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1. Introduction

The partial differential equations called scalar conservation laws, and espe-
cially hyperbolic scalar conservation laws had been deeply studied since the
nineteenth century. For a very complete inventory of the studies, see the intro-
duction of the famous book of Constantine Dafermos [6].
The nineteenth century definition of solution required a function whose partial
derivative exists in the classical sense with respect to the time variable and
the space variable. In 1933, in order to allow discontinuous functions to be
solutions of conservation laws, Jean Leray in [17], revolutionized the notion
of solution by introducing test functions, that is smooth functions compactly
supported, used with integration by parts. The name of the new solutions are
’weak solutions’.
Roughly speaking, Cauchy problems corresponding to hyperbolic scalar conser-
vation laws had many solutions, without uniqueness, up to the famous article
of Kruzkov [15]. His definition of solution is very important to solve the Cauchy
problem. He solved the problem of uniqueness of weak solutions by adding a
physical relevant condition called entropy condition with the so called vanish-
ing viscosity method.
From that historical point, four directions are very interesting:

1. The improvement of the assumptions which give existence and uniqueness
of the solution of a Cauchy problem by giving a definition of a generalized
solution.
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2. The addition of a new variable modeling randomness or uncertainty and
the resolution of the corresponding Cauchy problems.

3. The physical explanations, the links with physics, the particular cases
from physics of the mathematical solutions of the Cauchy problems.

4. The methods which give the definition of a solution, or a generalized
solution

For the item 1, I can quote the measure valued solutions of Di Perna in [8], the
entropy process solutions of Eymard, Gallouët and Herbin in [13], the kinetic
solutions of Lions, Perthame and Tadmor in [18].
For the item 2, I can quote the papers of E Mazel Khanin and Sinai [11],
Kim [14], Debussche and Vovelle [7], Bauzet, Vallet and Wittbold [3], Biswas
Karlsen and Majee [4], Dotti and Vovelle [9].
For the item 3, I can quote Dafermos with [5], Smoller with [21], Dubois with
[10], Dafermos with [6], Evans with [12], and for a general review of the links
between entropy and (ir)reversibility Villani with [22].
For the item 4, I can quote for the vanishing viscosity method: Kruzkov with
[15], Lax with [16], Evans with [12], and for the method which can be called
Clausius theorem method, I can quote Serre with [20], and Perthame with
[19] for its mathematical part.
Note that the name ’Clausius theorem method’ is mine, the method of Serre
or Perthame is only mathematical. If Serre, in page 33 of his book, says that
the solution of hyperbolic conservation laws has ’physical origin’, Perthame in
pages 3 or 61 uses this mathematical method without any mention of physical
origin. Adding the link with the Clausius theorem, for a balance law of the
type

(1.1) ∂t (u (x, t, ω)) + divx (A (u (x, t, ω))) = G (u (x, t, ω)) ,

with A : R → Rd, G : R → R, u : Rd × [0; +∞) × Ω → R where u is the
unknown, t ∈ [0; +∞) is the time variable, x ∈ Rd is the space variable, ω is
an elementary event of the probability space Ω, this method has two steps:

� If the quantity u, solution of a hyperbolic scalar conservation law of the
type (1.1), models a reversible physical phenomenon (which can be only
theoretical), then the function u is regular and the quantity of entropy
η(u) is conserved over time. Thus η(u) is a solution of a hyperbolic scalar
conservation law.

� If the quantity u, solution of a hyperbolic scalar conservation law of the
type (1.1), models an irreversible physical phenomenon (which can be
only theoretical), then the function u is not regular and the quantity of
entropy η(u) is decreasing over time. Thus η(u) is a solution of an entropy
inequality.

By applying this ’Clausius theorem method’ in many cases of hyperbolic scalar
conservation laws, I will try to convince the reader that this method is between
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a physical principle and a mathematical postulate.
Of course, once the mathematical definition of a solution is given, then the
mathematical proof of existence and uniqueness of the solution of a Cauchy
problem validates the definition. But, with the complexification of the proofs,
for example with the addition of a variable representing randomness, it is al-
most compulsory, in my opinion, to give the computations which leads to the
definition of a solution. With those computations, I will explain why in [9]
we changed the definition of [7] for the same equation and the same initial
data. I will also explain why, with Kenneth Karlsen, we will slightly change
(in an upcoming article) the definition of [4] for the same equation and the
same initial data. More generally, the Clausius theorem method explains why
it is more natural to work with a stochastic solution which is not weakly dif-
ferentiated with the time variable t, but which is defined for all t ∈ [0; +∞).
It is the reason why, in this article, I give for the first time the computations
which leads to the definitions of the entropic and kinetic solutions of hyperbolic
scalar conservation laws with different stochastic source terms with the Clau-
sius theorem method. In conclusion of this article, I give for the first time
the definition of an entropy solution and its kinetic formulation for hyperbolic
scalar conservation laws driven by a general Lévy noise.

To end this introduction, once again I want to quote Evans with [12] who
gives the most recent, complete study on the subject of this article. The ideas
developed in my article differ from his ideas in this way: he uses the vanishing
viscosity method to obtain the definitions of hyperbolic scalar conservation
laws, and then, he notices (see remarks page 121) that ’We can regard the
Lax entropy inequality as a form of Clausius-Duhem inequality, except that
the sign is reversed’. Here, I say: there exists a law which is between the
physical principle and the mathematical postulate, this law is formulated as
follows: ’the mathematical entropies of hyperbolic scalar conservation laws
follow the Clausius theorem’. This law gives the definitions of solutions to
Cauchy problems. Furthermore, it is compulsory to begin by the definition
of the deterministic homogeneous case (see the next Section 2) to have the
definitions with a source term (deterministic or stochastic). The definition
with a deterministic homogeneous source of Section 3 is a particular case of
the definition with a deterministic source depending on time and space variables
of Section 4. I give the computations of this particular case in detail because,
they give the idea to replace the chain rule by the Itô Lemma to obtain the
definition with a stochastic source term which can be a multiplicative brownian
noise (see Section 5), which can be a pure jump Lévy noise (see Section 6), or
which can be a general Lévy noise (see Section 7).
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2. Case of the homogeneous hyperbolic scalar conserva-
tion law

2.1. Entropy solution

Let me explain the consequences of the Clausius theorem for the hyperbolic
scalar conservation law

(2.1) ∂t (u (x, t)) + divx (A (u (x, t))) = 0, t ∈ R+, x ∈ Rd, d ∈ N∗,

with u : Rd × R+ 7→ R called the conserved quantity and A : R 7→ Rd the flux.
Without loss of generality, I suppose that A(0) = 0.
When the physical phenomenon corresponding to (2.1) is reversible, the math-
ematical function u is regular. In this case, the quantity of entropy η (u (x, t))
is conserved over time, and thus is a solution of the conservation law

∂t (η (u (x, t))) + divx (ϕ (u (x, t))) = 0.

η : R 7→ R is called the mathematical entropy, it is a convex function (see [15],
[16]), ϕ : R 7→ Rd is called the η entropy flux. Thermodynamic entropy is
concave. The link between the two entropies is well described in the case of
gas dynamics by Dubois [10].
If A, η and ϕ are regular functions, those two conservation laws can be written

∂t (u (x, t)) +A
′
(u (x, t)) .∇x (u (x, t)) = 0

and
η

′
(u (x, t)) ∂t (u (x, t)) + ϕ

′
(u (x, t)) .▽x (u (x, t)) = 0.

By identification of those two conservation laws, I get the definition (up to an
additive constant) of the entropy flux

ϕ
′
(ξ) = A′ (ξ) η′ (ξ) .

But when the physical phenomenon corresponding to (2.1) is irreversible, that
is when u is not regular, a defect of mathematical entropy is created over time,
that is written

(2.2) ∂t (η (u (x, t))) + divx (ϕ (u (x, t))) ≤ 0.

The inequality (2.2) is to be taken in the weak sense. It means to multiply by
a test function φ ∈ C∞

c (Rd × R+;R+), to integrate against the time variable
t ∈ Rd, against the space variable x ∈ Rd, to integrate by parts d + 1 times
(against each real variable t and xi, i ∈ {1, ..., d}) to obtain under the initial
data u(x, 0) = u0(x) ∈ L∞(Rd) the entropy inequality:

−
∫
Rd×R+

(
η (u(x, t)) ∂tφ (x, t) + ϕ (u (x, t)) .∇φ (x, t)

)
dxdt

−
∫
Rd

η (u0 (x))φ (x, 0) dx ≤ 0.
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Remark 2.1. Kruzkov decided to use the mathematical entropies

{u ∈ R 7→ |u− ξ| such that ξ ∈ R}

to solve the problem of uniqueness of weak solutions of J. Leray [17]. They
are convex functions. If he took the opposite of those functions, which are
concave, the inequality (2.2) would be in the opposite sense, and we could say
that mathematical entropy increase over time, just like physical entropy. But
it is not the case !

Remark 2.2. The proof of the equivalence between Kruzkov entropies and con-
vex functions (called mathematical entropies or Lax’s mathematical entropies)
in the entropy inequality (2.2) can be found for instance in [23].

2.2. Kinetic solution

2.2.1. A first method

Lions, Perthame and Tadmor replaced the entropy inequality by an equality
called ’kinetic equality’, introducing a supplementary variable ξ ∈ R thanks to
the Kruzkov entropies and the corresponding entropy fluxes well chosen. More
precisely, let us apply the inequality (2.2) to the entropies ηξ(u) = |u− ξ| − |ξ|
and to the entropy fluxes ϕξ(u) = sgn(u− ξ) (A(u)−A(ξ))− sgn(ξ)A(ξ):

∂t
(
|u (x, t)− ξ| − |ξ|

)
+ divx

(
sgn(u(x, t)− ξ) (A(u(x, t))−A(ξ))− sgn(ξ)A(ξ)

)
≤ 0.

(2.3)

The ξ was a constant for Kruzkov, it becomes a variable for Lions Perthame
and Tadmor. They denote the left-hand side of (2.3) −2m(x, t, ξ) and can write
the entropy inequality

m(x, t, ξ) ≥ 0.

The kinetic formulation of the entropy inequality (2.2) or simply of the hyper-
bolic scalar conservation law (2.1) is the equation giving the relation between
∂ξm(x, t, ξ) and the partial derivatives (in the weak sense) of

χ(ξ, u(x, t)) := 1u(x,t)>ξ − 10>ξ.

From the equality

−2m(x, t, ξ) = ∂t
(
|u (x, t)− ξ| − |ξ|

)
+ divx

(
sgn(u(x, t)− ξ) (A(u(x, t))−A(ξ))− sgn(ξ)A(ξ)

)
and the partial derivatives

� ∂ξ
(
|u (x, t)− ξ| − |ξ|

)
= −2χ(ξ, u(x, t))

� ∂ξ
(
sgn(u(x, t)− ξ) (Ai(u(x, t))−Ai(ξ))− sgn(ξ)Ai(ξ)

)
= −2A

′

i(ξ)χ(ξ, u(x, t))
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they obtain the kinetic formulation:

∂t (χ (ξ, u (x, t))) +A
′
(ξ) .∇x (χ (ξ, u (x, t))) = ∂ξm(x, t, ξ)

where m is a bounded non-negative measure.

Remark 2.3. When the physical process is reversible, that is when u is regular,
no entropy is absorbed over time, the kinetic entropy defect measure m is the
null measure.
When the physical process is irreversible, that is when u is not regular, m (or
rather 2m) measures the entropy defect created over time, in other words the
entropy absorption over time.

Remark 2.4. The choice of Lions, Perthame and Tadmor in [18] of couples
entropy/entropy flux

|u (x, t)− ξ| − |ξ|, sgn(u(x, t)− ξ) (A(u(x, t))−A(ξ))− sgn(ξ)A(ξ)

is done to find, differentiating with respect to ξ, the function χ(ξ, u(x, t)) which
belongs to L1 (Rξ). The choice of Debussche and Vovelle in [7] of couples
entropy/entropy flux

|u (x, t)− ξ| − ξ, sgn(u(x, t)− ξ) (A(u(x, t))−A(ξ))−A(ξ),

gives a kinetic formulation with the locally integrable function 1u(x,t)>ξ in place
of χ(ξ, u(x, t)). Other choices are possible.

2.2.2. A second method

For the conservation law

∂t (u (x, t)) + divx (A (u (x, t))) = 0,

the second method to obtain the kinetic formulation consists in considering the
corresponding equality of measures

∂t (u (x, t)) dtdx+ divx (A (u (x, t))) dtdx = 0

when u and A are regular, then in doing the operation ⊗δu(x,t) (dξ) both sides
to obtain the equality (weak in ξ)

∂t (χ (ξ, u (x, t))) +A
′
(ξ) .∇x (χ (ξ, u (x, t))) = 0

by the use of the formulas

� ∂t (χ (ξ, u (x, t))) = ∂tu (x, t) dtdx⊗ δu(x,t) (dξ)

� ∂xi
(χ (ξ, u (x, t))) = ∂xi

u (x, t) dtdx⊗ δu(x,t) (dξ)

� A
′
(ξ) .∇x (χ (ξ, u (x, t))) = A

′
(u (x, t)) .∇x (u (x, t)) dtdx⊗ δu(x,t) (dξ) .
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When the quantity of entropy is conserved, that is when

∂t (η (u (x, t))) + divx (ϕ (u (x, t))) = 0,

by doing the operation dtdx ⊗ δu(x,t) (dξ) both sides of the equality, I obtain
the equality (weak in ξ)

(2.4) η
′
(ξ) ∂t (χ (ξ, u (x, t))) + ϕ

′
(ξ) .∇x (χ (ξ, u (x, t))) = 0.

When the physical process is irreversible, that is when u is not regular, an
entropy defect is created which is written

∂t (η (u (x, t))) + divx (ϕ (u (x, t))) ≤ 0

or which is also written with the kinetic variable ξ∫
Rξ

(
η

′
(ξ) ∂t (χ (ξ, u (x, t))) + η

′
(ξ)A

′
(ξ).∇x (χ (ξ, u (x, t)))

)
dξ ≤ 0,

or which is also written with an equality, defining the kinetic entropy defect
measure m up to an additive constant by

(2.5) ∂ξm(dx, dt, dξ) = ∂t (χ (ξ, u (x, t))) +A
′
(ξ) .∇x (χ (ξ, u (x, t))) ,

with ∫
Rξ

η
′′
(ξ)m(dx, dt, dξ) ≥ 0, ∀η : R → R which is convex.

Thus, it is the measure η
′′
(ξ)m(dx, dt, dξ) which measures the entropy of the

quantity u(x, t) over time. We can also say that measuring the entropy η(u(x, t))
over time is the same as measuring η

′′
with m.

The equation (2.5) is called the kinetic formulation of the hyperbolic scalar
conservation law (2.1), where the non-negativity of the measure m is equivalent
to the entropy inequality (2.2).

3. Case of the hyperbolic scalar conservation law with a
deterministic homogeneous source term

3.1. Entropy solution

For the conservation law with source term

(3.1) ∂t (u (x, t)) + divx (A (u (x, t))) = G (u (x, t)) ,

here are the consequences of the Clausius theorem.
When the physical phenomenon corresponding to (3.1) is reversible, that is
when u is regular, the quantity of entropy η (u (x, t)) is conserved thus

∂t (η (u (x, t))) + divx (ϕ (u (x, t))) = H (u (x, t))
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where H (u (x, t)) is the source of entropy. If A, η and ϕ are regular functions,
these two conservation laws can be written

∂t (u (x, t)) +A
′
(u (x, t)) .▽x (u (x, t)) = G (u (x, t))

and

η
′
(u (x, t)) ∂t (u (x, t)) + ϕ

′
(u (x, t)) .▽x (u (x, t)) = H (u (x, t)) .

By identification of these two conservation laws, I get the definition of the
entropy source

H (ξ) = G (ξ) η′ (ξ)

But when the physical phenomenon corresponding to (3.1) is irreversible, that
is when u is not regular, a defect of entropy is created over time which is written

(3.2) ∂t (η (u (x, t))) + divx (ϕ (u (x, t)))− η
′
(u (x, t))G (u (x, t)) ≤ 0.

3.2. Kinetic solution

To find the kinetic formulation of (3.1) or of (3.2), I apply the inequality
(3.2) to the entropies ηξ(u) = |u − ξ| − |ξ| and the entropy fluxes ϕξ(u) =
sgn(u− ξ) (A(u)−A(ξ))− sgn(ξ)A(ξ) :

∂t
(
|u (x, t)− ξ| − |ξ|

)
+ divx

(
sgn(u(x, t)− ξ) (A(u(x, t))−A(ξ))− sgn(ξ)A(ξ)

)
− sgn(u(x, t)− ξ)G (u (x, t)) ≤ 0.

(3.3)

I denote the left-hand side of (3.3) −2m(x, t, ξ) and can write the entropy
inequality

m(x, t, ξ) ≥ 0.

The kinetic formulation of the entropy inequality (3.2) or simply of the hyper-
bolic scalar conservation law (3.1) is the equation giving the relation between
∂ξm(x, t, ξ) and the partial derivatives (in the weak sense) of χ(ξ, u(x, t)).
From the equality

−2m(x, t, ξ) = ∂t
(
|u (x, t)− ξ| − |ξ|

)
+ divx

(
sgn(u(x, t)− ξ) (A(u(x, t))−A(ξ))− sgn(ξ)A(ξ)

)
− sgn(u(x, t)− ξ)G (u (x, t))

and the weak derivatives

� ∂ξ
(
|u (x, t)− ξ| − |ξ|

)
= −2χ(ξ, u(x, t))

� ∂ξ
(
sgn(u(x, t)− ξ) (Ai(u(x, t))−Ai(ξ))− sgn(ξ)Ai(ξ)

)
= −2A

′

i(ξ)χ(ξ, u(x, t))

� ∂ξ
(
sgn(u(x, t)− ξ)G (u(x, t))

)
= −2G (ξ) δu(x,t)(dξ)
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I obtain the kinetic formulation :

∂t (χ (ξ, u (x, t))) +A
′
(ξ) .∇x (χ (ξ, u (x, t)))−G (ξ) δu(x,t)(dξ) = ∂ξm(x, t, ξ).

Remark 3.1. The inequality

∂ξ
(
χ (ξ, u (x, t))

)
= δ0(dξ)− δu(x,t)(dξ)

allows me to write the kinetic formulation

∂t (χ (ξ, u (x, t))) +A
′
(ξ) .∇x (χ (ξ, u (x, t)))

+G (ξ) ∂ξ
(
χ (ξ, u (x, t))

)
−G (ξ) δ0(dξ) = ∂ξm(x, t, ξ).

4. Case of the hyperbolic scalar conservation law with
a deterministic source term depending on space and
time variables

4.1. Entropy solution

Now, I can write the consequences of the Clausius theorem for the conservation
law with source term

(4.1) ∂t (u (x, t)) + divx (A (x, t, u (x, t))) = G (x, t, u (x, t))

with A : Rd
x × R+

t × Rξ → Rd and G : Rd
x × R+

t × Rξ → R.
When the physical phenomenon corresponding to (4.1) is reversible, that is
when u is regular, the entropy quantity η (u (x, t)) is conserved thus

∂t (η (u (x, t))) + divx (ϕ (x, t, u (x, t))) = H (x, t, u (x, t)) ,

H (x, t, u (x, t)) being the entropy source. With A, η and ϕ being regular
functions, those two conservation laws can be written

∂t (u (x, t)) + (divxA) (x, t, u(x, t))

+ ∂ξA (x, t, u (x, t)) .∇x (u (x, t)) = G (x, t, u (x, t))

and

η
′
(u(x, t)) ∂t (u (x, t)) + (divxϕ) (x, t, u(x, t))

+ ∂ξϕ (x, t, u (x, t)) .∇x (u (x, t)) = H (x, t, u (x, t)) .

By identification of these two conservation laws, I have only one possibility for
the definition of the entropy flux:

∂ξϕ(x, t, ξ) = η
′
(ξ)∂ξA (x, t, ξ) .

Multiplying the first conservation law by η
′
(u(x, t)) and subtracting the second

conservation law, I obtain

η
′
(u(x, t)) (divxA) (x, t, u(x, t))− (divxϕ) (x, t, u(x, t))

= η
′
(u(x, t))G (x, t, u (x, t))−H (x, t, u (x, t)) .
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That gives the definition of the entropy source:

H (x, t, ξ) = η
′
(ξ)G (x, t, ξ)− η

′
(ξ) (divxA) (x, t, ξ) + (divxϕ) (x, t, ξ) .

In the case where η(ξ) = |ξ−κ| is a Kruzkov entropy, the corresponding entropy
flux can be written

ϕ(x, t, ξ) = sgn(ξ − κ) (A(x, t, ξ)−A(x, t, κ)) ,

that gives (in that particular case), the definition of the entropy source

H (x, t, ξ) = η
′
(ξ)G (x, t, ξ)− η

′
(ξ) (divxA) (x, t, κ) .

But when the physical phenomenon corresponding to (4.1) is irreversible, that
is when u is not regular, an entropy defect is created over time which can be
written

(4.2) ∂t (η (u (x, t))) + divx (ϕ (x, t, u (x, t)))−H (x, t, u (x, t)) ≤ 0

or, with the test functions (x, t) 7→ φ(x, t) ∈ C∞
c (Rd × R+ ; R+):

−
∫
Rd

η(u(x, 0))φ(x, 0)dx−
∫
Rd×R+

η(u(x, t))∂tφ(x, t)dxdt

−
∫
Rd×R+

ϕ (x, t, u (x, t)) .∇xφ(x, t)dxdt

−
∫
Rd×R+

η
′
(u(x, t))

(
G− (divxA)

)
(x, t, u(x, t))φ(x, t)dxdt

−
∫
Rd×R+

(divxϕ) (x, t, u(x, t))φ(x, t)dxdt ≤ 0.

4.2. Kinetic solution

To give the kinetic formulation of (4.1) or of (4.2), I apply the inequality (4.2)
to the entropies ηξ(u) = |u − ξ| − |ξ| and to the entropy fluxes ϕξ(x, t, u) =
sgn(u− ξ) (A(x, t, u)−A(x, t, ξ))− sgn(ξ)A(x, t, ξ):

∂t
(
|u (x, t)− ξ| − |ξ|

)
+ divx

(
sgn(u(x, t)− ξ) (A(x, t, u(x, t))−A(x, t, ξ))− sgn(ξ)A(x, t, ξ)

)
−Hξ (x, t, u(x, t)) ≤ 0

(4.3)

with

Hξ(x, t, u) = sgn(u− ξ)
(
G(x, t, u)− (divxA)(x, t, ξ)

)
− sgn(ξ) (divxA) (x, t, ξ)

= sgn(u− ξ)G(x, t, u)− 2χ(ξ, u) (divxA) (x, t, ξ),

which gives

∂t
(
|u (x, t)− ξ| − |ξ|

)
+ divx

(
sgn(u(x, t)− ξ) (A(x, t, u(x, t))−A(x, t, ξ))− sgn(ξ)A(x, t, ξ)

)
− sgn(u(x, t)− ξ)G(x, t, u(x, t)) + 2χ(ξ, u(x, t)) (divxA) (x, t, ξ) ≤ 0.
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I denote the left-hand side of (4.3) −2m(x, t, ξ) and can write the entropy
inequality

m(x, t, ξ) ≥ 0.

The kinetic formulation of the entropy inequality (4.2) or simply of the hy-
perbolic scalar conservation law (4.1) is the equation giving the link between
∂ξm(x, t, ξ) and the weak partial derivatives of χ(ξ, u(x, t)).
From the equality

−2m(x, t, ξ) = ∂t
(
|u (x, t)− ξ| − |ξ|

)
+ divx

(
sgn(u(x, t)− ξ) (A(x, t, u(x, t))−A(x, t, ξ))− sgn(ξ)A(x, t, ξ)

)
− sgn(u(x, t)− ξ)G(x, t, u(x, t)) + 2χ(ξ, u(x, t)) (divxA) (x, t, ξ)

and the weak derivatives

� ∂ξ
(
|u− ξ| − |ξ|

)
= −2χ(ξ, u)

� ∂ξ
(
ϕξ,i(x, t, u)

)
= −2∂ξ

(
Ai(x, t, ξ)

)
χ(ξ, u)

� ∂ξ
(
sgn(u− ξ)G(x, t, u)

)
= −2G (x, t, ξ) δu(dξ)

� ∂ξ
(
χ(ξ, u)divxA(x, t, ξ)

)
= ∂ξ

(
χ(ξ, u)

)
divxA(x, t, ξ) + χ(ξ, u)∂ξ

(
divxA(x, t, ξ)

)
,

I obtain the kinetic formulation:

∂t (χ (ξ, u (x, t))) + ∂ξA (x, t, ξ) .∇x (χ (ξ, u (x, t)))

−G (x, t, ξ) δu(x,t)(dξ)− ∂ξ
(
χ(ξ, u(x, t))

)
divxA(x, t, ξ) = ∂ξm(x, t, ξ).

Remark 4.1. The equality

∂ξ
(
χ (ξ, u (x, t))

)
= δ0(dξ)− δu(x,t)(dξ)

allows me to write the kinetic formulation

∂t (χ (ξ, u (x, t))) + ∂ξA (x, t, ξ) .∇x (χ (ξ, u (x, t)))

+
(
G (x, t, ξ)− divxA(x, t, ξ)

)
∂ξ
(
χ (ξ, u (x, t))

)
−G (x, t, ξ) δ0(dξ) = ∂ξm(x, t, ξ).

5. Case of the hyperbolic scalar conservation law with a
source term which is a multiplicative brownian noise

5.1. Entropy solution

Let (Ω,F ,P, (Ft)) be a filtered probability space satisfying the usual hypothesis
of right-continuity and completeness. Let T > 0 and d ∈ N∗. Let us study
the first-order hyperbolic scalar conservation law with a continuous in time
stochastic source term

(5.1) d (u (x, t, ω)) + divx (A (u (x, t, ω))) dt = Φ(x, u (x, t, ω)) dW (t, ω) ,
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with W a cylindrical Wiener process defined on a separable Hilbert space H
and Φ : Rd × R → L2(H,R) a continuous function (see [9] for details on
assumptions).
To simplify the calculations, one can think of W as a real brownian motion and
Φ : Rd ×R → R continuous, the ideas and results are similar. To simplify the
notations, I will omit the variable ω. Here are the consequences of the Clausius
theorem:
If the physical phenomenon associated with the conservation law was reversible,
that is if the diffusion process u was regular in the space variable x ∈ Rd, the
quantity of entropy η (u (x, t)) would be conserved thus

d (η (u (x, t))) + divx (ϕ (u (x, t))) dt = d (H (u (x, t)))

where H (u (x, t)) is the entropy source. If A, η and ϕ were regular functions,
the two conservation laws could be written

d (u (x, t)) +A
′
(u (x, t)) .∇x (u (x, t)) dt = Φ(x, u (x, t)) dW (t)

and
d (η (u (x, t))) + ϕ

′
(u (x, t)) .∇x (u (x, t)) dt = d (H (u (x, t))) .

To identify the two conservation laws, I have to notice that the time ’chain
rule’ is not true for diffusion processes. Instead, I use the Itô Lemma. In other
words, I don’t have

d (η (u (x, t))) = η
′
(u (x, t)) d (u (x, t))

but I have

d (η (u (x, t))) = η
′
(u (x, t)) d (u (x, t)) +

1

2
η

′′
(u (x, t)) ∥Φ (x, u (x, t)) ∥2L2(H,R)dt

for any convex function η ∈ C2 (R). Hence, the conservation law of the entropy
would be written

η
′
(u (x, t)) d (u (x, t)) +

1

2
η

′′
(u (x, t)) ∥Φ (x, u (x, t)) ∥2L2(H,R)dt

+ ϕ
′
(u (x, t)) .∇x (u (x, t)) dt = d (H (u (x, t)))

By identification of the two conservation laws, I obtain the definition of the
entropy source

d (H (u (x, t))) =
1

2
η

′′
(u (x, t)) ∥Φ (x, u (x, t)) ∥2L2(H,R)dt

+ η
′
(u (x, t)) Φ (x, u (x, t)) dW (t).

If the physical phenomenon associated with the conservation law was irre-
versible, that is if the diffusion process u was not regular in the space variable
x ∈ Rd, that would create an entropy defect which could be written

d (η (u (x, t)))− 1

2
η

′′
(u (x, t)) ∥Φ (x, u (x, t)) ∥2L2(H,R)dt

+ divx (ϕ (u (x, t))) dt− η
′
(u (x, t)) Φ (x, u (x, t)) dW (t) ≤ 0.

(5.2)
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This inequality is a weak in space formulation of the conservation law with a
source term which is a multiplicative brownian noise. It is written with the test
functions φ ∈ C∞

c (Rd;R+), for all fixed t ∈ R+, almost surely, in the following
way:∫

Rd

φ(x)
(
η (u (x, t))− η (u (x, 0))

)
dx−

∫
Rd

∫ t

0

ϕ (u(x, s)) ds.∇xφ(x)dx

− 1

2

∫
Rd

φ(x)

∫ t

0

η
′′
(u (x, s)) ∥Φ (x, u (x, s)) ∥2L2(H,R)dsdx

−
∫
Rd

φ(x)

∫ t

0

η
′
(u (x, s)) Φ (x, u (x, s)) dW (s) dx ≤ 0.

5.2. Kinetic solution

To get the kinetic formulation of

(5.3) d (u (x, t, ω)) + divx (A (u (x, t, ω))) dt = Φ(x, u (x, t, ω)) dW (t, ω) ,

I perform the operation dx ⊗ δu(x,t,ω) (dξ) to both sides of the equality and
apply the Clausius theorem method (the variable ω is now omitted).
If u was regular in the space variable x ∈ Rd, that is if the physical phenomenon
associated with (5.3) was reversible, I would obtain(

d (u (x, t) dx) +A
′
(u (x, t)) .∇x (u (x, t)) dtdx

)
⊗ δu(x,t) (dξ)

= Φ (x, u (x, t)) dW (t) dx⊗ δu(x,t) (dξ) .

(5.4)

The ’chain rule’ is untrue for Itô processes, instead I use a weak in x, ξ Itô
Lemma:

d (χ (ξ, u (x, t)) dξdx) =d (u (x, t) dx)⊗ δu(x,t) (dξ)

− 1

2
∂ξ

(
∥Φ (x, ξ) ∥2L2(H,R)dtdx⊗ δu(x,t) (dξ)

)
.

Remark 5.1. Digression on the weak in x, ξ Itô Lemma for diffusion processes.
If φ ∈ C∞

c (R), then the Itô Lemma applied to the process u gives

dφ (u (x, t)) = φ
′
(u (x, t)) du (x, t) +

1

2
φ

′′
(u (x, t)) ∥Φ (x, u (x, t)) ∥2L2(H,R)dt.

I can multiply by h(x) for any h ∈ C∞
c

(
Rd
)
, and integrate over Rd against dx

to obtain:

d

(∫
Rd

h(x)φ (u (x, t)) dx

)
=

∫
Rd

h(x)φ
′
(u (x, t)) du (x, t) dx

+
1

2

∫
Rd

h(x)φ
′′
(u (x, t)) ∥Φ (x, u (x, t)) ∥2L2(H,R)dtdx
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which can be written

d

(∫
Rd

h(x)

∫
R
φ

′
(ξ)χ (ξ, u (x, t)) dξdx

)
=

∫
Rd×R

h(x)φ
′
(ξ) du (x, t) dx⊗ δu(x,t) (dξ)

+
1

2

∫
Rd×R

h(x)φ
′′
(ξ) ∥Φ (x, ξ) ∥2L2(H,R)dtdx⊗ δu(x,t) (dξ)

that is

d

(∫
Rd×R

h(x)φ
′
(ξ)χ (ξ, u (x, t)) dξdx

)
=

∫
Rd×R

φ
′
(ξ) du (x, t) dx⊗ δu(x,t) (dξ)

− 1

2

〈
∂ξ

(
∥Φ (x, ξ) ∥2L2(H,R)dtdx⊗ δu(x,t) (dξ)

)
, φ

′
(ξ)h(x)

〉
which gives the following weak in x, ξ Itô formula

d (χ (ξ, u (x, t)) dξdx) =du (x, t) dx ⊗ δu(x,t) (dξ)

− 1

2
∂ξ

(
∥Φ (x, ξ) ∥2L2(H,R)dtdx⊗ δu(x,t) (dξ)

)
.

Using the weak in x, ξ Itô Lemma and the following formula

A
′
(ξ).∇x

(
χ (ξ, u(x, t))

)
= A

′
(u(x, t)) .∇x (u(x, t)) dx⊗ δu(x,t)(dξ),

the equation (5.4) would be written

d
(
χ (ξ, u (x, t)) dξdx

)
+A

′
(ξ) .∇x (χ (ξ, u (x, t))) dt

− Φ (x, ξ) dx⊗ δu(x,t) (dξ) dW (t)

+
1

2
∂ξ

(
∥Φ (x, ξ) ∥2L2(H,R)dtdx⊗ δu(x,t) (dξ)

)
= 0.

If the physical phenomenon associated with the conservation law was irre-
versible, that is if u was not regular in x ∈ Rd, the entropy defect would be
written

d
(
χ(ξ, u (x, t, ω))dξdx

)
+A

′
(ξ) .∇x (χ (ξ, u (x, t, ω))) dt− Φ (x, ξ) dx⊗ δu(x,t,ω) (dξ) dW (t)

+
1

2
∂ξ

(
∥Φ (x, ξ) ∥2L2(H,R)dx⊗ δu(x,t,ω) (dξ)

)
dt = ∂ξmω (dx, dt, dξ)

with m : Ω → M+
b

(
Rd × [0,+∞)× R

)
a non-negative entropy defect random

measure where M+
b denotes the set of all finite Borel non-negative measures.

Conclusion : The kinetic formulation weak in the space variable x and in
ξ (but not in the time variable t) of the hyperbolic scalar conservation law
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with a source term which is a multiplicative brownian noise, can be written
∀g ∈ C∞

c

(
Rd × Rξ

)
, ∀0 ≤ s ≤ t < +∞, almost surely,∫

Rd×Rξ

χ (ξ, u (x, t)) g (x, ξ) dxdξ −
∫
Rd×Rξ

χ (ξ, u (x, s)) g (x, ξ) dxdξ

=

∫ t

s

∫
Rd×Rξ

A
′
(ξ) .∇x (g (x, ξ))χ (ξ, u (x, r)) dxdξdr

+

∫ t

s

∫
Rd

∫
Rξ

g (x, ξ) Φ (x, ξ) δu(x,r) (dξ) dxdW (r)

+
1

2

∫ t

s

∫
Rd

∫
Rξ

∂ξg (x, ξ) ∥Φ (x, ξ) ∥2L2(H,R)δu(x,r) (dξ) dxdr

−
∫ t

s

∫
Rd×Rξ

∂ξg (x, ξ)m (dx, dr, dξ)

or can be written∫
Rd×Rξ

1u(x,t)>ξ × g (x, ξ) dxdξ −
∫
Rd×Rξ

1u(x,s)>ξ × g (x, ξ) dxdξ

=

∫ t

s

∫
Rd×Rξ

1u(x,r)>ξ ×A
′
(ξ) .∇x (g (x, ξ)) dxdξdr

+

∫ t

s

∫
Rd

∫
Rξ

g (x, ξ) Φ (x, ξ) δu(x,r) (dξ) dxdW (r)

+
1

2

∫ t

s

∫
Rd

∫
Rξ

∂ξg (x, ξ) ∥Φ (x, ξ) ∥2L2(H,R)δu(x,r) (dξ) dxdr

−
∫ t

s

∫
Rd×Rξ

∂ξg (x, ξ)m (dx, dr, dξ) .

6. Case of the hyperbolic scalar conservation law with a
source term which is a pure jump Lévy noise

6.1. Entropy solution

Let (Ω,F ,P, (Ft)) be a filtered probability space satisfying the usual hypothesis
of right-continuity and completeness. Let T > 0 and d ∈ N∗. Let us study
the first-order hyperbolic scalar conservation law with a discontinuous in time
stochastic source term
(6.1)

d (u (x, t, ω)) + divx (A (u (x, t, ω))) dt =

∫
|z|>0

Φ (x, u (x, t, ω) ; z) Ñ(dz, dt, ω),

where Ñ is the compensated Poisson random measure associated to the Poisson
random measure N defined on (Ω,F ,P) and the intensity measure µ = ν(dz)dt
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defined on

(
R× [0,+∞),B (R× [0,+∞))

)
:

∀B ∈ B (R× [0,+∞)) such that µ(B) < +∞, Ñ(B) = N(B)− µ(B)

with ν a Levy measure on R that is a Borel measure on R verifying

ν ({0}) = 0 and

∫
R\{0}

(
1 ∧ z2

)
ν(dz) < +∞.

For each C ∈ B(R), I assume that the stochastic process

NC : (ω, t) ∈ Ω× [0,+∞) 7→ NC(ω, t) := N(ω) (C × [0, t]) ∈ N ∪ {+∞}

is adapted to the filtration (Ft). Moreover, I assume that for each (s, t, C) ∈
[0,+∞)2 × B(R) such that 0 ≤ s < t, the random variable N(.)(C × (s, t]) is
independent of Fs. The variable ω is omitted in the sequel of the section.
Here, I follow the assumptions of [4] for the existence and uniqueness of the
solution of the Cauchy problem. The nonlinear flux function A in (6.1) is
supposed to be of class C2: A ∈ C2(R;Rd). I assume that A and its derivatives
have at most polynomial growth.
I assume that the coefficient Φ : Rd × R × R → R is Lipschitz continuous
with respect to the first variable, a contraction with respect to the second
variable, and bounded with respect to the third variable in the following sense:
there exists two constants K ∈ (0;+∞) and λ∗ ∈ (0; 1) such that for all
x, y ∈ Rd, u, v ∈ R, z ∈ R:

(6.2) |Φ(x, u; z)− Φ(y, v; z)|2 ≤
(
K|x− y|2 + λ∗|u− v|2

)
(|z|2 ∧ 1).

Moreover, I assume that the growth at infinity of the coefficient Φ is limited in
the following sense: there exists g ∈ L2(Rd) ∩ L∞(Rd) such that

(6.3) |Φ(x, u; z)|2 ≤ |g(x)|2
(
|u|2 + 1

)
(|z|2 ∧ 1), ∀x ∈ Rd, u ∈ R, z ∈ R.

Here are the consequences of the Clausius theorem:
If the physical phenomenon associated with the conservation law was reversible,
that is if the Lévy-type process u was regular in the space variable x ∈ Rd, the
quantity of entropy η (u (x, t)) would be conserved thus

d (η (u (x, t))) + divx (ϕ (u (x, t))) dt = d (H (u (x, t)))

where H (u (x, t)) is the entropy source. If A, η and ϕ were regular functions,
the two conservation laws could be written
(6.4)

d (u (x, t)) +A
′
(u (x, t)) .∇x (u (x, t)) dt =

∫
|z|>0

Φ (x, u (x, t) ; z) Ñ(dz, dt)

and
d (η (u (x, t))) + ϕ

′
(u (x, t)) .∇x (u (x, t)) dt = d (H (u (x, t))) .
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I can notice that the first one implies that u would have a càdlàg modification.

To find the entropy source, I use the Itô Lemma found in [1] or in [2], for any
convex function η ∈ C2 (R) and a process u solution of (6.4):

η(u(x, t))− η(u(x, 0)) = −
∫ t

0

η
′
(u(x, s−))divx (A(u(x, s))) ds

−
∫ t

0

η
′
(u(x, s−))

∫
|z|>0

Φ(x, u(x, s); z)ν(dz)ds

+

∫ t

0

∫
|z|>0

η

(
u(x, s−) + Φ(x, u(x, s); z)

)
− η (u(x, s−)) ν(dz)ds

+

∫ t

0

∫
|z|>0

(
η

(
u(x, s−) + Φ(x, u(x, s); z)

)
− η (u(x, s−))

)
Ñ(dz, ds)

Using the càdlàg modification of u, it can be written in the differential form:

dη(u(x, t)) = −η
′
(u(x, t))

[
divx (A(u(x, t)) +

∫
|z|>0

Φ(x, u(x, t); z)ν(dz)

]
dt

+

∫
|z|>0

(
η

(
u(x, t) + Φ(x, u(x, t); z)

)
− η (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
η

(
u(x, t−) + Φ(x, u(x, t); z)

)
− η (u(x, t−))

)
Ñ(dz, dt)

(6.5)

Using the definition of the entropy flux which is ϕ′(ξ) = η′(ξ)A′(ξ),∀ξ ∈ R,
I get the definition of the entropy source

dH(u(x, t)) = −η
′
(u(x, t))

∫
|z|>0

Φ(x, u(x, t); z)ν(dz)dt

+

∫
|z|>0

(
η

(
u(x, t) + Φ(x, u(x, t); z)

)
− η (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
η

(
u(x, t−) + Φ(x, u(x, t); z)

)
− η (u(x, t−))

)
Ñ(dz, dt).

If the physical phenomenon associated with the conservation law was irre-
versible, that is if the Lévy-type process u was not regular in the space variable
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x ∈ Rd, that would create an entropy defect which could be written

d
(
η (u (x, t))

)
+ divx (ϕ (u (x, t))) dt+ η

′
(u(x, t))

∫
|z|>0

Φ(x, u(x, t); z)ν(dz)dt

−
∫
|z|>0

(
η

(
u(x, t) + Φ(x, u(x, t); z)

)
− η (u(x, t))

)
ν(dz)dt

−
∫
|z|>0

(
η

(
u(x, t−) + Φ(x, u(x, t); z)

)
− η (u(x, t−))

)
Ñ(dz, dt) ≤ 0.

(6.6)

This inequality is a weak in space formulation of the conservation law with
a source term which is a pure jump Lévy noise. It is written with the test
functions φ ∈ C∞

c (Rd;R+), for all fixed t ∈ R+, almost surely, in the following
way:∫

Rd

φ(x)
(
η (u (x, t))− η (u (x, 0))

)
dx−

∫
Rd

∫ t

0

ϕ (u(x, s)) ds.∇xφ(x)dx

+

∫
Rd

φ(x)

∫ t

0

η
′
(u(x, s))

∫
|z|>0

Φ(x, u(x, s); z)ν(dz)dsdx

−
∫
Rd

φ(x)

∫ t

0

∫
|z|>0

(
η

(
u(x, s) + Φ(x, u(x, s); z)

)
− η (u(x, s))

)
ν(dz)dsdx

−
∫
Rd

φ(x)

∫ t

0

∫
|z|>0

(
η

(
u(x, s−) + Φ(x, u(x, s); z)

)

− η (u(x, s−))

)
Ñ(dz, ds)dx ≤ 0.

6.2. Kinetic solution

To get the kinetic formulation of
(6.7)

d (u (x, t, ω)) + divx (A (u (x, t, ω))) dt =

∫
|z|>0

Φ (x, u (x, t, ω) ; z) Ñ(dz, dt, ω),

I perform the operation dx⊗δu(x,t,ω) (dξ) to both sides of the equality and then
I apply the Clausius theorem method (the variable ω is now omitted):
If u was regular in the space variable x ∈ Rd, that is if the physical phenomenon
associated with (6.7) was reversible, I would obtain(

d (u (x, t) dx) +A
′
(u (x, t)) .∇x (u (x, t)) dtdx

)
⊗ δu(x,t) (dξ)

=

∫
|z|>0

Φ (x, u (x, t) ; z) Ñ(dz, dt)dx⊗ δu(x,t) (dξ) .

(6.8)
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The ’chain rule’ is untrue for Lévy-type processes, instead I use a weak in x, ξ
Itô Lemma:

d (χ (ξ, u (x, t)) dξdx) = −
∫
|z|>0

Φ(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

+ du (x, t) dx⊗ δu(x,t) (dξ)−
∫
|z|>0

Φ (x, u (x, t) ; z) dx⊗ δu(x,t) (dξ) Ñ(dz, dt)

+

∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

+

∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt).

Remark 6.1. Digression on the weak in x, ξ Itô Lemma for Lévy-type processes.
If φ ∈ C∞

c (R), then the Itô Lemma applied to the process u gives (see equality
(6.5)):

dφ(u(x, t)) =

− φ
′
(u(x, t))

[
A

′
(u (x, t)) .∇x (u (x, t)) +

∫
|z|>0

Φ(x, u(x, t); z)ν(dz)

]
dt

+

∫
|z|>0

(
φ

(
u(x, t) + Φ(x, u(x, t); z)

)
− φ (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
φ

(
u(x, t−) + Φ(x, u(x, t); z)

)
− φ (u(x, t−))

)
Ñ(dz, dt).

that I can write

dφ(u(x, t)) = φ
′
(u(x, t))

[
d (u (x, t))−

∫
|z|>0

Φ (x, u (x, t) ; z) Ñ(dz, dt)

]

− φ
′
(u(x, t))

∫
|z|>0

Φ(x, u(x, t); z)ν(dz)dt

+

∫
|z|>0

(
φ

(
u(x, t) + Φ(x, u(x, t); z)

)
− φ (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
φ

(
u(x, t−) + Φ(x, u(x, t); z)

)
− φ (u(x, t−))

)
Ñ(dz, dt).

I can multiply by h(x) for any h ∈ C∞
c

(
Rd
)
, and integrate over Rd against dx
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to obtain:

d

(∫
Rd

h(x)φ(u(x, t))dx

)
=

−
∫
Rd

h(x)φ
′
(u(x, t))

∫
|z|>0

Φ(x, u(x, t); z)ν(dz)dxdt

+

∫
Rd

h(x)φ
′
(u(x, t))

[
d (u (x, t))−

∫
|z|>0

Φ (x, u (x, t) ; z) Ñ(dz, dt)

]
dx

+

∫
Rd

h(x)

∫
|z|>0

(
φ

(
u(x, t) + Φ(x, u(x, t); z)

)
− φ (u(x, t))

)
ν(dz)dxdt

+

∫
|z|>0

∫
Rd

h(x)

(
φ

(
u(x, t−) + Φ(x, u(x, t); z)

)
− φ (u(x, t−))

)
dxÑ(dz, dt)

which can be written

d

(∫
Rd×R

h(x)φ
′
(ξ)χ (ξ, u (x, t)) dξdx

)

=

∫
Rd×R

h(x)φ
′
(ξ) du (x, t) dx⊗ δu(x,t) (dξ)

−
∫
Rd×R

h(x)φ
′
(ξ)

∫
|z|>0

Φ(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

−
∫
Rd×R

h(x)φ
′
(ξ)

∫
|z|>0

Φ (x, u (x, t) ; z) Ñ(dz, dt)dx⊗ δu(x,t) (dξ)

+

∫
|z|>0

∫
Rd×R

h(x)φ
′
(ξ)

(
χ

(
ξ, u(x, t) + Φ(x, u(x, t); z)

)

− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

+

∫
|z|>0

∫
Rd×R

h(x)φ
′
(ξ)

(
χ

(
ξ, u(x, t−) + Φ(x, u(x, t); z)

)

− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt).
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I obtain the weak in x, ξ Itô formula

d (χ (ξ, u (x, t)) dξdx) = −
∫
|z|>0

Φ(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

+ du (x, t) dx⊗ δu(x,t) (dξ)−
∫
|z|>0

Φ (x, u (x, t) ; z) dx⊗ δu(x,t) (dξ) Ñ(dz, dt)

+

∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

+

∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt).

Then, using the following formula

A
′
(ξ).∇x

(
χ (ξ, u(x, t))

)
= A

′
(u (x, t)) .∇x (u(x, t)) dx⊗ δu(x,t)(dξ),

and the weak in x, ξ Itô Lemma, the equation (6.8) would become

d (χ (ξ, u (x, t)) dξdx) +A
′
(ξ).∇x

(
χ (ξ, u(x, t))

)
dt

+

∫
|z|>0

Φ(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt)

= 0.

If the physical phenomenon associated with the conservation law was irre-
versible, that is if u was not regular in x ∈ Rd, the entropy defect created over
time would be written

d (χ (ξ, u (x, t)) dξdx) +A
′
(ξ).∇x

(
χ (ξ, u(x, t))

)
dt

+

∫
|z|>0

Φ(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt)

= ∂ξm (dx, dt, dξ)

with m : Ω → M+
b

(
Rd × [0,+∞)× R

)
a non-negative entropy defect random

measure where M+
b denotes the set of all finite Borel non-negative measures.
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Conclusion : The kinetic formulation weak in the space variable x and in
ξ (but not in the time variable) of the hyperbolic scalar conservation law
with a source term which is a pure jump Lévy noise, can be written ∀g ∈
C∞

c

(
Rd × Rξ

)
, ∀0 ≤ s ≤ t < +∞, almost surely,

∫
Rd×Rξ

χ (ξ, u (x, t)) g (x, ξ) dxdξ −
∫
Rd×Rξ

χ (ξ, u (x, s)) g (x, ξ) dxdξ

=

∫ t

s

∫
Rd×Rξ

χ (ξ, u (x, r))A
′
(ξ) .∇x (g (x, ξ)) dxdξdr

+

∫ t

s

∫
Rd

∫
Rξ

g (x, ξ)

∫
|z|>0

Φ(x, ξ; z)ν(dz)δu(x,r) (dξ) dxdr

−
∫ t

s

∫
Rd

∫
Rξ

g (x, ξ)

∫
|z|>0

(
χ

(
ξ, u(x, r) + Φ(x, u(x, r); z)

)

− χ (ξ, u(x, r))

)
ν(dz)dξdx dr

−
∫ t

s

∫
Rd

∫
Rξ

∫
|z|>0

g (x, ξ)

(
χ

(
ξ, u(x, r−) + Φ(x, u(x, r); z)

)

− χ (ξ, u(x, r−))

)
dξdx Ñ(dz, dr)

−
∫ t

s

∫
Rd×Rξ

∂ξg (x, ξ)m (dx, dr, dξ)

or can be written∫
Rd×Rξ

g (x, ξ)1u(x,t)>ξdxdξ −
∫
Rd×Rξ

g (x, ξ)1u(x,s)>ξdxdξ

=

∫ t

s

∫
Rd×Rξ

1u(x,r)>ξ ×A
′
(ξ) .∇x (g (x, ξ)) dxdξdr

+

∫ t

s

∫
Rd

∫
Rξ

g (x, ξ)

∫
|z|>0

Φ(x, ξ; z)ν(dz)δu(x,r) (dξ) dxdr

−
∫ t

s

∫
Rd

∫
Rξ

g (x, ξ)

∫
|z|>0

(
1u(x,r)+Φ(x,u(x,r);z)>ξ − 1u(x,r)>ξ

)
ν(dz)dξdx dr

−
∫ t

s

∫
Rd

∫
Rξ

∫
|z|>0

g (x, ξ)
(
1u(x,r−)+Φ(x,u(x,r);z)>ξ

− 1u(x,r−)>ξ

)
dξdxÑ(dz, dr)

−
∫ t

s

∫
Rd×Rξ

∂ξg (x, ξ)m (dx, dr, dξ)
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7. Conclusion: case of the hyperbolic scalar conservation
law with a source term which is a general Lévy noise

7.1. Entropy solution

Gathering the assumptions of sections 3.1, 5.1 and 6.1, I will apply the Clausius
theorem method to

d (u (x, t, ω)) + divx (A (u (x, t, ω))) dt = G (u(x, t, ω)) dt

+Φ1 (x, u (x, t, ω)) dW (t, ω) +

∫
|z|>0

Φ2 (x, u (x, t, ω) ; z) Ñ(dz, dt, ω),
(7.1)

to get the definition of entropy solutions. Here are the consequences of the
Clausius theorem (the variable ω being omitted).

If the physical phenomenon associated with the conservation law was reversible,
that is if the Lévy-type process u was regular in the space variable x ∈ Rd, the
quantity of entropy η (u (x, t)) would be conserved thus

d (η (u (x, t))) + divx (ϕ (u (x, t))) dt = d (H (u (x, t)))

where H (u (x, t)) is the entropy source. If A, η and ϕ were regular functions,
the two conservation laws could be written
(7.2)

d (u (x, t)) +A
′
(u (x, t)) .∇x (u (x, t)) dt =

∫
|z|>0

Φ2 (x, u (x, t) ; z) Ñ(dz, dt)

and

d (η (u (x, t))) + ϕ
′
(u (x, t)) .∇x (u (x, t)) dt = d (H (u (x, t))) .

I can notice that the first one implies that u would have a càdlàg modification.

To find the entropy source, I use the Itô Lemma found in [1] (theorem 4.4.7
page 251), for any convex function η ∈ C2 (R) and a process u solution of (7.2):

dη(u(x, t)) = −η
′
(u(x, t))

[
divx (A(u(x, t)) +

∫
|z|>0

Φ2(x, u(x, t); z)ν(dz)

]
dt

+ η
′
(u(x, t))

[
G (u(x, t)) dt+Φ1 (x, u(x, t)) dW (t)

]
+

1

2
η

′′
(u(x, t)) ∥Φ1 (x, u(x, t))∥2L2(H;R) dt

+

∫
|z|>0

(
η

(
u(x, t) + Φ2(x, u(x, t); z)

)
− η (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
η

(
u(x, t−) + Φ2(x, u(x, t); z)

)
− η (u(x, t−))

)
Ñ(dz, dt)

(7.3)
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Using the definition of the entropy flux which is ϕ′(ξ) = η′(ξ)A′(ξ),∀ξ ∈ R,
I get the definition of the entropy source:

dH(u(x, t)) = −η
′
(u(x, t))

∫
|z|>0

Φ2(x, u(x, t); z)ν(dz)dt

+ η
′
(u(x, t))

[
G (u(x, t)) dt+Φ1 (x, u(x, t)) dW (t)

]
+

1

2
η

′′
(u(x, t)) ∥Φ1 (x, u(x, t))∥2L2(H;R) dt

+

∫
|z|>0

(
η

(
u(x, t) + Φ2(x, u(x, t); z)

)
− η (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
η

(
u(x, t−) + Φ2(x, u(x, t); z)

)
− η (u(x, t−))

)
Ñ(dz, dt).

If the physical phenomenon associated with the conservation law was irre-
versible, that is if the Lévy-type process u was not regular in the space variable
x ∈ Rd, that would create an entropy defect which could be written

d
(
η(u (x, t))

)
+ divx (ϕ2 (u (x, t))) dt

+ η
′
(u(x, t))

∫
|z|>0

Φ2(x, u(x, t); z)ν(dz)dt

− η
′
(u(x, t))

[
G (u(x, t)) dt+Φ1 (x, u(x, t)) dW (t)

]
− 1

2
η

′′
(u(x, t)) ∥Φ1 (x, u(x, t))∥2L2(H;R) dt

−
∫
|z|>0

(
η

(
u(x, t) + Φ2(x, u(x, t); z)

)
− η (u(x, t))

)
ν(dz)dt

−
∫
|z|>0

(
η

(
u(x, t−) + Φ2(x, u(x, t); z)

)
− η (u(x, t−))

)
Ñ(dz, dt) ≤ 0.

(7.4)

This inequality is a weak in space formulation of the conservation law with a
source term which is a general Lévy noise. It is written with the test functions
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φ ∈ C∞
c (Rd;R+), for all fixed t ∈ R+, almost surely, in the following way :

∫
Rd

φ(x)
(
η (u (x, t))− η (u (x, 0))

)
dx−

∫
Rd

∫ t

0

ϕ (u(x, s)) ds.∇xφ(x)dx

− 1

2

∫
Rd

φ(x)

∫ t

0

η
′′
(u (x, s)) ∥Φ1 (x, u (x, s)) ∥2L2(H,R)dsdx

−
∫
Rd

φ(x)

∫ t

0

η
′
(u (x, s)) Φ1 (x, u (x, s)) dW (s) dx

+

∫
Rd

φ(x)

∫ t

0

η
′
(u(x, s))

[ ∫
|z|>0

Φ2(x, u(x, s); z)ν(dz)−G (u(x, s))

]
dsdx

−
∫
Rd

φ(x)

∫ t

0

∫
|z|>0

(
η

(
u(x, s) + Φ2(x, u(x, s); z)

)
− η (u(x, s))

)
ν(dz)dsdx

−
∫
Rd

φ(x)

∫ t

0

∫
|z|>0

(
η

(
u(x, s−)

+ Φ2(x, u(x, s); z)

)
− η (u(x, s−))

)
Ñ(dz, ds)dx ≤ 0.

7.2. Kinetic solution

To get the kinetic formulation of

d (u (x, t, ω)) + divx (A (u (x, t, ω))) dt = G (u(x, t, ω)) dt

+Φ1 (x, u (x, t, ω)) dW (t, ω) +

∫
|z|>0

Φ2 (x, u (x, t, ω) ; z) Ñ(dz, dt, ω),
(7.5)

I perform the operation dx⊗δu(x,t,ω) (dξ) to both sides of the equality and then
I apply the Clausius theorem method (the variable ω is now omitted):

If u was regular in the space variable x ∈ Rd, that is if the physical phenomenon
associated with (7.5) was reversible, I would obtain

(
d (u (x, t) dx) +A

′
(u (x, t)) .∇x (u (x, t)) dtdx

)
⊗ δu(x,t) (dξ)

= (G (u(x, t)) dt+Φ1 (x, u (x, t)) dW (t)) dx⊗ δu(x,t) (dξ)

+

∫
|z|>0

Φ2 (x, u (x, t) ; z) Ñ(dz, dt)dx⊗ δu(x,t) (dξ) .

(7.6)

The ’chain rule’ is untrue for Lévy-type processes, instead I use a weak in x, ξ
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Itô Lemma:

d (χ (ξ, u (x, t)) dξdx) = −
∫
|z|>0

Φ2(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

+ du (x, t) dx⊗ δu(x,t) (dξ)−
∫
|z|>0

Φ2 (x, u (x, t) ; z) dx⊗ δu(x,t) (dξ) Ñ(dz, dt)

+

∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

+

∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt)

− 1

2
∂ξ

(
∥Φ1 (x, ξ) ∥2L2(H,R)dx⊗ δu(x,t) (dξ)

)
dt.

Remark 7.1. Digression on the weak in x, ξ Itô Lemma for general Lévy-type
processes.
If φ ∈ C∞

c (R), then the Itô Lemma applied to the process u gives (see equality
(7.3)):

dφ(u(x, t)) =

− φ
′
(u(x, t))

[
A

′
(u (x, t)) .∇x (u (x, t)) +

∫
|z|>0

Φ2(x, u(x, t); z)ν(dz)

]
dt

+ φ
′
(u(x, t))

[
G (u(x, t)) dt+Φ1 (x, u(x, t)) dW (t)

]
+

1

2
φ

′′
(u(x, t)) ∥Φ1 (x, u(x, t))∥2L2(H;R) dt

+

∫
|z|>0

(
φ

(
u(x, t) + Φ2(x, u(x, t); z)

)
− φ (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
φ

(
u(x, t−) + Φ2(x, u(x, t); z)

)
− φ (u(x, t−))

)
Ñ(dz, dt)

that I can write

dφ(u(x, t)) = φ
′
(u(x, t))

[
d (u (x, t))−

∫
|z|>0

Φ2 (x, u (x, t) ; z) Ñ(dz, dt)

]

+
1

2
φ

′′
(u(x, t)) ∥Φ1 (x, u(x, t))∥2L2(H;R) dt

− φ
′
(u(x, t))

∫
|z|>0

Φ2(x, u(x, t); z)ν(dz)dt

+

∫
|z|>0

(
φ

(
u(x, t) + Φ2(x, u(x, t); z)

)
− φ (u(x, t))

)
ν(dz)dt

+

∫
|z|>0

(
φ

(
u(x, t−) + Φ2(x, u(x, t); z)

)
− φ (u(x, t−))

)
Ñ(dz, dt).
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I can multiply by h(x) for any h ∈ C∞
c

(
Rd
)
, and integrate over Rd against dx

to obtain:

d

(∫
Rd

h(x)φ(u(x, t))dx

)
= −

∫
Rd

h(x)φ
′
(u(x, t))

∫
|z|>0

Φ2(x, u(x, t); z)ν(dz)dxdt

+

∫
Rd

h(x)φ
′
(u(x, t))

[
d (u (x, t))−

∫
|z|>0

Φ2 (x, u (x, t) ; z) Ñ(dz, dt)

]
dx

+
1

2

∫
Rd

h(x)φ
′′
(u (x, t)) ∥Φ1 (x, u (x, t)) ∥2L2(H,R)dtdx

+

∫
Rd

h(x)

∫
|z|>0

(
φ

(
u(x, t) + Φ2(x, u(x, t); z)

)
− φ (u(x, t))

)
ν(dz)dxdt

+

∫
|z|>0

∫
Rd

h(x)

(
φ

(
u(x, t−) + Φ2(x, u(x, t); z)

)
− φ (u(x, t−))

)
dxÑ(dz, dt)

which can be written

d

(∫
Rd×R

h(x)φ
′
(ξ)χ (ξ, u (x, t)) dξdx

)
=−

∫
Rd×R

h(x)φ
′
(ξ)

∫
|z|>0

Φ2(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

+

∫
Rd×R

h(x)φ
′
(ξ) du (x, t) dx⊗ δu(x,t) (dξ)

+
1

2

∫
Rd×R

h(x)φ
′′
(ξ) ∥Φ1 (x, ξ) ∥2L2(H,R)dx⊗ δu(x,t) (dξ) dt

−
∫
Rd×R

h(x)φ
′
(ξ)

∫
|z|>0

Φ2 (x, u (x, t) ; z) Ñ(dz, dt)dx⊗ δu(x,t) (dξ)

+

∫
|z|>0

∫
Rd×R

h(x)φ
′
(ξ)

(
χ

(
ξ, u(x, t) + Φ2(x, u(x, t); z)

)

− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

+

∫
|z|>0

∫
Rd×R

h(x)φ
′
(ξ)

(
χ

(
ξ, u(x, t−) + Φ2(x, u(x, t); z)

)

− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt).
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I obtain the weak in x, ξ Itô formula

d (χ (ξ, u (x, t)) dξdx) = −
∫
|z|>0

Φ2(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

+ du (x, t) dx⊗ δu(x,t) (dξ)−
∫
|z|>0

Φ2 (x, u (x, t) ; z) dx⊗ δu(x,t) (dξ) Ñ(dz, dt)

+

∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

+

∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt)

− 1

2
∂ξ

(
∥Φ1 (x, ξ) ∥2L2(H,R)dx⊗ δu(x,t) (dξ)

)
dt.

Then, using the following formula

A
′
(ξ).∇x

(
χ (ξ, u(x, t))

)
= A

′
(u (x, t)) .∇x (u(x, t)) dx⊗ δu(x,t)(dξ),

and the weak in x, ξ Itô Lemma, equation (7.6) would become

d (χ (ξ, u (x, t)) dξdx) +A
′
(ξ).∇x

(
χ (ξ, u(x, t))

)
dt

+

∫
|z|>0

Φ2(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt)

− Φ1 (x, ξ) dx⊗ δu(x,t) (dξ) dW (t)

+
1

2
∂ξ

(
∥Φ1 (x, ξ) ∥2L2(H,R)dx⊗ δu(x,t) (dξ)

)
dt

−G(ξ)dx⊗ δu(x,t) (dξ) dt = 0.

If the physical phenomenon associated with the conservation law was irre-
versible, that is if u was not regular in x ∈ Rd, the entropy defect created over
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time would be written

d (χ (ξ, u (x, t)) dξdx) +A
′
(ξ).∇x

(
χ (ξ, u(x, t))

)
dt

+

∫
|z|>0

Φ2(x, ξ; z)ν(dz)dx⊗ δu(x,t) (dξ) dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t))

)
dξdx ν(dz)dt

−
∫
|z|>0

(
χ

(
ξ, u(x, t−) + Φ2(x, u(x, t); z)

)
− χ (ξ, u(x, t−))

)
dξdx Ñ(dz, dt)

− Φ1 (x, ξ) dx⊗ δu(x,t) (dξ) dW (t) +
1

2
∂ξ

(
∥Φ1 (x, ξ) ∥2L2(H,R)dx⊗ δu(x,t) (dξ)

)
dt

−G(ξ)dx⊗ δu(x,t) (dξ) dt = ∂ξm (dx, dt, dξ)

with m : Ω → M+
b

(
Rd × [0,+∞)× R

)
a non-negative entropy defect random

measure where M+
b denotes the set of all finite Borel non-negative measures.

Conclusion : The kinetic formulation weak in the space variable x and in ξ
(but not in the time variable) of the hyperbolic scalar conservation law with a
source term which is a general Lévy noise, can be written ∀g ∈ C∞

c

(
Rd × Rξ

)
,

∀0 ≤ s ≤ t < +∞, almost surely,

∫
Rd×Rξ

g (x, ξ)1u(x,t)>ξdxdξ −
∫
Rd×Rξ

g (x, ξ)1u(x,s)>ξdxdξ

=

∫ t

s

∫
Rd×Rξ

1u(x,r)>ξ ×A
′
(ξ) .∇x (g (x, ξ)) dxdξdr

+

∫ t

s

∫
Rd

∫
Rξ

g (x, ξ)

∫
|z|>0

Φ2(x, ξ; z)ν(dz)δu(x,r) (dξ) dxdr

−
∫ t

s

∫
Rd

∫
Rξ

g (x, ξ)

∫
|z|>0

(
1u(x,r)+Φ2(x,u(x,r);z)>ξ − 1u(x,r)>ξ

)
ν(dz)dξdx dr

−
∫ t

s

∫
Rd

∫
Rξ

∫
|z|>0

g (x, ξ)

(
1u(x,r−)+Φ2(x,u(x,r);z)>ξ

− 1u(x,r−)>ξ

)
dξdx Ñ(dz, dr)

+

∫ t

s

∫
Rd

∫
Rξ

g (x, ξ) Φ1 (x, ξ) δu(x,r,ω) (dξ) dxdW (r)

+
1

2

∫ t

s

∫
Rd

∫
Rξ

∂ξg (x, ξ) ∥Φ1 (x, ξ) ∥2L2(H,R)δu(x,t) (dξ) dxdt

+

∫ t

s

∫
Rd

∫
Rξ

g (x, ξ)G(ξ)δu(x,r) (dξ) dxdr −
∫ t

s

∫
Rd×Rξ

∂ξg (x, ξ)m (dx, dr, dξ) .
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to space-time lévy noise. Applied Mathematics 6, 10 (2015), 1755.

[3] Bauzet, C., Vallet, G., and Wittbold, P. The cauchy problem for conser-
vation laws with a multiplicative stochastic perturbation. Journal of Hyperbolyc
Differential Equations 9 (2012), 661–709.

[4] Biswas, Z. D., Karlsen, K. H., and Majee, A. K. Conservation laws driven
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