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A note on uniqueness of meromorphic functions sharing
two singleton sets related to a question of Chen

Abhijit Banerjee12 and Arpita Kundu3

Abstract. In this article we study the uniqueness problem of a special
class of meromorphic functions sharing two singleton sets Our result will
provide the best possible answer of a question made in [1] as well as in [2]
to date, which radically improves all the results of [1] and [2] and in turn
answers a question of [8] as well. We have also proposed two questions
relevant to our result. Some examples have been shown by us to show
that certain conditions used in the paper can not be dropped.
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1. Introduction Definitions and Results

In this paper, a meromorphic (resp. entire) function always means a mero-
morphic (resp. entire) function in the whole complex plane C. It is assumed
that the reader is familiar with the elementary concepts of Nevanlinna theory
and in particular with its standard terms and symbols. We use M(C) (resp.
E(C)) to denote the field of meromorphic (resp. entire) functions in C. Let
S ⊂ C ∪ {∞} be a set of distinct complex numbers and let f ∈M(C).

Definition 1.1. For a non-constant meromorphic function f and a ∈ C, let
Ef (a) = {(z, p) ∈ C×N : f(z) = a with multiplicity p}

(
Ef (a) = {(z, 1) ∈ C×

N : f(z) = a}). Then we say f , g share the value a CM(IM) if Ef (a) =
Eg(a)

(
Ef (a) = Eg(a)

)
. For a = ∞, we define Ef (∞) := E1/f (0)

(
Ef (∞) :=

E1/f (0)
)
.

Definition 1.2. For a non-constant meromorphic function f and S ⊂ C ∪
{∞}, let Ef (S) =

⋃
a∈S{(z, p) ∈ C × N : f(z) = a with multiplicity p}(

Ef (S) =
⋃
a∈S{(z, 1) ∈ C× N : f(z) = a}

)
. Then we say f , g share the set S

CM(IM) if Ef (S) = Eg(S)
(
Ef (S) = Eg(S)

)
.

Definition 1.3. We define a subset M1(C) of M(C) defined by M1(C) = {f ∈
M(C) | f has only finitely many poles in C}.
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According to Chen [2] the subsets S1, S2, . . . , Sq of C ∪ {∞} are called
unique range sets of meromorphic functions in M(C) if for any two elements f
and g of the family M(C) the conditions Ef (Sj) = Eg(Sj) imply f(z) ≡ g(z),
for each j (j = 1, 2, . . . , q).

Actually the definition of URS was given first in [11] for q = 1. We as-
sume that the readers are familiar with the standard notations of Nevanlinna
theory such as the Nevanlinna characteristic function T (r, f), the proximity
function m(r, f), the counting function (reduced counting function) N(r,∞; f)
(N(r,∞; f)) and so on, which are well explained in [10].

For f ∈M(C), the order and the lower order of f are defined as

λ(f) = lim sup
r−→∞

log T (r, f)

log r
and µ(f) = lim inf

r−→∞

log T (r, f)

log r
,

respectively.
By S(r, f) we mean any quantity satisfying S(r, f) = O(log(rT (r, f))) for

all r possibly outside a set of finite linear measure. If f is a function of finite
order, then S(r, f) = O(log r) for all r. In this paper we consider f to be a non
constant meromorphic function having finitely many poles in C that is to say
f ∈M1(C). Clearly N(r,∞; f) = O(log r).

In 1976, Gross [4] stated the following question:

Question 1.4. (See [8]) Are there two finite sets S1 and S2 such that any two
non-constant entire functions f and g must be identical if Ef (Sj) = Eg(Sj)
for j = 1, 2?

Inspired by the above mentioned question, Chen [1] proposed the general-
ized and extended form of Question 1.1 as follows:

Question 1.5. For a family G ⊆ M(C), determine subsets S1, S2, . . . , Sq of
C ∪ {∞} in which the cardinality of every Si (i = 1, 2, . . . , q) is as small as
possible, and minimize the number q such that any two elements f and g of G
are algebraically dependent if Ef (Si) = Eg(Si) for every i (i = 1, 2, . . . , q), that
is, if f and g share every Si (i = 1, 2, . . . , q) CM (counting multiplicity).

Several papers (see, e.g., [4, 5, 6, 7]) dealt with the problems of URS for
meromorphic functions in M(C). In 2017, choosing the family G = M1(C),
Chen [1] solved Question 1.2 and obtained the following result.

Theorem A. [1] Let S1 = {α1} and S2 = {β1, β2}, where α1, β1, β2 are three
distinct finite complex numbers satisfying (β1 − α1)

2 ̸= (β2 − α1)
2. If two non

constant meromorphic functions f(z) and g(z) in M1(C) share S1 CM, S2 IM,
and if the order of f(z) is neither an integer nor infinite, then f(z) ≡ g(z).

Recently Chen [2] also proved Theorem A for the sharing of the sets S1 IM
and S2 CM and obtained the following result.

Theorem B. [2] Let S1, S2 be defined same as in Theorem A where where
α1, β1, β2 are three distinct finite complex numbers satisfying (β1 − α1)

2 ̸=
(β2−α1)

2. If two non-constant meromorphic functions f(z) and g(z) inM1(C)
share S1 IM, S2 CM, and if the order of f(z) is neither an integer nor infinite,
then f(z) ≡ g(z).
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Remark 1.6. Let #(S) denote the cardinality of the set S. Clearly in Theorem
A and Theorem B, max{#(Si)} = 2, for i = 1, 2. Therefore it will be interesting
to investigate the validity of the theorems for max{#(Si)} = 1, i.e., when both
sets contain only one element which is in fact, the least number of elements a
nonvoid can possess. Also, note that in this case the condition (β1 − α1)

2 ̸=
(β2 − α1)

2 becomes meaningless.

In view of Question 1.5 and Remark 1.6 it will be justifiable to test the
validity of an analogous result corresponding to Theorems A and B when, like
S1, S2, also contains only one element, as that will be the best possible result
ever for URS in M1(C).

Our main result in this paper is considering the minimum cardinality of
URS Si, i = 1, 2 in M1(C) which indeed surpass both results of Chen ([1], [2])
as far as the possible answer of Question 1.5 is concerned in M1(C).

Theorem 1.7. Let S1 = {α} and S2 = {β}, where α, β are two distinct finite
complex numbers. If two non constant meromorphic functions f(z) and g(z) in
M1(C) share S1 CM and S2 IM, and if the order of f(z) is neither an integer
nor infinite, then f(z) ≡ g(z).

Note 1.8. In the above theorem we do not require any sufficient conditions
like Theorems A or B. So it will be the best result to date.

Let us consider two functions f(z) = e2z−1
2ez and g = ez. Clearly f and g

share the set {i} and {−i} IM but f(z) ̸≡ g(z), where the order of f is an

integer. Similarly if f(z) = e2e
z
−1

2eez
and g = ee

z

, then it is easy to see that
f and g share the set {i} and {−i} IM, where the order of f is infinite but
f(z) ̸≡ g(z). Hence the following question is inevitable:

Question 1.9. Keeping all the other conditions intact as in Theorem 1.7 if
the sharing of the set S1 CM is replaced by S1 IM, does Theorem 1.7 still hold?

The following examples show that in Theorem 1.7 the condition “the order
of f(z) is not an integer” can not be removed.

Example 1.10. Let f = (ez − 1)2 +1 and g(z) = ez. Then it is easy to verify
that f , g share 2 CM and 1 IM, but f ̸≡ g.

Example 1.11. Let f = (ez − 1)2, g = (ez − 1). Clearly f , g share 1 CM, 0
IM, but f ̸≡ g.

Example 1.12. Let f = a − 3b(e−z − e−2z) and g = a − b(1 − ez)3. Clearly
f , g share a− b CM and a IM, where a and b(̸= 0) are constants, but f ̸≡ g.

Example 1.13. Let f(z) = a− 3b(ez + e2z) and g(z) = a+ b(1+ e−z)3. Then
it is easy to verify that f , g share a+ b CM and a IM, where a and b(̸= 0) are
constants, but f ̸≡ g.

Note 1.14. In the above examples if we replace ez and e−z by ee
z

and e−e
z

respectively then the examples remain valid. So from the above examples we
can infer that in Theorem 1.7 the condition ‘the order of f(z) is not infinite”
can not also be dropped.
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The assumption “non-constant meromorphic functions f(z) and g(z) in
M1(C)” in Theorems 1.1 cannot be relaxed to “non-constant meromorphic
functions f(z) and g(z) in M(C)”, as shown by the following example.

Example 1.15. Let f(z) =
∑∞
n=1

zn

n3n and g(z) = 1
f(z) , S1 = {1}, S2 = {−1}.

Then using Lemma 2.1 in Section 2 we have λ(f) = 1
3 . Also by Lemma 2.2 in

Section 2 we see that g(z) has infinitely many poles in C. Moreover, f(z) and
g(z) share S1, S2 CM. But f(z) ̸≡ g(z).

To deal with te L-function, Han [9] obtained a similar type of result like
Theorem 1.7, but the method adopted in the present paper is different as well
as quite simpler than the method adopted in [9]

Considering two functions f(z) =
√
2 sinz

(
respct. e

2z+1
2ez

)
and g =

√
2 cosz

((respct.) ez), it is easy to see that f and g share the set {1,−1} CM (IM)
but f(z) ̸≡ g(z). So we see that Theorem 1.7 is not in general true for a set
consisting of two elements for CM and IM sharing respectively when the or-

der of the function is an integer. Similarly considering f(z) =
√
2 ee

iz
−e−eiz

2i

(respct. e2e
z
+1

2eez
) and g =

√
2 ee

iz
+e−eiz

2

(
respct. − ee

z)
, it is easy to see that

when the order of f is infinite, f and g can share the set {1,−1} CM (IM), yet
f(z) ̸≡ g(z). Hence we can also propose the following question:

Question 1.16. Does Theorem 1.7 hold good if two non constant meromorphic
functions f(z) and g(z) inM1(C) share S1 CM or even IM, where {#(S1)} = 2
and if the order of f(z) is neither an integer nor infinite?

2. Lemmas

In this section we present some important lemmas which will be needed in
the sequel.

Lemma 2.1. ( p.288, [3]) Let f(z) =
∑∞
n=0 anz

n ∈ E(C) be non-constant and
of finite order. Then

λ(f) =
1

lim infn−→∞
− log |an|
n logn

.

Lemma 2.2. (p.293, [3]) Let f(z) ∈ E(C). If the order of f(z) is neither an
integer nor infinite, then f(z) assumes every finite value infinitely often.

Lemma 2.3. (Theorem 1.44, [3], [12]) Let h(z) ∈ E(C), and let f(z) = eh(z).
Then
(i) if h(z) is a polynomial of degree k, then λ(f) = µ(f) = k = degh;
(ii) if h(z) is a transcendental entire function, then λ(f) = µ(f) = ∞.

Lemma 2.4. [12] Let T1(r) and T2(r) be two nonnegative, nondecreasing real
functions defined in r > r0 > 0. If T1(r) = O(T2(r)) (r −→ ∞ , r ̸∈ E), where
E is a set with finite linear measure, then

lim sup
r−→∞

log+ T1(r)

log r
≤ lim sup

r−→∞

log+ T2(r)

log r
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and

lim inf
r−→∞

log+ T1(r)

log r
≤ lim inf

r−→∞

log+ T2(r)

log r

imply that the order and the lower order of T1(r) are not greater than the order
and the lower order of T2(r), respectively.

Lemma 2.5. (Theorem 1.42, [12]). Let f(z) ∈ M(C). If 0 and ∞ are two
Picard exceptional values of f(z), then f(z) = eh(z), where h(z) ∈ E(C).

3. Proof of the theorem

Proof of the Theorem 1.7. At first let us assume f(z) ̸≡ g(z). Now define the
following two functions:

F (z) = f(z)− β

G(z) = g(z)− β,

clearly F (z) ̸≡ G(z). Since f and g share S1 CM, S2 IM, therefore F (z) and
G(z) share ξ (= α−β) CM and 0 IM. First we consider the following auxiliary
function :

Ĥ =
U(G− ξ)

(F − ξ)
,(3.1)

where U is a rational function such that Ĥ has neither a pole nor a zero in
C. It is evident that such a function U does exist since F and G have finitely
many poles and in view of the condition that f and g share the set S1 CM, a
possible zero or pole of Ĥ may only come from a pole of F or G. Since Ĥ is
an entire function with no zero and pole then from Lemma 2.5 we can write

Ĥ =
U(G− ξ)

(F − ξ)
= eψ,(3.2)

for some entire function ψ. Noting that f(z) and g(z) have only finitely many
poles, we have N(r;F ) = O(log r) = N(r;G).

Again

T (r,G) ≤ N

(
r,

1

G

)
+N

(
r,

1

G− ξ

)
+N(r,G) + S(r,G)(3.3)

≤ N

(
r,

1

F

)
+N

(
r,

1

F − ξ

)
+O(log r) + S(r,G)

≤ 2T (r, F ) +O(log r) + S(r,G),

as r −→ ∞ , r ̸∈ E, where E is a set with finite linear measure. Then by (3.3)
and Lemma 2.4 we have

λ(G) ≤ λ(F ),
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and proceeding similarly we get

λ(F ) ≤ λ(G).

Hence we have

λ(G) = λ(F ).(3.4)

By the first fundamental theorem it is easy to verify λ(F ) = λ(f) and
λ(G) = λ(g). Since U is a rational function therefore

λ(eψ) ≤ λ(F ).(3.5)

In view of the fact that U is a rational function, we have T (r,U) = O(log r).
So it follows that

N

(
r,

1

F

)
≤ N

(
r,

1

(eψ/U − 1)

)
≤ T (r, eψ) +O(log r).(3.6)

Next, introduce the following auxiliary function

∆ =

(
F ′

F (F − ξ)
− G′

G(G− ξ)

)
(F −G).(3.7)

Since F (z) and G(z) share ξ CM and 0 IM then it is easy to verify that

N

(
r,

1

F − ξ

)
≤ N

(
r,

1

∆

)
≤ T (r,∆) +O(1).(3.8)

Also ∆ is analytic at every 0 point of F (or G). The only possible poles of
∆ come from the poles of F and G, which are finitely many. Therefore

N(r,∆) = O(log r).(3.9)

Now in view of the fact that the order of F (z) is finite and U(z) is ratio-
nal, from (3.2), by the logarithmic derivative lemma and the first fundamental
theorem we obtain

m(r,∆)(3.10)

≤ m

(
r,
F ′

F

)
+m

(
r,
F −G

F − ξ

)
+m

(
r,
G′

G

)
+m

(
r,
F −G

G− ξ

)
≤ m

(
r, 1− G− ξ

F − ξ

)
+m

(
r,
F − ξ

G− ξ
− 1

)
+O(log r)

≤ 2T (r, eψ) +O(log r).

Hence using (3.9) and (3.10) from (3.8) we obtain

N

(
r,

1

F − ξ

)
≤ 2T (r, eψ) +O(log r).(3.11)



A note on uniqueness of meromorphic functions.... 67

Using the second fundamental theorem and in view of (3.6) and (3.11) we
have

T (r, F ) ≤ N

(
r,

1

F

)
+N

(
r,

1

F − ξ

)
+N(r, F ) + S(r, F )(3.12)

≤ O(T (r, eψ)) +O(log r) + S(r, F ),

as r −→ ∞, r ̸∈ E, which together with Lemma 2.4 means

λ(F ) ≤ λ(eψ).(3.13)

Hence from (3.5) and (3.13) we have

λ(F ) = λ(eψ),(3.14)

which contradicts Lemma 2.3, since order of F (z) is neither integer nor infinite
and ψ(z) is entire function.

Therefore ∆(z) ≡ 0. We are now ready to get back to our original task of
showing that f(z) ≡ g(z). As at first we have assumed f(z) ̸≡ g(z), we have
F (z) ̸≡ G(z). So from ∆(z) ≡ 0 we have

F ′

F (F − ξ)
=

G′

G(G− ξ)
.(3.15)

Clearly from (3.15), we have F (z) and G(z) share 0 CM. That is to say, g(z)
and f(z) must share β CM.

Recall from (3.6) that

N

(
r,

1

F

)
≤ T (r, eψ) +O(log r) + S(r, F ).

We have got the above inequality by using only the facts that F and G
share ξ CM and 0 IM. Now considering F and G share 0 CM, by symmetry or
doing exactly the same way as done in (3.2), we deduce that

N

(
r,

1

F − ξ

)
≤ T (r, eϕ) +O(log r) + S(r, F ),

for some ϕ ∈ E(C). Finally, we use the second fundamental theorem again to
deduce that

T (r, F ) ≤ N

(
r,

1

F

)
+N

(
r,

1

F − ξ

)
+N(r, F )

≤ O(T (r, eµ)) +O(log r) + S(r, F ),

as r −→ ∞, r ̸∈ E, where T (r, eµ) = max{T (r, eϕ), T (r, eψ)} which imply

λ(F ) ≤ λ(eµ).

So by the same argument as in (3.5) we will get λ(F ) = λ(eµ), again a con-
tradiction. Hence our assumption is wrong. Therefore from ∆ ≡ 0 we get
F ≡ G =⇒ f ≡ g.
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