
Novi Sad J. Math. Vol. 52, No. 2, 2022, 41-59
https://doi.org/10.30755/NSJOM.11151

Prime coprime graph of a finite group

Avishek Adhikari1 and Subarsha Banerjee23

Abstract. In this paper, a new graph structure called the prime
coprime graph of a finite group G denoted by Θ(G) has been introduced.
The coprime graph of a finite group, introduced by Ma, Wei, and Yang
[The coprime graph of a group. International Journal of Group Theory,
3(3), pp.13-23.] is a subgraph of the prime coprime graph introduced in
this paper. The vertex set of Θ(G) is G, and any two vertices x, y in Θ(G)
are adjacent if and only if gcd(o(x), o(y)) is equal to 1 or a prime number.
We study how the graph properties of Θ(G) and group properties of G
are related. We provide a necessary and sufficient condition for Θ(G)
to be Eulerian for any finite group G. We also study Θ(G) for certain
finite groups like Zn and Dn and derive conditions when it is connected,
complete, planar, and Hamiltonian for various n ∈ N. We also study
the vertex connectivity of Θ(Zn) for various n ∈ N. Finally, we have
computed the signless Laplacian spectrum of Θ(G) when G = Zn and
G = Dn for n ∈ {pq, pm} where p, q are distinct primes and m ∈ N.
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1. Introduction

Generating graphs from various algebraic structures like groups and semi-
groups is nothing new. Bosak in [10] studied various kinds of graphs that were
defined on semigroups. In [32], the author studied the intersection graph de-
fined on a finite abelian group. A Cayley digraph is also an important class
of directed graphs defined on finite groups, and readers may refer to [11, 23]
in order to find some information about them. Kelarev and Quinn in [27] in-
troduced the power graph on a semigroup S as a directed graph in which the
set of vertices is S, and two distinct elements a, b ∈ S are adjacent if and
only if b = am for some positive integer m. Motivated by the work in [27],
Chakrabarty et al. studied the undirected power graph on semigroups in [14].
The undirected power graph on a semigroup S is the graph whose vertex set
is S, and two distinct vertices a, b ∈ S are adjacent if and only if a = bm or
b = an for some positive integers m,n. Several properties of the power graph
were investigated by Cameron and Ghosh in [12] and [13]. In [26], the authors
introduced a new graph known as the order supergraph of the power graph of
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a finite group G, whose vertex set is G and any two vertices x, y are adjacent
if and only if o(x) | o(y) or o(y) | o(x). The automorphism group of this graph
was studied in [24].

Recently, several researchers have studied spectral properties of graphs as-
sociated with algebraic structures. The spectral properties of power graph of
a finite group ([29],[25],[7],[6]), Cayley graph of certain groups ([3], [1], [15]),
commuting and non-commuting graph of dihedral groups ([2],[5]) etc. have
been studied over the last few years.

The notion of coprime graph of a finite group G has existed in the literature
for a long time. It was first introduced by Sattanathan and Kala as the order
prime graph in [30]. Later on, in [28] Ma et al. reintroduced and renamed the
order prime graph as the coprime graph and studied various properties of it.
The coprime graph was studied extensively in [21] and [31]. In [4], the Laplacian
spectra of the coprime graph of finite cyclic and dihedral groups were studied.
In this paper, we introduce a new graph known as the prime coprime graph
of a finite group G. We denote it by Θ(G). Clearly for a given finite group
G, the coprime graph is a subgraph of the prime coprime graph introduced
in this paper. We characterize some properties of Θ(G) using the algebraic
properties of the group G. We study the connectedness and the diameter of
the graph Θ(G). We show that Θ(G) is Eulerian if and only if G has odd order
and every non-identity element of G has prime order. We also find out when
Θ(Zn) is planar and Hamiltonian for various n ∈ N. We also study the vertex
connectivity of Θ(Zn) for various n. Finally, we find the signless Laplacian
spectra of Θ(Zn) and Θ(Dn) for n ∈ {pq, pm} where p, q are distinct primes
and m ∈ N.

The paper has been organized as follows: In Section 2, we have provided
the preliminary definitions and theorems that have been used throughout the
paper. In Section 3, we formally introduce the prime coprime graph of a finite
group G, denoted by Θ(G), and study various properties of Θ(G). In Section 4,
we study the vertex connectivity of Θ(Zn). In Section 5, we determine the
signless Laplacian spectra of Θ(Zn) and Θ(Dn) for n ∈ {pq, pm}.

2. Preliminaries

In this section, for the convenience of the readers, we provide some prelim-
inary definitions and theorems that have been used throughout the paper. We
denote a graph G by G = (V,E) where V is the set of all vertices of G and E
denotes the set of all edges of G. A graph G is said to be simple if it has no
loops or parallel edges. A graph with one vertex and no edges is called a trivial
graph. We denote the degree of a vertex v ∈ V (G) by deg(v). For a given
graph G, δ(G) = min{deg(v) : v ∈ G}. A subgraph H = (W,F ) of G = (V,E)
is a graph such that W ⊆ V and F ⊆ E. If there exists an edge between two
vertices a and b, then a and b are said to be adjacent, and it is denoted by
a ∼ b. If there exists an edge between any two vertices of G, then G is said to
be complete and is denoted by Kn. A path P of length k in a graph G is an al-
ternating sequence of vertices and edges v0, e0, v1, e1, v2, e2, . . . , vk−1, ek−1, vk,
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where v′is are distinct vertices, and ei is the edge joining vi and vi+1. If v0 = vk,
then P is said to be a cycle of length k. The length of the shortest cycle in G is
known as its girth. A graph G is said to be connected if for any pair of vertices
u, v ∈ V there exists a path joining u and v. For a connected graph G, the
distance between two vertices u, v denoted by d(u, v), is defined as the length
of the shortest path joining u and v. The diameter of a connected graph G,
denoted by diam(G), is defined as diam(G) = max{d(u, v) : u, v ∈ V }. A planar
graph is a graph that can be embedded in the plane, i.e., it can be drawn on
the plane in such a way that its edges intersect only at their endpoints. An
isomorphism of graphs G and H denoted by G ∼= H is a bijection f between
V (G) and V (H) such that any two vertices u, v ∈ V (G) are adjacent if and only
if the vertices f(u), f(v) ∈ V (H) are adjacent. An Eulerian cycle in a graph G
is a cycle which visits every edge exactly once. A graph G is said to be Eulerian
if it has an Eulerian cycle. A Hamiltonian cycle in a graph G is a cycle which
visits every vertex exactly once. A graph G is said to be Hamiltonian if it has a
Hamiltonian cycle. The vertex connectivity κ(G) of a graph G is the minimum
number of vertices whose removal results in a disconnected or trivial graph.
We define the connectivity of a disconnected graph to be 0. Given a positive
integer k, a graph G is said to be k−tough if for any integer t > 1, G cannot
be split into t different connected components by the removal of fewer than kt
vertices. The toughness of a graph G is defined as the largest real number t
such that deletion of any s vertices from G results in a graph which is either
connected or else has at most s

t components. A dominating set of a graph G
is a subset D of V such that for every v /∈ D, there exists a vertex w ∈ D for
which v is adjacent to w. The domination number is the number of vertices in
a smallest dominating set of G. For more information on the terms used above,
the readers may refer to any standard book on graph theory, say [20] or [9].

Let G be a finite simple undirected graph with V (G) = {v1, v2, . . . , vn}.
The adjacency matrix of G, denoted by A(G) = (aij) is defined as aij = 1 if
vi ∼ vj and aij = 0 otherwise. The degree matrix of G, denoted by D(G) =
(dii) is a diagonal matrix, where dii denotes the degree of the ith vertex of G.
The Laplacian matrix L(G) is defined as L(G) = D(G) − A(G). The signless
Laplacian matrix Q(G) is defined as Q(G) = D(G) + A(G). The matrix Q(G)
is a real and symmetric matrix and hence all its eigenvalues are real. Also,
Q(G) is a positive semi-definite matrix and hence all its eigenvalues are non-
negative. For more information on Q(G), readers may refer to [17], [18] and
[19]. We arrange the eigenvalues of Q(G) as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) in
non-increasing order, and repeated according to their multiplicities.

For n ∈ N, the number of positive integers that are less than or equal to n
and are relatively prime to n is denoted by φ(n). The function φ is known as
Euler’s phi function. We know that a finite cyclic group of order n is isomorphic
to (Zn,+), where Zn = {0, 1, 2 . . . , n−2, n−1}, and hence we prove our results
for Zn instead of an arbitrary cyclic group. An element a ∈ Zn is said to be a
generator of Zn if gcd(a, n) = 1. An element which is not a generator is known
as a non-generator. We denote the dihedral group of order 2n by Dn. The order
of an element g ∈ G, denoted by o(g), is the least positive integer n such that
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gn = e, where e is the identity element of G. The number of elements in a set
S is denoted by |S|. For basic definitions and notations on group theory, the
readers are referred to [22].

The theorems used in the paper have been listed below. The proof of
Theorems 2.1 to 2.4 can be found in [9] or [20], while the proof of Theorem 2.6
can be found in [8].

Theorem 2.1. A connected graph G has an Eulerian cycle if and only if deg(v)
is even for all v ∈ G.

Theorem 2.2. For any graph G, κ(G) ≤ δ(G).

Theorem 2.3. The complete graph K5 and the complete bipartite graph K3,3

are non-planar.

Theorem 2.4 (Ore). Let G be a finite and simple graph with n vertices where
n ≥ 3. If deg(v) + deg(w) ≥ n for every pair of distinct non-adjacent vertices
v and w of G, then G is Hamiltonian.

Theorem 2.5. [16] If G is Hamiltonian, then G is 1-tough.

Theorem 2.6. If J denotes the square matrix of order n with all entries equal
to one and I denotes the identity matrix of order n then the eigenvalues of
aI + bJ are a with multiplicity n− 1 and a+ nb with multiplicity 1.

3. Prime Coprime Graph of a Finite Group

Let G be a finite group such that |G| > 2. The prime coprime graph
Θ(G) = (V,E) is defined as follows: The vertex set V is the set G, and any
two distinct vertices x, y are adjacent if and only if gcd(o(x), o(y)) is equal to
1 or a prime number. We now study some basic properties of Θ(G).

Theorem 3.1. The graph Θ(G) satisfies the following properties:

(a). The domination number of Θ(G) is 1 and {e} is a dominating set of
Θ(G).

(b). The set {x} is a dominating set of Θ(G) if and only if o(x) is equal to 1
or a prime number.

Proof. (a). Since gcd(o(a), o(e)) = o(e) = 1, we find that e is adjacent to a for
all a ∈ G. Hence, the set {e} is a dominating set of Θ(G), which implies
that the domination number of Θ(G) is 1.

(b). Let x ∈ G. If o(x) is equal to 1 or a prime number, then gcd(o(a), o(x))
is equal to 1 or a prime number for all a ∈ G. Thus, x is adjacent to a
for all a ∈ G, which implies that {x} is a dominating set of Θ(G).
Conversely, let {x} be a dominating set of Θ(G). Assume the contrary
that o(x) is neither 1 nor a prime number. Then, o(x) is composite
which implies that x ̸= x−1. Thus, gcd(o(x), o(x−1)) = o(x), which is
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composite. Hence, x is not adjacent to x−1. Since x ̸= x−1, it contradicts
the fact that {x} is a dominating set of Θ(G). Hence, o(x) is either equal
to 1 or a prime number.

Theorem 3.2. The graph Θ(G) is connected and the diameter of Θ(G) is at
most 2.

Proof. Let x, y ∈ Θ(G). If gcd(o(x), o(y)) is equal to 1 or a prime number, then
x is adjacent to y, and we are done. If gcd(o(x), o(y)) is composite then x and
y are not adjacent. Consider the identity element e of G. Since o(e) = 1, so
x and y are both adjacent to e. Thus, we find that there always exists a path
of length 2 between any two non-adjacent vertices x, y ∈ Θ(G). Thus, Θ(G) is
connected and the diameter of (Θ(G)) is at most 2.

Theorem 3.3. If the girth of Θ(G) is finite, then it equals 3.

Proof. The proof follows from the simple fact that for any two distinct vertices
x, y ∈ G where x, y ̸= e, there exists a path of length 2 given by x ∼ e ∼ y
from x to y. If x, y are adjacent for some x and y, then the girth of Θ(G) is
finite and it equals 3.

Theorem 3.4. The graph Θ(G) is Eulerian if and only if G is an odd-order
group, and every non-identity element has prime order.

Proof. Suppose the graph Θ(G) is Eulerian. Using Theorem 3.2, we find that
Θ(G) is connected. Since Θ(G) is Eulerian, using Theorem 2.1 we find that
every vertex in Θ(G) has an even degree. Since the identity element e of G is
connected to every other vertex in Θ(G), deg(e) = |G| − 1. Since deg(e) must
be even, the order of G must be odd. Thus, G has no elements of order 2.
Now let a be any non-identity element of G. We claim that a has prime order.
Assume that the order of a is composite. Let us consider the set

Ea = {b ∈ G : gcd(o(a), o(b)) is equal to 1 or a prime number}.

We notice that b ∈ Ea if and only if b−1 ∈ Ea. Thus, the number of non-
identity elements present in Ea (if any) are even. Also, the identity element
e of G is in Ea. Thus, Ea has an odd number of elements. Thus, |Ea| is an
odd number. Let E∗

a = Ea \ {a}. Since the order of a is composite, so a /∈ Ea.
Thus, Ea = E∗

a . We further note that the elements of E∗
a are those vertices of

Θ(G) which are adjacent to the vertex a of Θ(G). Thus, |Ea| = |E∗
a | = deg(a).

Since Θ(G) is Eulerian, deg(a) must be even, but we have proved that deg(a)
is odd, which is contradictory. Hence, our initial assumption that order of a is
composite, is false. Thus, the order of a must be a prime number. Thus, we
find that if Θ(G) is Eulerian, then the order of G is odd and every non-identity
element has prime order.

Conversely, assume that |G| is odd and every non-identity element of G has
prime order. Thus, for any element a ∈ G, we have Ea

∗ = G \ {a}. Also,

(3.1) deg(a) = |E∗
a | = |G \ {a}|.
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Since |G| is an odd number, so |G \ {a}| is an even number for every a ∈ G.
Using Equation (3.1), we find that for every a ∈ G, deg(a) must be an even
number. Thus, Θ(G) is connected and every vertex in Θ(G) has an even degree.
Using Theorem 2.1, we conclude that Θ(G) is Eulerian. Thus, the result follows.

Theorem 3.5. The graph Θ(G) is complete if and only if G has no elements
of composite order.

Proof. Suppose Θ(G) is complete. Let g ∈ G be an element of composite order.
Clearly g ̸= g−1. Since gcd(o(g), o(g−1)) = o(g), we find that g is not adjacent
to g−1 in Θ(G). Thus, Θ(G) is not complete which is a contradiction. Hence,
we conclude that G has no element whose order is composite. Conversely,
if all elements of G have prime order, then for any two elements x, y ∈ G,
gcd(o(x), o(y)) is equal to 1 or a prime number, which in turn implies that
Θ(G) is complete.

Corollary 3.6. Let G be a finite cyclic group of order n. Then, Θ(G) is
complete if and only if n is a prime number.

Corollary 3.7. Let G be a finite commutative group of order pm where p is a
prime and m > 1. Then, Θ(G) is complete if and only if G ∼= (Zp)

m.

Proof. We know that any finite commutative group is a direct product of cyclic
groups. Hence, G ∼= Zpα1 ×Zpα2 ×· · ·×Zpαk where α1+α2+ · · ·+αk = m and
1 ≤ αi ≤ m. Assume that Θ(G) is complete. Now if αi = 1 for all 1 ≤ i ≤ k,
we are done. So, let us assume that there exists αi such that αi > 1 for some
i. Since Zpαi is a cyclic group of order pαi , it has φ(pαi) ≥ 2 generators,
and hence we can find x ∈ Zpαi such that o(x) = pαi . Consider the element
x = (0, 0, . . . , 0, x, 0 . . . , 0, 0) ∈ G. Clearly o(x) is composite which contradicts
Theorem 3.5. Hence, αi = 1 for all 1 ≤ i ≤ m which implies that G ∼= (Zp)

m.
The converse part is trivial and hence skipped.

Corollary 3.8. The graph Θ(Dn) for n ≥ 2 is complete if and only if n is
prime.

Proof. We know that the dihedral group of order 2n has the following presen-
tation:

Dn = {⟨r, s⟩ : rn = s2 = 1, rs = sr−1}.
We partition the vertex set of Θ(Dn) as Dn = A ∪ B where A = {ri : 0 ≤ i ≤
n−1}, and B = {sri : 0 ≤ i ≤ n−1}. The graph induced by the elements of A
forms a subgraph of Θ(Dn), and is isomorphic to Θ(Zn). Since every element
of B has order 2, so the subgraph induced by the elements of B is isomorphic
to Kn. Also since the order of each member of B is 2, every vertex of A is
adjacent to every vertex of B. Using the above facts, we observe that Θ(Dn)
is complete if and only if Θ(Zn) is complete. Using Corollary 3.6, Θ(Zn) is
complete if and only if n is prime. Thus, Θ(Dn) is complete if and only if n is
prime.
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Theorem 3.9. The graph Θ(Zn) is planar if and only if n = 3 or n = 2i where
i ∈ N.

Proof. Assume that Θ(Zn) is planar. Let n = pα1
1 pα2

2 · · · pαk

k where pi’s are
primes, and αi’s are positive integers. Assume that αi ≥ 1 for i = i0 and i = i1.

We choose two elements pα1
1 pα2

2 · · · pαi0−1
i0

· · · pαk

k and pα1
1 pα2

2 · · · pαi1−1
i1

· · · pαk

k ,
and consider the subgroup generated by these two elements. Every element in

the subgroup generated by pα1
1 pα2

2 · · · pαi0−1
i0

· · · pαk

k except the identity element
has order pi0 , which is prime. Every element in the subgroup generated by

pα1
1 pα2

2 · · · pαi1
−1

i1
· · · pαk

k except the identity element has order pi1 , which is also
prime. Thus, we obtain pi0 + pi1 − 2 elements of prime order. Note that
pi0 + pi1 ≥ 5 is always true, and hence we can always get at least 3 elements
of prime order. If we take 3 elements of prime order, together with the zero
element and a generator of Zn, then we can find 5 elements that are adjacent to
each other. Thus, there always exists a subgraph in Θ(Zn) which is isomorphic
toK5. By Theorem 2.3, we conclude that Θ(Zn) is not planar, which is contrary
to our assumption. Hence, we cannot find i0 and i1 such that αi0 , αi1 ≥ 1.
Thus, αi ≥ 1 for at most one i. Hence, n = pi where p is a prime and i ≥ 1.

Again if p ≥ 5, we can consider the element pi−1. We again notice that
all elements in the set {pi−1, 2pi−1, 3pi−1, . . . , (p − 1)pi−1} have prime order,
and hence are adjacent to all other members of the graph Θ(Zn). Since
p ≥ 5, so we have p − 1 ≥ 4. Hence, if we take 4 elements from the set
{pi−1, 2pi−1, 3pi−1, . . . , (p− 1)pi−1} together with the zero element of Zn, then
the graph induced by them is isomorphic to K5, and hence by Theorem 2.3 we
find that Θ(Zn) is not planar. Thus, we are left with primes p = 2, 3. Hence,
either n = 2i or n = 3i for some i ∈ N. We claim that the graph Θ(Zn) is
planar when n = 2i for all i ≥ 1. If n = 2i for some i, then Θ(Zn) has exactly
two vertices of degree n − 1, and the remaining vertices will each have degree
2. We illustrate Θ(Zn) for n = 8 below. The graph Θ(Z8) can be drawn as in
Figure 1, from which it is evident that Θ(Z8) is planar.

Using similar arguments as done for Θ(Z8), it can be established that Θ(Zn)
is planar for n = 2i where i ∈ N.

Now we show that Θ(Zn) is planar for n = 3i only for i = 1. Note that
when i = 1, then Θ(Z3) ∼= K3 which is planar. We illustrate Θ(Z9) in Figure 2.

Now for i ≥ 2, if we take the vertices 0, 3i−1, 2 · 3i−1, and any three vertices
other than these, then the graph obtained contains K3,3 as a subgraph. Using
Theorem 2.3, we can conclude that Θ(Zn) is not planar for n = 3i where i ≥ 2.
Hence, the graph is planar only when n = 3. Thus, Θ(Zn) is planar if and only
if n = 3 or n = 2i where i ∈ N.

Theorem 3.10. If p and q are distinct primes with p < q then Θ(Zpq) is
Hamiltonian if and only if p = 2.

Proof. Assume that p = 2. Let v1 and v2 be two non-adjacent vertices in
Θ(Z2q). Then, v1 and v2 are generators of Z2q. Note that v1 is adjacent to any
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Figure 2: Θ(Z9)
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non-generator of Z2q and so is v2. Then, deg(vi) = 2q−φ(2q) = 2q− (q− 1) =
q+1, where i ∈ {1, 2}. Thus, deg(v1)+deg(v2) = 2(q+1) > 2q. Thus, the sum
of degrees of two non-adjacent vertices is greater than the number of vertices
in Θ(Z2q). By Theorem 2.4, we conclude that Θ(Z2q) is Hamiltonian.

Now we show that if 2 < p < q then the graph Θ(Z2q) is not Hamiltonian.
Consider the sets

A = {i : gcd(i, n) = 1} and B = {0} ∪ {i : gcd(i, n) ̸= 1}.

If we remove all vertices of Θ(Z2q) which are in B then Θ(Z2q) has |A| = φ(pq)
components. Since 2 < p < q, we obtain,

(p− 2)(q − 2) > 2 =⇒ pq − 2p− 2q + 2 > 0

=⇒ pq + 2 > 2(p+ q)

=⇒ pq − p− q + 1 > p+ q − 1

=⇒ (p− 1)(q − 1) > p+ q − 1

=⇒ φ(pq) > pq − φ(pq)

=⇒ |A| > |B|.

(3.2)

Using Equation (3.2) we find that Θ(Zpq) is not 1-tough. Using Theorem
2.5 we conclude that Θ(Zpq) is not Hamiltonian when 2 < p < q. Thus, Θ(Zpq)
is Hamiltonian if and only if p = 2.

We observe that if two groups G1 and G2 are isomorphic, then the corre-
sponding graphs Θ(G1) and Θ(G2) are isomorphic to each other. However, the
converse is false. To illustrate it we consider the following example:

Example 3.11. Consider the unitriangular matrix group F =

{ 1 a b
0 1 c
0 0 1

 :

a, b, c ∈ F3

}
where F3 denotes the finite field of order 3. Clearly F forms a group

under matrix multiplication. Now consider the group (Z3)
3. Using Corollary

3.7, Θ((Z3)
3) is complete. We also notice that each non-identity element of

the group F has order 3. Thus, any two elements of Θ(F) are adjacent to each
other which in turn implies that Θ(F) is complete. Since F is non-commutative
whereas (Z3)

3 is commutative, we find that the two groups are not isomorphic
to each other. However, Θ(F) and Θ((Z3)

3) are isomorphic to each other as
both are complete graphs having 27 elements.

4. Vertex Connectivity of Θ(G)

In this section, we first investigate the vertex connectivity of Θ(Zn) for
n ≥ 2. For a given group G, we fix the following notations: Let S∗(G) denote
set of all those elements G which have prime order. Let S(G) = {e} ∪ S∗(G)
where e denotes the identity element of G.
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Proposition 4.1. If n is prime, then κ(Θ(Zn)) = n− 1.

Proof. Since n is prime, Θ(Zn) is complete (Corollary 3.6). Since vertex
connectivity of a complete graph on n vertices is n − 1, we conclude that
κ(Θ(Zn)) = n− 1.

Theorem 4.2. If n is composite, then κ(Θ(Zn)) = |S(Zn)|.

Proof. Let v0 be a generator of Zn. Thus, o(v0) = n. Since v0 is a generator
so deg(v0) ≤ deg(w) for all vertices w ∈ Θ(Zn) which implies that δ(Θ(Zn)) =
deg(v0). Now we notice that the vertex v0 ∈ Θ(Zn) is adjacent only to all the
elements of S(Zn) and nothing else. Thus, deg(v0) = |S(Zn)|. By Theorem
2.2, κ(Θ(Zn)) ≤ |S(Zn)|. Now we claim that S(Zn) is a minimum separating
set of Θ(Zn). If not, then suppose we remove |S(Zn)| − 1 elements from the
vertex set of Θ(Zn). Then, there exists a ∈ S(Zn) such that a is adjacent to all
other vertices of Θ(Zn), making Θ(Zn) connected. Thus, S(Zn) is a minimum
separating set of Θ(Zn), which proves the fact that κ(Θ(Zn)) = |S(Zn)|.

Corollary 4.3. If n = pq where p, q are distinct primes with p < q, then
κ(Θ(Zn)) = p+ q − 1.

Proof. If n = pq, then S(Zpq) = {0, p, 2p, 3p, . . . , (q−1)p, q, 2q, 3q, . . . , (p−1)q}.
Since |S(Zpq)| = p+ q − 1, the result follows.

Corollary 4.4. If n = pm where p is a prime and m ∈ N then κ(Θ(Zn)) = p.

Proof. If n = pm, then S(Zpm) = {0, pm−1, 2pm−1, 3pm−1, . . . , (p − 1)pm−1}.
Since |S(Zpm)| = p, the result follows.

Now it is quite natural to ask that if Θ(G) is not complete, is it true that
κ(Θ(G)) equals |S(G)|? We show that it is false. Consider the Dicyclic group
Dicn of order 4n given by :

Dicn = {⟨a, x⟩ : a2n = 1, x2 = an, ax = xa−1}.

We illustrate Θ(Dic3) in Figure 3.
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Figure 3: Θ(Dic3)

From Figure 3, we observe that {1, a, a2, a3, a4, a5} is a minimum separating
set of Θ(Dic3). So, κ(Θ(Dic3)) = 6. Also, S(Dicn) = {1, a2, a3, a4}. Hence,
κ(Θ(Dic3)) > |S(Dic3)|.

We thus end this section by proposing the following open problem which
can be considered for further research.

Problem 4.5. Characterize all finite groups G, such that Θ(G) is not complete,
but κ(Θ(G)) = |S(G)|.

5. Signless Laplacian Spectrum of Θ(G)

In this section, we shall find the signless Laplacian spectra of Θ(Zn) and
Θ(Dn) for n ∈ {pq, pm} where p, q are distinct primes with p < q and m ∈ N.
We denote the signless Laplacian matrix of Θ(G) by Q = Q(Θ(G)).

5.1. Signless Laplacian Spectrum of Θ(Zn)

Theorem 5.1. If n = pq, then the eigenvalues of Q(Θ(Zn)) are p+ q− 1 with
multiplicity pq− p− q, pq− 2 with multiplicity p+ q− 2 and the other two are
solutions of the equation x2 − x(pq+2p+2q− 4)+ 2(p+ q− 1)(p+ q− 2) = 0.

Proof. The rows and columns of Q = Q(Θ(Zn)) have been indexed in the
following way:
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We start with the zero element 0 of Zn. We then list those elements m ∈ Zn

such that gcd(m,n) ̸= 1. Finally, we list those elements m ∈ Zn such that
gcd(m,n) = 1. Using the above indexing, Q takes the following form,

Q =

 ((n− 2)I + J)(n−φ(n))×(n−φ(n)) J(n−φ(n))×φ(n)

JT
φ(n)×(n−φ(n)) (n− φ(n))Iφ(n)×φ(n)

 .

(5.1)

Here, Jm×n is a matrix of order m× n all of whose entries are 1.
If we consider the matrix Q− (n− 2)I, we obtain

(5.2) Q− (n− 2)I =

 Jn−φ(n) J(n−φ(n))×φ(n)

JT
φ(n)×(n−φ(n)) (2− φ(n))Iφ(n)

 .

Since the matrix in eq. (5.2) has n− φ(n) identical rows, we conclude that
n− 2 is an eigenvalue of Q with multiplicity at least n−φ(n)− 1. Similarly, if
we consider the matrix Q− (n−φ(n))I we find that it has φ(n) identical rows,
which makes us conclude that n−φ(n) is an eigenvalue of Q with multiplicity at
least φ(n)− 1. We shall use the concept of equitable partitions (see [7, Section
5]) to find the remaining two eigenvalues of Q. In short, given a graph G, a
partition π of V (G) = V1 ∪ V2 ∪ · · · ∪ Vk is an equitable partition of G, if every
vertex in Vi has the same number of neighbors in Vj for all i, j ∈ {1, 2, . . . , k}.
Also, given an equitable partition π of G, and its signless Laplacian matrix Q,
we can form the matrix Qπ = (qij) in the following way

(5.3) qij =

{
bij if i ̸= j

bii +
∑k

j=1 bij if i = j

where bij is the number of neighbors a vertex v ∈ Vi has in Vj , and bii is the
number of neighbors a vertex v ∈ Vi has in Vi. We refer to the matrix Qπ as
the matrix corresponding to the partition π of G. It is further known that the
multiset of eigenvalues of Qπ is contained in the multiset of eigenvalues of Q
[7, Lemma 5.1].

We partition the vertex set V of Θ(Zn) as V1 ∪ V2 where V1 = {0} ∪ {m :
gcd(m,n) ̸= 1} and V2 = V \ V1. We notice that each vertex v in V1 has
n − φ(n) − 1 neighbors in V1, and φ(n) neighbors in V2. Also, each vertex
v in V2 has n − φ(n) neighbors in V1, and 0 neighbors in V2. We call this
partition π. Using eq. (5.3), we can construct the equitable quotient matrix Qπ

corresponding to this partition π of Θ(Zn),

Qπ =

 2n− φ(n)− 2 φ(n)

n− φ(n) n− φ(n)

 .

The characteristic polynomial of Qπ is Λ(x) = x2 + x(2 − 3n + 2φ(n)) +
(2n− 2φ(n))(n− 1−φ(n)). The solutions of Λ(x) = 0 are 1

2{3n− 2− 2φ(n)±
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4nφ(n)− 4φ(n)2 + n2 − 4n+ 4}. Since n > 2, so φ(n) ≥ 2. Hence we have

Λ(n− ϕ(n)) = ϕ(n)(ϕ(n)− n) ̸= 0

and Λ(n− 2) = 2(ϕ(n)− 1)(ϕ(n)− n) ̸= 0.

Since the eigenvalues of Qπ are different from n − φ(n) and n − 2, using
Lemma 5.1 of [7] we find that the remaining eigenvalues of Q are 1

2{3n −
2−2φ(n)±

√
4nφ(n)− 4φ(n)2 + n2 − 4n+ 4}. Thus, the eigenvalues of Q are

n−φ(n) with multiplicity φ(n)−1, n−2 with multiplicity n−φ(n)−1, and the
other two are solutions of the equation x2+x(2−3n+2φ(n))+(2n−2φ(n))(n−
1 − φ(n)) = 0. On substituting n = pq, we find that the eigenvalues of Q are
p+q−1 with multiplicity pq−p−q, pq−2 with multiplicity p+q−2, and the other
two are solutions of the equation x2−x(pq+2p+2q−4)+2(p+q−1)(p+q−2) = 0,
and hence the result follows.

Proposition 5.2. If n = p, then the eigenvalues of Q(Θ(Zn)) are 2(n − 1)
with multiplicity 1 and n− 2 with multiplicity n− 1.

Proof. If n = p, then using Corollary 3.6, Θ(Zn) is complete. Thus, Q =
(n − 2)I + J . Using Theorem 2.6, the eigenvalues of Q are 2(n − 1) with
multiplicity 1 and n− 2 with multiplicity n− 1.

Theorem 5.3. If n = pm, where m ≥ 2, then the eigenvalues of Q(Θ(Zn)) are
p with multiplicity pm− p− 1, pm− 2 with multiplicity p− 1, and the other two
are given by the solutions of the equation x2 − x(pm + 2p− 2) + 2p(p− 1) = 0.

Proof. The rows and columns of the matrix Q have been indexed in the follow-
ing way,
We start with the zero element 0 of Zn. We then list the following elements of
Zn:

{pm−1, 2pm−1, 3pm−1, . . . , (p− 2)pm−1, (p− 1)pm−1}.

We then list the remaining non-generators of Zn, and finally we list the gen-
erators of Zn. Since each element of the set {pm−1, 2pm−1, 3pm−1, . . . , (p −
2)pm−1, (p − 1)pm−1} has order p we find that they are adjacent to all other
vertices of Θ(Zn). Using the above indexing, Q takes the following form,

Q =

 ((n− 2)I + J)p×p Jp×(n−p)

JT
(n−p)×p pI(n−p)×(n−p)

 .

If we consider the matrix Q− (n− 2)I, we find that it has p identical rows,
and hence n−2 is an eigenvalue of Q with multiplicity at least p−1. Similarly,
if we consider the matrix Q− pI, we find that it has pm− p identical rows, and
hence p is an eigenvalue of Q with multiplicity at least pm − p− 1.

We again partition the vertex set V of Θ(Zn) as V = V1 ∪ V2 where V1 =
{0, pm−1, 2pm−1, . . . , (p − 2)pm−1, (p − 1)pm−1} and V2 = V \ V1. We observe
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that each vertex v in V1 has p − 1 neighbors in V1 and pm − p neighbors in
V2. Similarly, each vertex v in V2 has p neighbors in V1 and 0 neighbors in V2.
Thus, the partition is an equitable partition, and we call the partition π.

According to eq. (5.3), the equitable quotient matrix corresponding to the
partition π becomes

Qπ =

(
pm + p− 2 pm − p

p p

)
The characteristic polynomial of Qπ is

Λ(x) = x2 − x(pm + 2p− 2) + 2p(p− 1).

Note that for a given p and m ≥ 2,

Λ(p) = p(p− pm) ̸= 0

and Λ(pm − 2) = −2p(pm − p− 1) ̸= 0

The solutions of Λ(x) = 0 are 1
2

(
pm+2p− 2±

√
(pm + 2p− 2)2 − 8p(p− 1)

)
.

Since the eigenvalues of Qπ are different from p and pm − 2, using Lemma 5.1
of [7] we find that the eigenvalues of Q are p with multiplicity pm − p − 1,
pm − 2 with multiplicity p− 1, and the other two are solutions of the equation
x2 − x(pm + 2p− 2) + 2p(p− 1) = 0.

5.2. Signless Laplacian Spectrum of Θ(Dn)

In this section, we shall find the signless Laplacian spectrum of Θ(Dn). We
know that

Dn = {⟨r, s⟩ : rn = s2 = 1, rs = sr−1}.

We first index the elements ri, and then index the elements sri where 0 ≤
i ≤ n − 1. We also note that o(sri) = 2 for all 0 ≤ i ≤ n − 1, and hence
gcd(o(sri), o(srj)) = 2 for all 0 ≤ i, j ≤ n − 1. Also, ri is adjacent to srj for
all 0 ≤ i, j ≤ n− 1. The signless Laplacian matrix of Θ(Dn) is given by:

(5.4) Q(Θ(Dn)) =

 (Q(Θ(Zn)) + nI)n×n Jn×n

JT
n×n ((2n− 2)I + J)n×n

 .

Using eq. (5.4), we find that the signless Laplacian matrix of Θ(Dn) depends
on the signless Laplacian matrix of Θ(Zn). In the previous section we had
determined the eigenvalues of Q(Θ(Zn)) for n ∈ {pm, pq}. We will use those in
this section to find the eigenvalues of Q(Θ(Dn)) for n ∈ {pm, pq}.

Theorem 5.4. If n = pq, then the eigenvalues of Q(Θ(Dn)) are 2(n − 1)
with multiplicity 2n − φ(n) − 1, 2n − φ(n) with multiplicity φ(n) − 1, and
3n− φ(n)− 1±

√
n2 + 2φ(n)n− φ(n)2 − 2n+ 1, each with multiplicity 1.



Prime coprime graph of a finite group 55

Proof. If n = pq, using eqs. (5.1) and (5.4), we find that the signless Laplacian
matrix of Θ(Dn) is of the following form:

Q =


((2n− 2)I + J)(n−φ(n))2 J(n−φ(n)×φ(n)) J(n−φ(n)×n)

Jφ(n)×(n−φ(n)) (2n− φ(n))I(φ(n))2 Jφ(n)×n

Jn×(n−φ(n)) Jn×φ(n) ((2n− 2)I + J)n2

 .

If we consider the matrix Q − (2n − 2)I, we find that it has 2n − φ(n)
identical rows. Thus, 2n − 2 is an eigenvalue of Q with multiplicity at least
2n − φ(n) − 1. We also note that Q − (2n − φ(n))I has φ(n) identical rows,
which makes us conclude that 2n−φ(n) is an eigenvalue of Q with multiplicity
at least φ(n)− 1.

We partition the vertex set V of Θ(Dn) in the following way: V1 = {1}∪{ri :
gcd(i, n) ̸= 1}, V2 = {ri : gcd(i, n) = 1} and V3 = {sri : 0 ≤ i ≤ n− 1}. Each
vertex v ∈ V1 has n − φ(n) − 1 neighbors in V1, φ(n) neighbors in V2 and n
neighbors in V3. Each vertex v ∈ V2 has n−φ(n) neighbors in V1, 0 neighbors
in V2 and n neighbors in V3, and each vertex v ∈ V3 has n − φ(n) neighbors
in V1, φ(n) neighbors in V2 and n− 1 neighbors in V3. Hence, the partition is
an equitable partition, and we call it π. Using eq. (5.3), the equitable quotient
matrix corresponding to π is given by:

Qπ =


3n− 2− φ(n) φ(n) n

n− φ(n) 2n− φ(n) n

n− φ(n) φ(n) 3n− 2

 .

The characteristic polynomial of Qπ is

Λ(x) = x3 + (2φ(n)− 8n+ 4)x2 + (2φ(n)2 − 12φ(n)n

+ 20n2 + 6φ(n)− 20n+ 4)x− 4φ(n)2n+ 16φ(n)n2 − 16n3

+ 4φ(n)2 − 20φ(n)n+ 24n2 + 4φ(n)− 8n.

On solving, we find that solutions of Λ(x) = 0 are 2(n− 1) with multiplicity 1
and 3n−φ(n)− 1±

√
n2 + 2φ(n)n− φ(n)2 − 2n+ 1, each with multiplicity 1.

We further note that Λ(2n− φ(n)) ̸= 0, as otherwise

2n− φ(n) = 3n− φ(n)− 1±
√

n2 + 2φ(n)n− φ(n)2 − 2n+ 1

which implies (n− 1)2 = n2 + 2nφ(n)− φ(n)2 − 2n+ 1

which implies 2nφ(n)− φ(n)2 = 0

which implies (2n− φ(n))φ(n) = 0 which is false for n = pq.

Again, we further note that
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2n− 2 ̸= 3n− φ(n)− 1±
√
n2 + 2φ(n)n− φ(n)2 − 2n+ 1, as otherwise

2n− 2 = 3n− φ(n)− 1±
√
n2 + 2φ(n)n− φ(n)2 − 2n+ 1

which implies

(
n+ 1− φ(n)

)2

= n2 + 2φ(n)n− φ(n)2 − 2n+ 1

which implies 2φ(n)2 + 4n− 2φ(n)− 4nφ(n) = 0

which implies

(
φ(n)− 2n

)(
φ(n)− 1

)
= 0

which implies either φ(n) = 2n or φ(n) = 1, which are both false.

We thus conclude that the eigenvalues
3n− φ(n)− 1±

√
n2 + 2φ(n)n− φ(n)2 − 2n+ 1 of Qπ are distinct from both

2n − φ(n) and 2(n − 1) for n = pq. Using Lemma 5.1 of [7], we find that
3n − φ(n) − 1 ±

√
n2 + 2φ(n)n− φ(n)2 − 2n+ 1 are eigenvalues of Q, each

with multiplicity 1. Thus, the eigenvalues of Q are 2(n − 1) with multiplicity
2n − φ(n) − 1, 2n − φ(n) with multiplicity φ(n) − 1 and 3n − φ(n) − 1 ±√
n2 + 2φ(n)n− φ(n)2 − 2n+ 1, each with multiplicity 1.

Proposition 5.5. If n = p, then the eigenvalues of Q(Θ(Dn)) are 2(n − 1)
with multiplicity 1 and n− 2 with multiplicity n− 1.

Proof. If n = p, then using Corollary 3.8, Θ(Dn) is complete. Thus, Q =
(n − 2)I + J . Using Theorem 2.6, the eigenvalues of Q are 2(n − 1) with
multiplicity 1 and n− 2 with multiplicity n− 1.

Theorem 5.6. If n = pm where m ≥ 2, then the eigenvalues of Q(Θ(Dn))
are 2n − 2 with multiplicity n + p − 1, p + n with multiplicity n − p − 1, and
2n+ p− 1±

√
2n2 − 2n− p2 + 1 each with multiplicity 1.

Proof. If n = pm, using eqs. (5.1) and (5.4) we find that Q = Q(Θ(Dn)) is of
the following form:

Q =


((2n− 2)I + J)p×p Jp×(n−p) Jp×n

J(n−p)×p (p+ n)I(n−p)×(n−p) J(n−p)×n

Jn×p Jn×(n−p) ((2n− 2)I + J)n×n

 .

We note that Q− (2n− 2)I has n+ p identical rows, and hence 2n− 2 is an
eigenvalue of Q with multiplicity at least n+ p− 1. Similarly, Q− (p+n)I has
n− p identical rows, and hence p+n is an eigenvalue of Q with multiplicity at
least n− p− 1.

We now partition the vertex set V of Θ(Dpm) as V = V1 ∪ V2 ∪ V3 where

V1 = {1, rp
m−1

, r2(p
m−1), . . . , r(p−1)(pm−1)},
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V2 = {ri : 0 ≤ i ≤ n− 1} \ V1, and V3 = {sri : 0 ≤ i ≤ n}. Each vertex v ∈ V1

has p − 1 neighbors in V1, n − p neighbors in V2 and n neighbors in V3. Each
vertex v ∈ V2 has p neighbors in V1, 0 neighbors in V2 and n neighbors in V3

and each vertex v ∈ V3 has p neighbors in V1, n− p neighbors in V2 and n− 1
neighbors in V3. Hence, the partition is an equitable partition, and we call it
π.

The equitable quotient matrix of Q corresponding to π is given by:

Qπ =

 2(n− 1) + p n− p n
p n+ p n
p n− p 3n− 2

 .

The characteristic polynomial of Qπ is

Λ(x) = x3 + (−6n− 2p+ 4)x2 + (10n2 + 8np+ 2p2 − 14n− 6p+ 4)x

− 4n3 − 8n2p− 4np2 + 8n2 + 12np+ 4p2 − 4n− 4p.

The solutions of Λ(x) = 0 are 2(n− 1) and 2n+ p− 1±
√
2n2 − 2n− p2 + 1.

We further note that, Λ(n+ p) ̸= 0, as otherwise it would imply,

n+ p = 2n+ p− 1±
√
2n2 − 2n− p2 + 1

which implies − n+ 1 = ±
√
2n2 − 2n− p2 + 1.

which implies (n− 1)2 = 2n2 − 2n− p2 + 1

which implies n2 = p2, which is false.

We further note that 2(n−1) ̸= 2n+p−1±
√

2n2 − 2n− p2 + 1, as otherwise

2(n− 1) = 2n+ p− 1±
√
2n2 − 2n− p2 + 1

which implies − p− 1 = ±
√
2n2 − 2n− p2 + 1

which implies (p+ 1)2 = 2n2 − 2n− p2 + 1

which implies 2p(p+ 1) = 2n(n− 1)

which implies p+ 1 = pm−1(pm − 1)

which implies
pm − 1

p+ 1
=

1

pm−1
< 1, which is false.

Thus, the eigenvalues 2n+ p− 1±
√
2n2 − 2n− p2 + 1 of Qπ are different

from both n+ p and 2(n− 1) for n = pm. Using Lemma 5.1 of [7], we conclude

that 2n+p−1±
√
2n2 − 2n− p2 + 1 are eigenvalues of Q each with multiplicity

1. Thus, the eigenvalues of Q are 2n − 2 with multiplicity n + p − 1, p + n
with multiplicity n − p − 1, and 2n + p − 1 ±

√
2n2 − 2n− p2 + 1 each with

multiplicity 1.
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[19] Cvetković, D., and Simić, S. K. Towards a spectral theory of graphs based
on the signless Laplacian. III. Appl. Anal. Discrete Math. 4, 1 (2010), 156–166.

[20] Diestel, R. Graph theory, fifth ed., vol. 173 of Graduate Texts in Mathematics.
Springer, Berlin, 2018. Paperback edition of [ MR3644391].

[21] Dorbidi, H. R. A note on the coprime graph of a group. Int. J. Group Theory
5, 4 (2016), 17–22.

[22] Dummit, D. S., and Foote, R. M. Abstract algebra, third ed. John Wiley &
Sons, Inc., Hoboken, NJ, 2004.

[23] Gallian, J. Contemporary abstract algebra. Nelson Education, 2012.

[24] Hamzeh, A., and Ashrafi, A. R. Automorphism groups of supergraphs of the
power graph of a finite group. European J. Combin. 60 (2017), 82–88.

[25] Hamzeh, A., and Ashrafi, A. R. Spectrum and L-spectrum of the power
graph and its main supergraph for certain finite groups. Filomat 31, 16 (2017),
5323–5334.

[26] Hamzeh, A., and Ashrafi, A. R. The order supergraph of the power graph
of a finite group. Turkish J. Math. 42, 4 (2018), 1978–1989.

[27] Kelarev, A. V., and Quinn, S. J. Directed graphs and combinatorial prop-
erties of semigroups. J. Algebra 251, 1 (2002), 16–26.

[28] Ma, X., Wei, H., and Yang, L. The coprime graph of a group. Int. J. Group
Theory 3, 3 (2014), 13–23.

[29] Mehranian, Z., Gholami, A., and Ashrafi, A. R. The spectra of power
graphs of certain finite groups. Linear Multilinear Algebra 65, 5 (2017), 1003–
1010.

[30] Sattanathan, M., and Kala, R. An introduction to order prime graph. Int.
J. Contemp. Math. Sci. 4, 9-12 (2009), 467–474.

[31] Selvakumar, K., and Subajini, M. Classification of groups with toroidal
coprime graphs. Australas. J. Combin. 69 (2017), 174–183.

[32] Zelinka, B. Intersection graphs of finite abelian groups. Czechoslovak Math.
J. 25(100) (1975), 171–174.

Received by the editors May 16, 2020
First published online March 30, 2021


	Introduction
	Preliminaries
	Prime Coprime Graph of a Finite Group
	Vertex Connectivity of (G) 
	Signless Laplacian Spectrum of (G)
	Signless Laplacian Spectrum of (Zn)
	Signless Laplacian Spectrum of (Dn)

	Acknowledgement

