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a-almost Ricci solitons on (k, i)'-almost Kenmotsu
manifolds

Arpan Sardatﬂ and Avijit Sarkarm

Abstract. We consider a-almost Ricci solitons on (k, 1)'-almost Ken-
motsu manifolds with an n-parallel Ricci tensor. Then we study a-almost
Ricci solitons on (k, pt)'-almost Kenmotsu manifolds satisfying the curva-
ture conditions P.¢ = 0, Q.P = 0 and Q.R = 0 respectively. Finally, we
construct an example of a 3-dimensional (k, 11)’-almost Kenmotsu mani-
fold which admits an a-almost Ricci soliton.
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1. Introduction

In 1982, the notion of Ricci flow was introduced by Hamilton [I6] to find
the canonical metric on a smooth manifold. The Ricci flow is an evolution
equation for metrics on a Riemannian manifold M defined as follows:

0
(1.1) 579 =25,

where S denotes the Ricci tensor and ¢ is a metric tensor. Ricci solitons are
special solutions of the Ricci flow equation of the form g = o(t) f{g with
the initial condition ¢g(0) = g, where f;, t € {R} is a family of diffeomorphisms
on M and o(t) is the scaling function. A Ricci soliton is a generalization of an
Einstein metric. We recall the notion of Ricci solitons according to [6]. On the
manifold M, a Ricci soliton is a triplet (g, V, A) with ¢ a Riemannian metric,
V a vector field (called the soliton vector field) and A a real scalar such that

(1.2) £yg+25+2\g =0,

where £ is the Lie derivative. Metrics satisfying are interesting and useful
in physics and are often referred to as quasi-Einstein metrics([5],[4]).

The Ricci soliton is said to be shrinking, steady or expanding whenever \
is negative, zero or positive, respectively. Ricci solitons have been studied by
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several authors such as ([10], [9], [8], [17],[16],[22],[24],[23],[25],[30]) and many
others.

Ricci solitons have several generalizations, such as almost Ricci solitons
([12],[13],[15]), n-Ricci solitons ([11,[2],[7]), generalized Ricci solitons and many
others.

As a generalization of Ricci soliton, Pigola et. al [21] introduced the notion
of an almost Ricci soliton by considering the constant A as a smooth function.
Recently, Gomes et. al [15] extended the notion of an almost Ricci soliton to
a-almost Ricci soliton (briefly, a-ARS) on a complete Riemannian manifold by

(1.3) %fvg+s+xg=o,

where o : M — R is a smooth function. In particular, a Ricci soliton is the
1-ARS with constant A. In [14], Ghosh and Patra studied a-ARS on K-contact
metric manifolds.

The projective curvature tensor P [29] in a manifold (M?"*1, g) is defined
by

(14 PUV)W = RUV)W — o[V, W)QU — (U, W)QV],

where @ is the Ricci tensor operator defined by S(U,V) = ¢(QU,V) and
UV, W € x(M), x(M) being the Lie algebra of vector fields of M.

The paper is organized as follows:

After preliminaries in Section 2, we consider a-almost Ricci solitons on
(k, n)'-almost Kenmotsu manifolds with an n-parallel Ricci tensor in Section 3.
Next, in Section 4 we study a-almost Ricci solitons on (k, 1)’ -almost Kenmotsu
manifolds satisfying the curvature condition P.¢p = 0. Section 5 is devoted to
the study off a-almost Ricci solitons on (k, 1)’-almost Kenmotsu manifolds sat-
isfying the curvature condition Q.P = 0. In Section 6, we investigate a-almost
Ricci solitons on (k, u)-almost Kenmotsu manifolds satisfying the curvature
condition @.R = 0. Finally, in Section 7 we construct an example of a 3-
dimensional (k, u)’-almost Kenmotsu manifold admitting an a-almost Ricci
soliton.

2. Preliminaries

Let (M?"*! g) be a smooth Riemannian manifold of dimension 2n + 1. On
this manifold if there exist a (1,1)-type tensor field ¢, a vector field £ and a
1-form 7 satisfying

(2.1) ¢°U =-U+nU)E n(§) =1,

(2.2) g(eU, ¢V) = g(U, V) —n(U)n(V)

for any vector fields U, V, then (¢,&,n,9g) is called an almost contact metric
structure and M?"*! is called an almost contact metric manifold (see [3]).
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Usually € and 7 are called the Reeb or characteristic vector field and an almost
contact 1-form respectively.

The fundamental 2-form ® on an almost contact metric manifold M?2"*1 is
defined by ®(U, V) = g(U, ¢V) for any vector fields U and V.

Let (M2"*! ¢ & n,g) be an almost contact manifold. We define on the
product M2t x R an almost complex structure J by

where U denotes a vector field tangent to M?2"+1, t is the coordinate of R and
f is a C>°-function on M?"+1 x R. We denote by [¢, ¢] the Nijenhuis tensor of
o (see [3)), if [¢, @] = —2dn ® £ (or equivalently, the almost complex structure
J is integrable), then the almost contact metric structure is said to be normal.

On an almost contact metric manifold if there hold dn = 0 and d® = 2n A,
then the manifold is said to be an almost Kenmotsu manifold (see [20]). A
normal almost Kenmotsu manifold is said to be a Kenmotsu manifold (see
[18]) and this is also equivalent to

(2.3) (Vu)V = g(eU, V)§ —n(V)oU

for any vector fields U, V', where V denotes the Levi-Civita connection of the
metric g. On an almost Kenmotsu manifold, we set h = %i’ ¢pand b =ho ¢,
where £ is the Lie derivative. It is easily seen that the above two operators are
both symmetric. The following formulas can be seen in ([12],[11])

(2.4) he=he=0, tr(h)=tr(h')=0, ho+¢h=0,

(2.5) Vyé=U—nU)E+ hU.

According to Pastore and Saltarelli [20], on an almost Kenmotsu manifold
(M?"*1 ¢, & m, g), if € belongs to the generalized (k, u)’-nullity distribution,
that is,

(2.6) R(U,V)E = k(n(V)U = n(U)V) + p(n(V)W'U = n(U)h'V)

holds for certain smooth functions k and p and any vector field U,V € x(M),
then we say that M?"*! is a generalized (k, u)’-almost Kenmotsu manifold. In
particular, if both £ and p in relation are constants then M?"t! is called
a (k, p)"-almost Kenmotsu manifold [12]. If on M?"+! there holds

R(U,V)§ = kn(V)U —n(U)V) + p(n(V)RU —n(U)hV)

for any vector fields U,V and k,u € R, then M?"*! is said to be a (k, u)-
almost Kenmotsu manifold. Dileo and Pastore in [I2] proved that a (k,u)-
almost Kenmotsu manifold satisfies kK = —1 and h = 0. Therefore, we regard
(k, n)-almost Kenmotsu manifolds as a special case of (k, u)’-almost Kenmotsu

manifolds. Following Dileo and Pastore [12], on any (k, 1)’-almost Kenmotsu
manifold M?" 1 we have

(2.7) R?U = —(k+ 1)U + (k4 1)n(U)¢
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for any vector field U € x(M) and p = —2. From (2.7) we know that A’ =0
identically if and only if K = —1 and A’ # 0 everywhere if and only if k < —1.
It follows from (2.6|) that

(2.8) R(E,U)V = k(g(U, V)¢ = n(V)U) = 2(g(h'U,V)§ —n(V)R'U)

for any vector fields U, V.
Definition 2.1. A (k, p)-almost Kenmotsu manifold M is said to be an 7-
parallel Ricci tensor [27] if

9(Vu@)V, W) =0

for arbitrary vector fields U, V, W.
Proposition 2.1([28]). On a (k, u)"-almost Kenmotsu manifold with k < —1
the Ricci operator is given by

(2.9) QU = —2nU + 2n(k + 1)n(U)€ — 2nh'U,

where the Ricci operator is defined by S(U,V) = ¢g(QU, V).
Proposition 2.2. For an a-almost Ricci soliton on a (k, u)’-almost Kenmotsu
manifold we have A = —2nk.

Proof: Let (g,&, «, \) be an a-ARS on a (k, )’ -almost Kenmotsu manifold
M?" 1 Then we have

(2.10) %(i’gg)(U, V) + S(U,V) + Ag(U,V) = 0.
Now
(2.11) (£Leg)(U, V) = g(Vu&, V) + g(U, Vv§).

Using in the above equation, we get

(2.12) (£eg)(U, V) =2[g(U, V) = n(U)n(V) + g(W'U, V)].

Substituting the value of (£¢g)(U, V) from in (2.10), we have

(2.13) S(U,V)=—(a+Ng(UV)+anU)n(V) —ag(h'U,V).

Now replacing U and V' by € in the above equation and using , we get
(2.14) A= —2nk.

This completes the proof.
Again putting W = £ in (1.4)), we get

(215)  PUV)E=RUVIE~ 5-(V)QU ~ n(U)QV]
Using and in the above equation, we get
A
POVIE = (h+ 2 200U = n(O)V)

(2.16) +(u+ 5 @VIWU = n(U)R'V).
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3. a-ARS on (k,p)-almost Kenmotsu manifolds with 7-
parallel Ricci tensor

In this section we consider a-ARS on (k, u)-almost Kenmotsu manifolds
with n-parallel Ricci tensor. Then from Definition 2.1., we get

(3.1) 9(VuQ)V, W) =0.
From we have
(3.2) QV = —(a+ NV +an(V)E — ah'V.
Taking covariant differentiation of with respect to U, we obtain
(VuQ)V = —(Ua)V —(UNV + (Ua)p(V)¢ — (Ua)h'V
(3.3) +a[(Von)V)E+n(V)Vué] —aVyh'V +ah/Vy V.
Using in the foregoing equation, we obtain
(VuQ)WV = —Ua)V —(UNV + Ua)n(V)E — (Ua)h'V
+alg(U, V)€ = 2n(U)n(V)E + g(W'U,V)E+n(V)U +n(V)W'U]
(3.4) —aVyh'V 4+ ah'Vi V.

Using the above value of (VyQ)V from in (3.1), we get
—(Ua)g(V, W) — (UNg(V, W) + (Ua)g(VIn(W) — (Ua)g(h'V, W)
+alg(U, V)n(W) = 2nU)n(V)n(W) + g(h'U,V)n(W) + g(U, W)n(V')
(3.5) +g(WU,W)n(V)] — ag(Vul'V,W) + ag(h'VyV,W) = 0.

Putting V' = £ in the above equation and using (2.1, (2.5)) and (2.7)), we obtain

(3.6) UXN)n(W) + alk{g(U,W) = n(U)n(W)} — 2g(h'U, W)] = 0.
Putting W = ¢ in the above equation, we get
(3.7) (UN) =0,

which implies A = constant.
Using (3.7)) in (3.6]), we obtain
(3.8) alk{g(U, W) —n(U)n(W)} — 29(h'U,W)] = 0.
Putting U = W = ¢; in (3.8)), where {e;} is an orthonormal basis of the
tangent space at each point of the manifold and taking summation over (1 <

1 <2n+1), we get
2nka = 0,

which implies a = 0, since k < —1.
Using this values of « in (1.3)), we get

S(Uv V) - *)‘g(U; V)
Thus we can state the following:

Theorem 3.1. If a (k,p) -almost Kenmotsu manifold admits an a-almost
Ricci soliton with n-parallel Ricct tensor, then it becomes an Einstein mani-
fold.
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4. a-ARS on (k, )-almost Kenmotsu manifolds satisfying
the curvature condition P.¢p =0

In this section we study a-ARS on (k, p)’-almost Kenmotsu manifolds with
curvature condition P.¢p = 0, that is,

(4.1) (P.o)(U, V)W =0,

from which it follows that

(4.2) P(U, V)W — ¢(P(U, V)W) = 0.
Putting W = ¢ in ([4.2)), we get

(4.3) P(P(U,V)E) = 0.

Using (2.16]) in , we get

2\ m(V)oU — n(U)oV)

(4.4) +(+ 3 ) O(VISHT = n(U)8h'V)) = 0.

(k +

Replacing U by ¢U in the foregoing equation and using (2.1)) and (2.4)), we get

(k + “E2) U+ n(@)n(V)
(4.5) —~(u+ 5 )n(V)$hU = o0.

Again replacing U by ¢U and putting V = ¢ in the above equation, we get
a+ A Q

4. k+ —— —)hU = 0.

(46) (k+ 226U + -+ Sl =0

Taking inner product of (4.6) with respect to Z, we get

a—+ A «
"2)(6U,2) + (u+ -

(4.7) (k+ )g(hU, Z) = 0.

Interchanging U and Z in the above equation, we get

a+ A e
—)9(U,0Z) + (1 + 5-)g(U, hZ) = 0.

Subtracting (4.8) from (4.7), we obtain

(4.8) (k +

It follows that

(4.9) a+ A= —2nk.
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Using in the above equation, we get
a=0.
Using this value of « in , we get
S(U,V)=-xg(U,V).
Thus we can state the following:

Theorem 4.1. If a (k,p) -almost Kenmotsu manifold admits an a-almost
Ricci soliton and satisfies the curvature condition P.¢ = 0, then the manifold
s an Einstein manifold.

5. «a-ARS on (k, p)'-almost Kenmotsu manifolds satisfying
the curvature condition Q).P =0

In this section we study a-ARS on (k, 1)’ -almost Kenmotsu manifolds with
curvature condition .P = 0, which implies

(5.1) (Q.P)({U, V)W =0.
From , we get
(5.2)Q(P(U VW) — P(QU, VYW — P(U,QV )W — P(U,V)QW = 0.

Using (3.2)) in (5.2)), we get

2o+ N P(U, V)W + an(P(U, V)W)E — ah/ P(U, V)W
—an(U)P(E, V)W + aP(W'U, V)W — an(V)P(U, &)W
(5.3) +aP(U,NVYW — an(W)P(U, V)¢ + aP(U,V)K'W = 0.

Putting W = £ in the above equation, we get

{2(a+ X)) —a}P(U,V)E — ab/ P(U,V)E — an(U)P(E, V)¢
(5.4) +aP(WU,V)E — an(V)P(U,£)¢ + aP(U,h'V)E = 0.
Using in (5.4), we obtain
Ak + 22 o — @)
(5.5) +p+ ) (VIR = n(@)KV)] =

Replacing U by ¢U in the above equation, we get

(5.6) Ak + & + A

“2)U — (4 5= )hU] = 0.
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Taking the inner product of (5.6) with respect to Z, we get

a—+ A «

(57) MOk + 2 22)9(60,2) = (u+ 5

)g(hU, Z)] = 0.

Interchanging U and Z in the above equation, we get

I 2)0(6Z,0) ~ (n+ o )g(hZ,U)] = 0.

Subtracting ([5.8)) from (5.7]), we get
a+ A

(5.8) A[(k +

(5.9) Ak + " )g(oU, Z) = 0.
It follows that L
«
Ak + o ) =0,

which implies either A = 0 or a+ A = —2nk. Again using (2.14), o+ \ = —2nk
implies o = 0.
Using this value of « in (|1.3), we get
S(U,V)=-xg(U,V).
Hence we conclude the following:

Theorem 5.1. If a (k,p) -almost Kenmotsu manifold admits an a-almost
Ricci soliton and satisfies the curvature condition Q.P = 0, then either the
Ricci soliton is steady or the manifold is an Einstein manifold.

6. a-ARS on (k, p)-almost Kenmotsu manifolds satisfying
the curvature condition ).k =0

In this section we study a-ARS on (k, 1)’ -almost Kenmotsu manifolds with
curvature condition .R = 0. Therefore

(6.1) (Q.R)(U, VW =0

for all smooth vector fields U, V, W. The explicit form of the above equation is
(6.2) QR(U, V)W) — R(QU, V)W — R(U,QV)W — R(U,V)QW = 0.
Using in , we obtain

2(a + N R(U, V)W + an(R(U, V)W)E — ab/ R(U, V)W — an(U)R(E, V)W
(6.3)+aR(WU, V)W — n(V)R(U, W + aR(U, k'V)W + aR(U,V)I'W = 0.

Putting W = £ in the above equation and using (2.6), we get

(6.4) AEV)U = nU)V) + u(n(V)R'U —n(U)R'V)] = 0.



a-almost Ricci solitons on (k, i)' -almost Kenmotsu manifolds
Replacing U by ¢U in , we obtain

(6.5) Alkn(V)oU — um(V)RU] = 0.

Taking the inner product of with respect to Z, we get
(6.6) Akn(V)g(eU, Z) — pn(V)g(hU, Z)] = 0.

Interchanging U and Z in the above equation, we get

(6.7) Akn(V)g(¢Z,U) — pn(V)g(hZ,U)] = 0.
Subtracting (6.7) from , we infer
Neg(6U, Z) = 0.

This implies
Ak =0.

Since k < —1, then the above equation implies A = 0.
Thus we can state the following:

Theorem 6.1. If a (k,p) -almost Kenmotsu manifold admits an a-almost

7

Ricci soliton and satisfies the curvature condition Q.R = 0, then the Ricci

soliton is steady.

7. Example

We consider the 3-dimensional manifold M = {(x,y, z) € R}, where (z,y, z)
are the standard coordinates in R3. Let &, e, e3 be three vector fields in R3

which satisfy [12]

[5762] = —€z — €3, [5,63] = —€z — €3, [62,63] =0.

Let g be the Riemannian metric defined by

9(&,€) = glea, e2) = gles,e3) =1 and g(§, e2) = g(§, e3) = g(e2, e3) = 0.
Let 1 be the 1-form defined by n(W) = g(W,€), for any W € x(M).

Let ¢ be the (1,1)-tensor field defined by
¢ =0, ¢ex =e3, ez = —ea.
Then using the linearity of ¢ and g, we have
n(&) =1,
¢*U = U +n(U)g,
9(oU, ¢V) = g(U, V) = n(U)n(V)
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for any U,V € x(M). Thus the structure (¢,&,7n,g) is an almost contact
structure.

Moreover, h'§ =0, h'es =e3 and h'es = es.

In [I9] the authors obtained the expression for the curvature tensor and the
Ricci tensor as follows:

R(§,e2)§ = 2(e2 +e3), R(§ e2)ea = =28, R({, ex)ez = —2¢,
R(GQ, 63)5 = R(GQ, 63)62 = R(QQ, 63)63 = 0,
R(€7 63)§ = 2(62 + 63)7 R(f, 63)62 = 7255 R(ga 63)63 = 725

With the help of the expressions of the curvature tensor, we conclude that
the characteristic vector field £ belongs to the (k, u)-nullity distribution with
k=—-2and p=—-2.

Using the expression of the curvature tensor, we find the values of the Ricci
tensor as follows:

5(575) = —4, 5(6’2762) = 5(63,63) =-2.
From we obtain
S(&,€) = =X, S(e2,e2) = —(a+ A) and S(es, e3) = —(a + A).

Therefore « = —2 and A = 4.
Hence it is a-ARS on (k, u)’-almost Kenmotsu manifolds.
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