Prime coprime graph of a finite group

Avishek Adhikarin and Subarsha Banerjec ${ }^{2 \beta}$

Abstract

In this paper, a new graph structure called the prime coprime graph of a finite group G denoted by $\Theta(G)$ has been introduced. The coprime graph of a finite group, introduced by Ma, Wei, and Yang [The coprime graph of a group. International Journal of Group Theory, 3(3), pp.13-23.] is a subgraph of the prime coprime graph introduced in this paper. The vertex set of $\Theta(G)$ is G, and any two vertices x, y in $\Theta(G)$ are adjacent if and only if $\operatorname{gcd}(o(x), o(y))$ is equal to 1 or a prime number. We study how the graph properties of $\Theta(G)$ and group properties of G are related. We provide a necessary and sufficient condition for $\Theta(G)$ to be Eulerian for any finite group G. We also study $\Theta(G)$ for certain finite groups like \mathbb{Z}_{n} and D_{n} and derive conditions when it is connected, complete, planar, and Hamiltonian for various $n \in \mathbb{N}$. We also study the vertex connectivity of $\Theta\left(\mathbb{Z}_{n}\right)$ for various $n \in \mathbb{N}$. Finally, we have computed the signless Laplacian spectrum of $\Theta(G)$ when $G=\mathbb{Z}_{n}$ and $G=\mathrm{D}_{n}$ for $n \in\left\{p q, p^{m}\right\}$ where p, q are distinct primes and $m \in \mathbb{N}$.

AMS Mathematics Subject Classification (2010): 05C25; 05C50
Key words and phrases: finite cyclic group; dihedral group; graph; vertex connectivity; signless laplacian.

1. Introduction

Generating graphs from various algebraic structures like groups and semigroups is nothing new. Bosak in [10] studied various kinds of graphs that were defined on semigroups. In [32, the author studied the intersection graph defined on a finite abelian group. A Cayley digraph is also an important class of directed graphs defined on finite groups, and readers may refer to [11, 23] in order to find some information about them. Kelarev and Quinn in [27] introduced the power graph on a semigroup S as a directed graph in which the set of vertices is S, and two distinct elements $a, b \in S$ are adjacent if and only if $b=a^{m}$ for some positive integer m. Motivated by the work in [27, Chakrabarty et al. studied the undirected power graph on semigroups in [14]. The undirected power graph on a semigroup S is the graph whose vertex set is S, and two distinct vertices $a, b \in S$ are adjacent if and only if $a=b^{m}$ or $b=a^{n}$ for some positive integers m, n. Several properties of the power graph were investigated by Cameron and Ghosh in [12] and [13]. In [26], the authors introduced a new graph known as the order supergraph of the power graph of

[^0]a finite group G, whose vertex set is G and any two vertices x, y are adjacent if and only if $o(x) \mid o(y)$ or $o(y) \mid o(x)$. The automorphism group of this graph was studied in [24].

Recently, several researchers have studied spectral properties of graphs associated with algebraic structures. The spectral properties of power graph of a finite group ([29, [25], [7],[6]), Cayley graph of certain groups (3], [1] , 15]), commuting and non-commuting graph of dihedral groups ([2, [5]) etc. have been studied over the last few years.

The notion of coprime graph of a finite group G has existed in the literature for a long time. It was first introduced by Sattanathan and Kala as the order prime graph in [30]. Later on, in [28] Ma et al. reintroduced and renamed the order prime graph as the coprime graph and studied various properties of it. The coprime graph was studied extensively in [21] and [31]. In [4], the Laplacian spectra of the coprime graph of finite cyclic and dihedral groups were studied. In this paper, we introduce a new graph known as the prime coprime graph of a finite group G. We denote it by $\Theta(G)$. Clearly for a given finite group G, the coprime graph is a subgraph of the prime coprime graph introduced in this paper. We characterize some properties of $\Theta(G)$ using the algebraic properties of the group G. We study the connectedness and the diameter of the graph $\Theta(G)$. We show that $\Theta(G)$ is Eulerian if and only if G has odd order and every non-identity element of G has prime order. We also find out when $\Theta\left(\mathbb{Z}_{n}\right)$ is planar and Hamiltonian for various $n \in \mathbb{N}$. We also study the vertex connectivity of $\Theta\left(\mathbb{Z}_{n}\right)$ for various n. Finally, we find the signless Laplacian spectra of $\Theta\left(\mathbb{Z}_{n}\right)$ and $\Theta\left(D_{n}\right)$ for $n \in\left\{p q, p^{m}\right\}$ where p, q are distinct primes and $m \in \mathbb{N}$.

The paper has been organized as follows: In Section 2, we have provided the preliminary definitions and theorems that have been used throughout the paper. In Section 3, we formally introduce the prime coprime graph of a finite group G, denoted by $\Theta(G)$, and study various properties of $\Theta(G)$. In Section 4 . we study the vertex connectivity of $\Theta\left(\mathbb{Z}_{n}\right)$. In Section 5 we determine the signless Laplacian spectra of $\Theta\left(\mathbb{Z}_{n}\right)$ and $\Theta\left(\mathrm{D}_{n}\right)$ for $n \in\left\{p q, p^{m}\right\}$.

2. Preliminaries

In this section, for the convenience of the readers, we provide some preliminary definitions and theorems that have been used throughout the paper. We denote a graph \mathcal{G} by $\mathcal{G}=(V, E)$ where V is the set of all vertices of \mathcal{G} and E denotes the set of all edges of \mathcal{G}. A graph \mathcal{G} is said to be simple if it has no loops or parallel edges. A graph with one vertex and no edges is called a trivial graph. We denote the degree of a vertex $v \in V(\mathcal{G})$ by $\operatorname{deg}(v)$. For a given $\operatorname{graph} \mathcal{G}, \delta(\mathcal{G})=\min \{\operatorname{deg}(v): v \in \mathcal{G}\}$. A subgraph $\mathcal{H}=(W, F)$ of $\mathcal{G}=(V, E)$ is a graph such that $W \subseteq V$ and $F \subseteq E$. If there exists an edge between two vertices a and b, then a and b are said to be adjacent, and it is denoted by $a \sim b$. If there exists an edge between any two vertices of \mathcal{G}, then \mathcal{G} is said to be complete and is denoted by K_{n}. A path P of length k in a graph G is an alternating sequence of vertices and edges $v_{0}, e_{0}, v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k-1}, e_{k-1}, v_{k}$,
where $v_{i}^{\prime} s$ are distinct vertices, and e_{i} is the edge joining v_{i} and v_{i+1}. If $v_{0}=v_{k}$, then P is said to be a cycle of length k. The length of the shortest cycle in \mathcal{G} is known as its girth. A graph \mathcal{G} is said to be connected if for any pair of vertices $u, v \in V$ there exists a path joining u and v. For a connected graph \mathcal{G}, the distance between two vertices u, v denoted by $d(u, v)$, is defined as the length of the shortest path joining u and v. The diameter of a connected graph \mathcal{G}, denoted by $\operatorname{diam}(\mathcal{G})$, is defined as $\operatorname{diam}(\mathcal{G})=\max \{d(u, v): u, v \in V\}$. A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. An isomorphism of graphs \mathcal{G} and \mathcal{H} denoted by $\mathcal{G} \cong \mathcal{H}$ is a bijection f between $V(\mathcal{G})$ and $V(\mathcal{H})$ such that any two vertices $u, v \in V(\mathcal{G})$ are adjacent if and only if the vertices $f(u), f(v) \in V(\mathcal{H})$ are adjacent. An Eulerian cycle in a graph \mathcal{G} is a cycle which visits every edge exactly once. A graph \mathcal{G} is said to be Eulerian if it has an Eulerian cycle. A Hamiltonian cycle in a graph \mathcal{G} is a cycle which visits every vertex exactly once. A graph \mathcal{G} is said to be Hamiltonian if it has a Hamiltonian cycle. The vertex connectivity $\kappa(\mathcal{G})$ of a graph \mathcal{G} is the minimum number of vertices whose removal results in a disconnected or trivial graph. We define the connectivity of a disconnected graph to be 0 . Given a positive integer k, a graph \mathcal{G} is said to be k-tough if for any integer $t>1, \mathcal{G}$ cannot be split into t different connected components by the removal of fewer than $k t$ vertices. The toughness of a graph \mathcal{G} is defined as the largest real number t such that deletion of any s vertices from \mathcal{G} results in a graph which is either connected or else has at most $\frac{s}{t}$ components. A dominating set of a graph \mathcal{G} is a subset D of V such that for every $v \notin D$, there exists a vertex $w \in D$ for which v is adjacent to w. The domination number is the number of vertices in a smallest dominating set of \mathcal{G}. For more information on the terms used above, the readers may refer to any standard book on graph theory, say [20] or [9.

Let \mathcal{G} be a finite simple undirected graph with $V(\mathcal{G})=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix of \mathcal{G}, denoted by $A(\mathcal{G})=\left(a_{i j}\right)$ is defined as $a_{i j}=1$ if $v_{i} \sim v_{j}$ and $a_{i j}=0$ otherwise. The degree matrix of \mathcal{G}, denoted by $D(\mathcal{G})=$ $\left(d_{i i}\right)$ is a diagonal matrix, where $d_{i i}$ denotes the degree of the $i^{\text {th }}$ vertex of \mathcal{G}. The Laplacian matrix $L(\mathcal{G})$ is defined as $L(\mathcal{G})=D(\mathcal{G})-A(\mathcal{G})$. The signless Laplacian matrix $Q(\mathcal{G})$ is defined as $Q(\mathcal{G})=D(\mathcal{G})+A(\mathcal{G})$. The matrix $Q(\mathcal{G})$ is a real and symmetric matrix and hence all its eigenvalues are real. Also, $Q(\mathcal{G})$ is a positive semi-definite matrix and hence all its eigenvalues are nonnegative. For more information on $Q(\mathcal{G})$, readers may refer to 17, 18 and [19]. We arrange the eigenvalues of $Q(\mathcal{G})$ as $\lambda_{1}(\mathcal{G}) \geq \lambda_{2}(\mathcal{G}) \geq \cdots \geq \lambda_{n}(\mathcal{G})$ in non-increasing order, and repeated according to their multiplicities.

For $n \in \mathbb{N}$, the number of positive integers that are less than or equal to n and are relatively prime to n is denoted by $\varphi(n)$. The function φ is known as Euler's phi function. We know that a finite cyclic group of order n is isomorphic to ($\mathbb{Z}_{n},+$), where $\mathbb{Z}_{n}=\{0,1,2 \ldots, n-2, n-1\}$, and hence we prove our results for \mathbb{Z}_{n} instead of an arbitrary cyclic group. An element $a \in \mathbb{Z}_{n}$ is said to be a generator of \mathbb{Z}_{n} if $\operatorname{gcd}(a, n)=1$. An element which is not a generator is known as a non-generator. We denote the dihedral group of order $2 n$ by D_{n}. The order of an element $g \in G$, denoted by $o(g)$, is the least positive integer n such that
$g^{n}=e$, where e is the identity element of G. The number of elements in a set S is denoted by $|S|$. For basic definitions and notations on group theory, the readers are referred to 22].

The theorems used in the paper have been listed below. The proof of Theorems 2.1 to 2.4 can be found in [9] or [20], while the proof of Theorem 2.6 can be found in [8].

Theorem 2.1. A connected graph \mathcal{G} has an Eulerian cycle if and only if $\operatorname{deg}(v)$ is even for all $v \in \mathcal{G}$.

Theorem 2.2. For any graph $\mathcal{G}, \kappa(\mathcal{G}) \leq \delta(\mathcal{G})$.
Theorem 2.3. The complete graph K_{5} and the complete bipartite graph $K_{3,3}$ are non-planar.

Theorem 2.4 (Ore). Let \mathcal{G} be a finite and simple graph with n vertices where $n \geq 3$. If $\operatorname{deg}(v)+\operatorname{deg}(w) \geq n$ for every pair of distinct non-adjacent vertices v and w of \mathcal{G}, then \mathcal{G} is Hamiltonian.

Theorem 2.5. [16] If \mathcal{G} is Hamiltonian, then \mathcal{G} is 1-tough.
Theorem 2.6. If J denotes the square matrix of order n with all entries equal to one and I denotes the identity matrix of order n then the eigenvalues of $a I+b J$ are a with multiplicity $n-1$ and $a+n b$ with multiplicity 1.

3. Prime Coprime Graph of a Finite Group

Let G be a finite group such that $|G|>2$. The prime coprime graph $\Theta(G)=(V, E)$ is defined as follows: The vertex set V is the set G, and any two distinct vertices x, y are adjacent if and only if $\operatorname{gcd}(o(x), o(y))$ is equal to 1 or a prime number. We now study some basic properties of $\Theta(G)$.

Theorem 3.1. The graph $\Theta(G)$ satisfies the following properties:
(a). The domination number of $\Theta(G)$ is 1 and $\{e\}$ is a dominating set of $\Theta(G)$.
(b). The set $\{x\}$ is a dominating set of $\Theta(G)$ if and only if $o(x)$ is equal to 1 or a prime number.

Proof. (a). Since $\operatorname{gcd}(o(a), o(e))=o(e)=1$, we find that e is adjacent to a for all $a \in G$. Hence, the set $\{e\}$ is a dominating set of $\Theta(G)$, which implies that the domination number of $\Theta(G)$ is 1 .
(b). Let $x \in G$. If $o(x)$ is equal to 1 or a prime number, then $\operatorname{gcd}(o(a), o(x))$ is equal to 1 or a prime number for all $a \in G$. Thus, x is adjacent to a for all $a \in G$, which implies that $\{x\}$ is a dominating set of $\Theta(G)$.
Conversely, let $\{x\}$ be a dominating set of $\Theta(G)$. Assume the contrary that $o(x)$ is neither 1 nor a prime number. Then, $o(x)$ is composite which implies that $x \neq x^{-1}$. Thus, $\operatorname{gcd}\left(o(x), o\left(x^{-1}\right)\right)=o(x)$, which is
composite. Hence, x is not adjacent to x^{-1}. Since $x \neq x^{-1}$, it contradicts the fact that $\{x\}$ is a dominating set of $\Theta(G)$. Hence, $o(x)$ is either equal to 1 or a prime number.

Theorem 3.2. The graph $\Theta(G)$ is connected and the diameter of $\Theta(G)$ is at most 2.

Proof. Let $x, y \in \Theta(G)$. If $\operatorname{gcd}(o(x), o(y))$ is equal to 1 or a prime number, then x is adjacent to y, and we are done. If $\operatorname{gcd}(o(x), o(y))$ is composite then x and y are not adjacent. Consider the identity element e of G. Since $o(e)=1$, so x and y are both adjacent to e. Thus, we find that there always exists a path of length 2 between any two non-adjacent vertices $x, y \in \Theta(G)$. Thus, $\Theta(G)$ is connected and the diameter of $(\Theta(G))$ is at most 2 .

Theorem 3.3. If the girth of $\Theta(G)$ is finite, then it equals 3 .
Proof. The proof follows from the simple fact that for any two distinct vertices $x, y \in G$ where $x, y \neq e$, there exists a path of length 2 given by $x \sim e \sim y$ from x to y. If x, y are adjacent for some x and y, then the girth of $\Theta(G)$ is finite and it equals 3 .

Theorem 3.4. The graph $\Theta(G)$ is Eulerian if and only if G is an odd-order group, and every non-identity element has prime order.
Proof. Suppose the graph $\Theta(G)$ is Eulerian. Using Theorem 3.2, we find that $\Theta(G)$ is connected. Since $\Theta(G)$ is Eulerian, using Theorem 2.1 we find that every vertex in $\Theta(G)$ has an even degree. Since the identity element e of G is connected to every other vertex in $\Theta(G), \operatorname{deg}(e)=|G|-1$. Since $\operatorname{deg}(e)$ must be even, the order of G must be odd. Thus, G has no elements of order 2. Now let a be any non-identity element of G. We claim that a has prime order. Assume that the order of a is composite. Let us consider the set

$$
E_{a}=\{b \in G: \operatorname{gcd}(o(a), o(b)) \text { is equal to } 1 \text { or a prime number }\} .
$$

We notice that $b \in E_{a}$ if and only if $b^{-1} \in E_{a}$. Thus, the number of nonidentity elements present in E_{a} (if any) are even. Also, the identity element e of G is in E_{a}. Thus, E_{a} has an odd number of elements. Thus, $\left|E_{a}\right|$ is an odd number. Let $E_{a}^{*}=E_{a} \backslash\{a\}$. Since the order of a is composite, so $a \notin E_{a}$. Thus, $E_{a}=E_{a}^{*}$. We further note that the elements of E_{a}^{*} are those vertices of $\Theta(G)$ which are adjacent to the vertex a of $\Theta(G)$. Thus, $\left|E_{a}\right|=\left|E_{a}^{*}\right|=\operatorname{deg}(a)$. Since $\Theta(G)$ is Eulerian, $\operatorname{deg}(a)$ must be even, but we have proved that $\operatorname{deg}(a)$ is odd, which is contradictory. Hence, our initial assumption that order of a is composite, is false. Thus, the order of a must be a prime number. Thus, we find that if $\Theta(G)$ is Eulerian, then the order of G is odd and every non-identity element has prime order.

Conversely, assume that $|G|$ is odd and every non-identity element of G has prime order. Thus, for any element $a \in G$, we have $E_{a}{ }^{*}=G \backslash\{a\}$. Also,

$$
\begin{equation*}
\operatorname{deg}(a)=\left|E_{a}^{*}\right|=|G \backslash\{a\}| \tag{3.1}
\end{equation*}
$$

Since $|G|$ is an odd number, so $|G \backslash\{a\}|$ is an even number for every $a \in G$. Using Equation (3.1), we find that for every $a \in G, \operatorname{deg}(a)$ must be an even number. Thus, $\Theta(G)$ is connected and every vertex in $\Theta(G)$ has an even degree. Using Theorem 2.1, we conclude that $\Theta(G)$ is Eulerian. Thus, the result follows.

Theorem 3.5. The graph $\Theta(G)$ is complete if and only if G has no elements of composite order.

Proof. Suppose $\Theta(G)$ is complete. Let $g \in G$ be an element of composite order. Clearly $g \neq g^{-1}$. Since $\operatorname{gcd}\left(o(g), o\left(g^{-1}\right)\right)=o(g)$, we find that g is not adjacent to g^{-1} in $\Theta(G)$. Thus, $\Theta(G)$ is not complete which is a contradiction. Hence, we conclude that G has no element whose order is composite. Conversely, if all elements of G have prime order, then for any two elements $x, y \in G$, $\operatorname{gcd}(o(x), o(y))$ is equal to 1 or a prime number, which in turn implies that $\Theta(G)$ is complete.

Corollary 3.6. Let G be a finite cyclic group of order n. Then, $\Theta(G)$ is complete if and only if n is a prime number.

Corollary 3.7. Let G be a finite commutative group of order p^{m} where p is a prime and $m>1$. Then, $\Theta(G)$ is complete if and only if $G \cong\left(\mathbb{Z}_{p}\right)^{m}$.

Proof. We know that any finite commutative group is a direct product of cyclic groups. Hence, $G \cong \mathbb{Z}_{p^{\alpha_{1}}} \times \mathbb{Z}_{p^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p^{\alpha_{k}}}$ where $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=m$ and $1 \leq \alpha_{i} \leq m$. Assume that $\Theta(G)$ is complete. Now if $\alpha_{i}=1$ for all $1 \leq i \leq k$, we are done. So, let us assume that there exists α_{i} such that $\alpha_{i}>1$ for some i. Since $\mathbb{Z}_{p^{\alpha_{i}}}$ is a cyclic group of order $p^{\alpha_{i}}$, it has $\varphi\left(p^{\alpha_{i}}\right) \geq 2$ generators, and hence we can find $x \in \mathbb{Z}_{p^{\alpha_{i}}}$ such that $o(x)=p^{\alpha_{i}}$. Consider the element $\mathbf{x}=(0,0, \ldots, 0, x, 0 \ldots, 0,0) \in G$. Clearly $o(\mathbf{x})$ is composite which contradicts Theorem 3.5. Hence, $\alpha_{i}=1$ for all $1 \leq i \leq m$ which implies that $G \cong\left(\mathbb{Z}_{p}\right)^{m}$. The converse part is trivial and hence skipped.

Corollary 3.8. The graph $\Theta\left(D_{n}\right)$ for $n \geq 2$ is complete if and only if n is prime.

Proof. We know that the dihedral group of order $2 n$ has the following presentation:

$$
\mathrm{D}_{n}=\left\{\langle r, s\rangle: r^{n}=s^{2}=1, r s=s r^{-1}\right\}
$$

We partition the vertex set of $\Theta\left(\mathrm{D}_{n}\right)$ as $\mathrm{D}_{n}=A \cup B$ where $A=\left\{r^{i}: 0 \leq i \leq\right.$ $n-1\}$, and $B=\left\{s r^{i}: 0 \leq i \leq n-1\right\}$. The graph induced by the elements of A forms a subgraph of $\Theta\left(D_{n}\right)$, and is isomorphic to $\Theta\left(\mathbb{Z}_{n}\right)$. Since every element of B has order 2 , so the subgraph induced by the elements of B is isomorphic to K_{n}. Also since the order of each member of B is 2 , every vertex of A is adjacent to every vertex of B. Using the above facts, we observe that $\Theta\left(D_{n}\right)$ is complete if and only if $\Theta\left(\mathbb{Z}_{n}\right)$ is complete. Using Corollary 3.6. $\Theta\left(\mathbb{Z}_{n}\right)$ is complete if and only if n is prime. Thus, $\Theta\left(\mathrm{D}_{n}\right)$ is complete if and only if n is prime.

Theorem 3.9. The graph $\Theta\left(\mathbb{Z}_{n}\right)$ is planar if and only if $n=3$ or $n=2^{i}$ where $i \in \mathbb{N}$.

Proof. Assume that $\Theta\left(\mathbb{Z}_{n}\right)$ is planar. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ where p_{i} 's are primes, and α_{i} 's are positive integers. Assume that $\alpha_{i} \geq 1$ for $i=i_{0}$ and $i=i_{1}$. We choose two elements $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{i_{0}}^{\alpha_{i_{0}}-1} \cdots p_{k}^{\alpha_{k}}$ and $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{i_{1}}^{\alpha_{i_{1}}-1} \cdots p_{k}^{\alpha_{k}}$, and consider the subgroup generated by these two elements. Every element in the subgroup generated by $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{i_{0}}^{\alpha_{i_{0}}-1} \cdots p_{k}^{\alpha_{k}}$ except the identity element has order $p_{i_{0}}$, which is prime. Every element in the subgroup generated by $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{i_{1}}^{\alpha_{i_{1}}-1} \cdots p_{k}^{\alpha_{k}}$ except the identity element has order $p_{i_{1}}$, which is also prime. Thus, we obtain $p_{i_{0}}+p_{i_{1}}-2$ elements of prime order. Note that $p_{i_{0}}+p_{i_{1}} \geq 5$ is always true, and hence we can always get at least 3 elements of prime order. If we take 3 elements of prime order, together with the zero element and a generator of \mathbb{Z}_{n}, then we can find 5 elements that are adjacent to each other. Thus, there always exists a subgraph in $\Theta\left(\mathbb{Z}_{n}\right)$ which is isomorphic to K_{5}. By Theorem 2.3 , we conclude that $\Theta\left(\mathbb{Z}_{n}\right)$ is not planar, which is contrary to our assumption. Hence, we cannot find i_{0} and i_{1} such that $\alpha_{i_{0}}, \alpha_{i_{1}} \geq 1$. Thus, $\alpha_{i} \geq 1$ for at most one i. Hence, $n=p^{i}$ where p is a prime and $i \geq 1$.

Again if $p \geq 5$, we can consider the element p^{i-1}. We again notice that all elements in the set $\left\{p^{i-1}, 2 p^{i-1}, 3 p^{i-1}, \ldots,(p-1) p^{i-1}\right\}$ have prime order, and hence are adjacent to all other members of the graph $\Theta\left(\mathbb{Z}_{n}\right)$. Since $p \geq 5$, so we have $p-1 \geq 4$. Hence, if we take 4 elements from the set $\left\{p^{i-1}, 2 p^{i-1}, 3 p^{i-1}, \ldots,(p-1) p^{i-1}\right\}$ together with the zero element of \mathbb{Z}_{n}, then the graph induced by them is isomorphic to K_{5}, and hence by Theorem 2.3 we find that $\Theta\left(\mathbb{Z}_{n}\right)$ is not planar. Thus, we are left with primes $p=2,3$. Hence, either $n=2^{i}$ or $n=3^{i}$ for some $i \in \mathbb{N}$. We claim that the graph $\Theta\left(\mathbb{Z}_{n}\right)$ is planar when $n=2^{i}$ for all $i \geq 1$. If $n=2^{i}$ for some i, then $\Theta\left(\mathbb{Z}_{n}\right)$ has exactly two vertices of degree $n-1$, and the remaining vertices will each have degree 2. We illustrate $\Theta\left(\mathbb{Z}_{n}\right)$ for $n=8$ below. The graph $\Theta\left(\mathbb{Z}_{8}\right)$ can be drawn as in Figure 1 from which it is evident that $\Theta\left(\mathbb{Z}_{8}\right)$ is planar.

Using similar arguments as done for $\Theta\left(\mathbb{Z}_{8}\right)$, it can be established that $\Theta\left(\mathbb{Z}_{n}\right)$ is planar for $n=2^{i}$ where $i \in \mathbb{N}$.

Now we show that $\Theta\left(\mathbb{Z}_{n}\right)$ is planar for $n=3^{i}$ only for $i=1$. Note that when $i=1$, then $\Theta\left(\mathbb{Z}_{3}\right) \cong K_{3}$ which is planar. We illustrate $\Theta\left(\mathbb{Z}_{9}\right)$ in Figure 2 .

Now for $i \geq 2$, if we take the vertices $0,3^{i-1}, 2 \cdot 3^{i-1}$, and any three vertices other than these, then the graph obtained contains $K_{3,3}$ as a subgraph. Using Theorem 2.3. we can conclude that $\Theta\left(\mathbb{Z}_{n}\right)$ is not planar for $n=3^{i}$ where $i \geq 2$. Hence, the graph is planar only when $n=3$. Thus, $\Theta\left(\mathbb{Z}_{n}\right)$ is planar if and only if $n=3$ or $n=2^{i}$ where $i \in \mathbb{N}$.

Theorem 3.10. If p and q are distinct primes with $p<q$ then $\Theta\left(\mathbb{Z}_{p q}\right)$ is Hamiltonian if and only if $p=2$.

Proof. Assume that $p=2$. Let v_{1} and v_{2} be two non-adjacent vertices in $\Theta\left(\mathbb{Z}_{2 q}\right)$. Then, v_{1} and v_{2} are generators of $\mathbb{Z}_{2 q}$. Note that v_{1} is adjacent to any

Figure 1: $\Theta\left(\mathbb{Z}_{8}\right)$

Figure 2: $\Theta\left(\mathbb{Z}_{9}\right)$
non-generator of $\mathbb{Z}_{2 q}$ and so is v_{2}. Then, $\operatorname{deg}\left(v_{i}\right)=2 q-\varphi(2 q)=2 q-(q-1)=$ $q+1$, where $i \in\{1,2\}$. Thus, $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)=2(q+1)>2 q$. Thus, the sum of degrees of two non-adjacent vertices is greater than the number of vertices in $\Theta\left(\mathbb{Z}_{2 q}\right)$. By Theorem 2.4, we conclude that $\Theta\left(\mathbb{Z}_{2 q}\right)$ is Hamiltonian.

Now we show that if $2<p<q$ then the graph $\Theta\left(\mathbb{Z}_{2 q}\right)$ is not Hamiltonian. Consider the sets

$$
A=\{i: \operatorname{gcd}(i, n)=1\} \text { and } B=\{0\} \cup\{i: \operatorname{gcd}(i, n) \neq 1\}
$$

If we remove all vertices of $\Theta\left(\mathbb{Z}_{2 q}\right)$ which are in B then $\Theta\left(\mathbb{Z}_{2 q}\right)$ has $|A|=\varphi(p q)$ components. Since $2<p<q$, we obtain,

$$
\begin{align*}
(p-2)(q-2)>2 & \Longrightarrow p q-2 p-2 q+2>0 \\
& \Longrightarrow p q+2>2(p+q) \\
& \Longrightarrow p q-p-q+1>p+q-1 \\
& \Longrightarrow(p-1)(q-1)>p+q-1 \tag{3.2}\\
& \Longrightarrow \varphi(p q)>p q-\varphi(p q) \\
& \Longrightarrow|A|>|B| .
\end{align*}
$$

Using Equation (3.2) we find that $\Theta\left(\mathbb{Z}_{p q}\right)$ is not 1-tough. Using Theorem 2.5 we conclude that $\Theta\left(\mathbb{Z}_{p q}\right)$ is not Hamiltonian when $2<p<q$. Thus, $\Theta\left(\mathbb{Z}_{p q}\right)$ is Hamiltonian if and only if $p=2$.

We observe that if two groups G_{1} and G_{2} are isomorphic, then the corresponding graphs $\Theta\left(G_{1}\right)$ and $\Theta\left(G_{2}\right)$ are isomorphic to each other. However, the converse is false. To illustrate it we consider the following example:
Example 3.11. Consider the unitriangular matrix group $\mathfrak{F}=\left\{\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)\right.$: $\left.a, b, c \in \mathbb{F}_{3}\right\}$ where \mathbb{F}_{3} denotes the finite field of order 3 . Clearly \mathfrak{F} forms a group under matrix multiplication. Now consider the group $\left(\mathbb{Z}_{3}\right)^{3}$. Using Corollary 3.7. $\Theta\left(\left(\mathbb{Z}_{3}\right)^{3}\right)$ is complete. We also notice that each non-identity element of the group \mathfrak{F} has order 3 . Thus, any two elements of $\Theta(\mathfrak{F})$ are adjacent to each other which in turn implies that $\Theta(\mathfrak{F})$ is complete. Since \mathfrak{F} is non-commutative whereas $\left(\mathbb{Z}_{3}\right)^{3}$ is commutative, we find that the two groups are not isomorphic to each other. However, $\Theta(\mathfrak{F})$ and $\Theta\left(\left(\mathbb{Z}_{3}\right)^{3}\right)$ are isomorphic to each other as both are complete graphs having 27 elements.

4. Vertex Connectivity of $\Theta(G)$

In this section, we first investigate the vertex connectivity of $\Theta\left(\mathbb{Z}_{n}\right)$ for $n \geq 2$. For a given group G, we fix the following notations: Let $S^{*}(G)$ denote set of all those elements G which have prime order. Let $S(G)=\{e\} \cup S^{*}(G)$ where e denotes the identity element of G.

Proposition 4.1. If n is prime, then $\kappa\left(\Theta\left(\mathbb{Z}_{n}\right)\right)=n-1$.

Proof. Since n is prime, $\Theta\left(\mathbb{Z}_{n}\right)$ is complete (Corollary 3.6). Since vertex connectivity of a complete graph on n vertices is $n-1$, we conclude that $\kappa\left(\Theta\left(\mathbb{Z}_{n}\right)\right)=n-1$.

Theorem 4.2. If n is composite, then $\kappa\left(\Theta\left(\mathbb{Z}_{n}\right)\right)=\left|S\left(\mathbb{Z}_{n}\right)\right|$.

Proof. Let v_{0} be a generator of \mathbb{Z}_{n}. Thus, $o\left(v_{0}\right)=n$. Since v_{0} is a generator so $\operatorname{deg}\left(v_{0}\right) \leq \operatorname{deg}(w)$ for all vertices $w \in \Theta\left(\mathbb{Z}_{n}\right)$ which implies that $\delta\left(\Theta\left(\mathbb{Z}_{n}\right)\right)=$ $\operatorname{deg}\left(v_{0}\right)$. Now we notice that the vertex $v_{0} \in \Theta\left(\mathbb{Z}_{n}\right)$ is adjacent only to all the elements of $S\left(\mathbb{Z}_{n}\right)$ and nothing else. Thus, $\operatorname{deg}\left(v_{0}\right)=\left|S\left(\mathbb{Z}_{n}\right)\right|$. By Theorem 2.2, $\kappa\left(\Theta\left(\mathbb{Z}_{n}\right)\right) \leq\left|S\left(\mathbb{Z}_{n}\right)\right|$. Now we claim that $S\left(\mathbb{Z}_{n}\right)$ is a minimum separating set of $\Theta\left(\mathbb{Z}_{n}\right)$. If not, then suppose we remove $\left|S\left(\mathbb{Z}_{n}\right)\right|-1$ elements from the vertex set of $\Theta\left(\mathbb{Z}_{n}\right)$. Then, there exists $a \in S\left(\mathbb{Z}_{n}\right)$ such that a is adjacent to all other vertices of $\Theta\left(\mathbb{Z}_{n}\right)$, making $\Theta\left(\mathbb{Z}_{n}\right)$ connected. Thus, $S\left(\mathbb{Z}_{n}\right)$ is a minimum separating set of $\Theta\left(\mathbb{Z}_{n}\right)$, which proves the fact that $\kappa\left(\Theta\left(\mathbb{Z}_{n}\right)\right)=\left|S\left(\mathbb{Z}_{n}\right)\right|$.

Corollary 4.3. If $n=p q$ where p, q are distinct primes with $p<q$, then $\kappa\left(\Theta\left(\mathbb{Z}_{n}\right)\right)=p+q-1$.

Proof. If $n=p q$, then $S\left(\mathbb{Z}_{p q}\right)=\{0, p, 2 p, 3 p, \ldots,(q-1) p, q, 2 q, 3 q, \ldots,(p-1) q\}$. Since $\left|S\left(\mathbb{Z}_{p q}\right)\right|=p+q-1$, the result follows.

Corollary 4.4. If $n=p^{m}$ where p is a prime and $m \in \mathbb{N}$ then $\kappa\left(\Theta\left(\mathbb{Z}_{n}\right)\right)=p$.

Proof. If $n=p^{m}$, then $S\left(\mathbb{Z}_{p^{m}}\right)=\left\{0, p^{m-1}, 2 p^{m-1}, 3 p^{m-1}, \ldots,(p-1) p^{m-1}\right\}$. Since $\left|S\left(\mathbb{Z}_{p^{m}}\right)\right|=p$, the result follows.

Now it is quite natural to ask that if $\Theta(G)$ is not complete, is it true that $\kappa(\Theta(G))$ equals $|S(G)|$? We show that it is false. Consider the Dicyclic group Dic_{n} of order $4 n$ given by :

$$
\operatorname{Dic}_{n}=\left\{\langle a, x\rangle: a^{2 n}=1, x^{2}=a^{n}, a x=x a^{-1}\right\}
$$

We illustrate $\Theta\left(\mathrm{Dic}_{3}\right)$ in Figure 3

Figure 3: $\Theta\left(\operatorname{Dic}_{3}\right)$

From Figure 3, we observe that $\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$ is a minimum separating set of $\Theta\left(\mathrm{Dic}_{3}\right)$. So, $\kappa\left(\Theta\left(\mathrm{Dic}_{3}\right)\right)=6$. Also, $S\left(\mathrm{Dic}_{n}\right)=\left\{1, a^{2}, a^{3}, a^{4}\right\}$. Hence, $\kappa\left(\Theta\left(\operatorname{Dic}_{3}\right)\right)>\left|S\left(\mathrm{Dic}_{3}\right)\right|$.

We thus end this section by proposing the following open problem which can be considered for further research.

Problem 4.5. Characterize all finite groups G, such that $\Theta(G)$ is not complete, but $\kappa(\Theta(G))=|S(G)|$.

5. Signless Laplacian Spectrum of $\Theta(G)$

In this section, we shall find the signless Laplacian spectra of $\Theta\left(\mathbb{Z}_{n}\right)$ and $\Theta\left(\mathrm{D}_{n}\right)$ for $n \in\left\{p q, p^{m}\right\}$ where p, q are distinct primes with $p<q$ and $m \in \mathbb{N}$. We denote the signless Laplacian matrix of $\Theta(G)$ by $Q=Q(\Theta(G))$.

5.1. Signless Laplacian Spectrum of $\Theta\left(\mathbb{Z}_{n}\right)$

Theorem 5.1. If $n=p q$, then the eigenvalues of $Q\left(\Theta\left(\mathbb{Z}_{n}\right)\right)$ are $p+q-1$ with multiplicity $p q-p-q$, $p q-2$ with multiplicity $p+q-2$ and the other two are solutions of the equation $x^{2}-x(p q+2 p+2 q-4)+2(p+q-1)(p+q-2)=0$.

Proof. The rows and columns of $Q=Q\left(\Theta\left(\mathbb{Z}_{n}\right)\right)$ have been indexed in the following way:

We start with the zero element 0 of \mathbb{Z}_{n}. We then list those elements $m \in \mathbb{Z}_{n}$ such that $\operatorname{gcd}(m, n) \neq 1$. Finally, we list those elements $m \in \mathbb{Z}_{n}$ such that $\operatorname{gcd}(m, n)=1$. Using the above indexing, Q takes the following form,

$$
Q=\left(\begin{array}{cc}
((n-2) I+J)_{(n-\varphi(n)) \times(n-\varphi(n))} & J_{(n-\varphi(n)) \times \varphi(n)} \tag{5.1}\\
J_{\varphi(n) \times(n-\varphi(n))}^{T} & (n-\varphi(n)) I_{\varphi(n) \times \varphi(n)}
\end{array}\right)
$$

Here, $J_{m \times n}$ is a matrix of order $m \times n$ all of whose entries are 1 .
If we consider the matrix $Q-(n-2) I$, we obtain

$$
Q-(n-2) I=\left(\begin{array}{cc}
J_{n-\varphi(n)} & J_{(n-\varphi(n)) \times \varphi(n)} \tag{5.2}\\
J_{\varphi(n) \times(n-\varphi(n))}^{T} & (2-\varphi(n)) I_{\varphi(n)}
\end{array}\right)
$$

Since the matrix in eq. (5.2) has $n-\varphi(n)$ identical rows, we conclude that $n-2$ is an eigenvalue of Q with multiplicity at least $n-\varphi(n)-1$. Similarly, if we consider the matrix $Q-(n-\varphi(n)) I$ we find that it has $\varphi(n)$ identical rows, which makes us conclude that $n-\varphi(n)$ is an eigenvalue of Q with multiplicity at least $\varphi(n)-1$. We shall use the concept of equitable partitions (see [7, Section 5]) to find the remaining two eigenvalues of Q. In short, given a graph \mathcal{G}, a partition π of $V(\mathcal{G})=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ is an equitable partition of \mathcal{G}, if every vertex in V_{i} has the same number of neighbors in V_{j} for all $i, j \in\{1,2, \ldots, k\}$. Also, given an equitable partition π of \mathcal{G}, and its signless Laplacian matrix Q, we can form the matrix $Q_{\pi}=\left(q_{i j}\right)$ in the following way

$$
q_{i j}= \begin{cases}b_{i j} & \text { if } i \neq j \tag{5.3}\\ b_{i i}+\sum_{j=1}^{k} b_{i j} & \text { if } i=j\end{cases}
$$

where $b_{i j}$ is the number of neighbors a vertex $v \in V_{i}$ has in V_{j}, and $b_{i i}$ is the number of neighbors a vertex $v \in V_{i}$ has in V_{i}. We refer to the matrix Q_{π} as the matrix corresponding to the partition π of \mathcal{G}. It is further known that the multiset of eigenvalues of Q_{π} is contained in the multiset of eigenvalues of Q [7. Lemma 5.1].

We partition the vertex set V of $\Theta\left(\mathbb{Z}_{n}\right)$ as $V_{1} \cup V_{2}$ where $V_{1}=\{0\} \cup\{m$: $\operatorname{gcd}(m, n) \neq 1\}$ and $V_{2}=V \backslash V_{1}$. We notice that each vertex v in V_{1} has $n-\varphi(n)-1$ neighbors in V_{1}, and $\varphi(n)$ neighbors in V_{2}. Also, each vertex v in V_{2} has $n-\varphi(n)$ neighbors in V_{1}, and 0 neighbors in V_{2}. We call this partition π. Using eq. 5.3), we can construct the equitable quotient matrix Q_{π} corresponding to this partition π of $\Theta\left(\mathbb{Z}_{n}\right)$,

$$
Q_{\pi}=\left(\begin{array}{cc}
2 n-\varphi(n)-2 & \varphi(n) \\
n-\varphi(n) & n-\varphi(n)
\end{array}\right)
$$

The characteristic polynomial of Q_{π} is $\Lambda(x)=x^{2}+x(2-3 n+2 \varphi(n))+$ $(2 n-2 \varphi(n))(n-1-\varphi(n))$. The solutions of $\Lambda(x)=0$ are $\frac{1}{2}\{3 n-2-2 \varphi(n) \pm$
$\left.\sqrt{4 n \varphi(n)-4 \varphi(n)^{2}+n^{2}-4 n+4}\right\}$. Since $n>2$, so $\varphi(n) \geq 2$. Hence we have

$$
\begin{array}{r}
\Lambda(n-\phi(n))=\phi(n)(\phi(n)-n) \neq 0 \\
\text { and } \Lambda(n-2)=2(\phi(n)-1)(\phi(n)-n) \neq 0 .
\end{array}
$$

Since the eigenvalues of Q_{π} are different from $n-\varphi(n)$ and $n-2$, using Lemma 5.1 of [7] we find that the remaining eigenvalues of Q are $\frac{1}{2}\{3 n-$ $\left.2-2 \varphi(n) \pm \sqrt{4 n \varphi(n)-4 \varphi(n)^{2}+n^{2}-4 n+4}\right\}$. Thus, the eigenvalues of Q are $n-\varphi(n)$ with multiplicity $\varphi(n)-1, n-2$ with multiplicity $n-\varphi(n)-1$, and the other two are solutions of the equation $x^{2}+x(2-3 n+2 \varphi(n))+(2 n-2 \varphi(n))(n-$ $1-\varphi(n))=0$. On substituting $n=p q$, we find that the eigenvalues of Q are $p+q-1$ with multiplicity $p q-p-q, p q-2$ with multiplicity $p+q-2$, and the other two are solutions of the equation $x^{2}-x(p q+2 p+2 q-4)+2(p+q-1)(p+q-2)=0$, and hence the result follows.

Proposition 5.2. If $n=p$, then the eigenvalues of $Q\left(\Theta\left(\mathbb{Z}_{n}\right)\right)$ are $2(n-1)$ with multiplicity 1 and $n-2$ with multiplicity $n-1$.

Proof. If $n=p$, then using Corollary 3.6, $\Theta\left(\mathbb{Z}_{n}\right)$ is complete. Thus, $Q=$ $(n-2) I+J$. Using Theorem [2.6, the eigenvalues of Q are $2(n-1)$ with multiplicity 1 and $n-2$ with multiplicity $n-1$.

Theorem 5.3. If $n=p^{m}$, where $m \geq 2$, then the eigenvalues of $Q\left(\Theta\left(\mathbb{Z}_{n}\right)\right)$ are p with multiplicity $p^{m}-p-1, p^{m}-2$ with multiplicity $p-1$, and the other two are given by the solutions of the equation $x^{2}-x\left(p^{m}+2 p-2\right)+2 p(p-1)=0$.

Proof. The rows and columns of the matrix Q have been indexed in the following way,
We start with the zero element 0 of \mathbb{Z}_{n}. We then list the following elements of \mathbb{Z}_{n} :

$$
\left\{p^{m-1}, 2 p^{m-1}, 3 p^{m-1}, \ldots,(p-2) p^{m-1},(p-1) p^{m-1}\right\}
$$

We then list the remaining non-generators of \mathbb{Z}_{n}, and finally we list the generators of \mathbb{Z}_{n}. Since each element of the set $\left\{p^{m-1}, 2 p^{m-1}, 3 p^{m-1}, \ldots,(p-\right.$ 2) $\left.p^{m-1},(p-1) p^{m-1}\right\}$ has order p we find that they are adjacent to all other vertices of $\Theta\left(\mathbb{Z}_{n}\right)$. Using the above indexing, Q takes the following form,

$$
Q=\left(\begin{array}{cc}
((n-2) I+J)_{p \times p} & J_{p \times(n-p)} \\
J_{(n-p) \times p}^{T} & p I_{(n-p) \times(n-p)}
\end{array}\right)
$$

If we consider the matrix $Q-(n-2) I$, we find that it has p identical rows, and hence $n-2$ is an eigenvalue of Q with multiplicity at least $p-1$. Similarly, if we consider the matrix $Q-p I$, we find that it has $p^{m}-p$ identical rows, and hence p is an eigenvalue of Q with multiplicity at least $p^{m}-p-1$.

We again partition the vertex set V of $\Theta\left(\mathbb{Z}_{n}\right)$ as $V=V_{1} \cup V_{2}$ where $V_{1}=$ $\left\{0, p^{m-1}, 2 p^{m-1}, \ldots,(p-2) p^{m-1},(p-1) p^{m-1}\right\}$ and $V_{2}=V \backslash V_{1}$. We observe
that each vertex v in V_{1} has $p-1$ neighbors in V_{1} and $p^{m}-p$ neighbors in V_{2}. Similarly, each vertex v in V_{2} has p neighbors in V_{1} and 0 neighbors in V_{2}. Thus, the partition is an equitable partition, and we call the partition π.

According to eq. 5.3), the equitable quotient matrix corresponding to the partition π becomes

$$
Q_{\pi}=\left(\begin{array}{cc}
p^{m}+p-2 & p^{m}-p \\
p & p
\end{array}\right)
$$

The characteristic polynomial of Q_{π} is

$$
\Lambda(x)=x^{2}-x\left(p^{m}+2 p-2\right)+2 p(p-1)
$$

Note that for a given p and $m \geq 2$,

$$
\begin{aligned}
\Lambda(p)=p\left(p-p^{m}\right) & \neq 0 \\
\text { and } \Lambda\left(p^{m}-2\right)=-2 p\left(p^{m}-p-1\right) & \neq 0
\end{aligned}
$$

The solutions of $\Lambda(x)=0$ are $\frac{1}{2}\left(p^{m}+2 p-2 \pm \sqrt{\left(p^{m}+2 p-2\right)^{2}-8 p(p-1)}\right)$. Since the eigenvalues of Q_{π} are different from p and $p^{m}-2$, using Lemma 5.1 of [7] we find that the eigenvalues of Q are p with multiplicity $p^{m}-p-1$, $p^{m}-2$ with multiplicity $p-1$, and the other two are solutions of the equation $x^{2}-x\left(p^{m}+2 p-2\right)+2 p(p-1)=0$.

5.2. Signless Laplacian Spectrum of $\Theta\left(\mathbf{D}_{n}\right)$

In this section, we shall find the signless Laplacian spectrum of $\Theta\left(D_{n}\right)$. We know that

$$
\mathrm{D}_{n}=\left\{\langle r, s\rangle: r^{n}=s^{2}=1, r s=s r^{-1}\right\} .
$$

We first index the elements r^{i}, and then index the elements $s r^{i}$ where $0 \leq$ $i \leq n-1$. We also note that $o\left(s r^{i}\right)=2$ for all $0 \leq i \leq n-1$, and hence $\operatorname{gcd}\left(o\left(s r^{i}\right), o\left(s r^{j}\right)\right)=2$ for all $0 \leq i, j \leq n-1$. Also, r^{i} is adjacent to $s r^{j}$ for all $0 \leq i, j \leq n-1$. The signless Laplacian matrix of $\Theta\left(\mathrm{D}_{n}\right)$ is given by:

$$
Q\left(\Theta\left(\mathrm{D}_{n}\right)\right)=\left(\begin{array}{cc}
\left(Q\left(\Theta\left(\mathbb{Z}_{n}\right)\right)+n I\right)_{n \times n} & J_{n \times n} \tag{5.4}\\
J_{n \times n}^{T} & ((2 n-2) I+J)_{n \times n}
\end{array}\right)
$$

Using eq. (5.4), we find that the signless Laplacian matrix of $\Theta\left(D_{n}\right)$ depends on the signless Laplacian matrix of $\Theta\left(\mathbb{Z}_{n}\right)$. In the previous section we had determined the eigenvalues of $Q\left(\Theta\left(\mathbb{Z}_{n}\right)\right)$ for $n \in\left\{p^{m}, p q\right\}$. We will use those in this section to find the eigenvalues of $Q\left(\Theta\left(D_{n}\right)\right)$ for $n \in\left\{p^{m}, p q\right\}$.

Theorem 5.4. If $n=p q$, then the eigenvalues of $Q\left(\Theta\left(D_{n}\right)\right)$ are $2(n-1)$ with multiplicity $2 n-\varphi(n)-1,2 n-\varphi(n)$ with multiplicity $\varphi(n)-1$, and $3 n-\varphi(n)-1 \pm \sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1}$, each with multiplicity 1.

Proof. If $n=p q$, using eqs. (5.1) and (5.4), we find that the signless Laplacian matrix of $\Theta\left(D_{n}\right)$ is of the following form:

$$
Q=\left(\begin{array}{ccc}
((2 n-2) I+J)_{(n-\varphi(n))^{2}} & J_{(n-\varphi(n) \times \varphi(n))} & J_{(n-\varphi(n) \times n)} \\
J_{\varphi(n) \times(n-\varphi(n))} & (2 n-\varphi(n)) I_{(\varphi(n))^{2}} & J_{\varphi(n) \times n} \\
J_{n \times(n-\varphi(n))} & J_{n \times \varphi(n)} & ((2 n-2) I+J)_{n^{2}}
\end{array}\right) .
$$

If we consider the matrix $Q-(2 n-2) I$, we find that it has $2 n-\varphi(n)$ identical rows. Thus, $2 n-2$ is an eigenvalue of Q with multiplicity at least $2 n-\varphi(n)-1$. We also note that $Q-(2 n-\varphi(n)) I$ has $\varphi(n)$ identical rows, which makes us conclude that $2 n-\varphi(n)$ is an eigenvalue of Q with multiplicity at least $\varphi(n)-1$.

We partition the vertex set V of $\Theta\left(\mathrm{D}_{n}\right)$ in the following way: $V_{1}=\{1\} \cup\left\{r^{i}\right.$: $\operatorname{gcd}(i, n) \neq 1\}, V_{2}=\left\{r^{i}: \operatorname{gcd}(i, n)=1\right\}$ and $V_{3}=\left\{s r^{i}: 0 \leq i \leq n-1\right\}$. Each vertex $v \in V_{1}$ has $n-\varphi(n)-1$ neighbors in $V_{1}, \varphi(n)$ neighbors in V_{2} and n neighbors in V_{3}. Each vertex $v \in V_{2}$ has $n-\varphi(n)$ neighbors in $V_{1}, 0$ neighbors in V_{2} and n neighbors in V_{3}, and each vertex $v \in V_{3}$ has $n-\varphi(n)$ neighbors in $V_{1}, \varphi(n)$ neighbors in V_{2} and $n-1$ neighbors in V_{3}. Hence, the partition is an equitable partition, and we call it π. Using eq. 5.3), the equitable quotient matrix corresponding to π is given by:

$$
Q_{\pi}=\left(\begin{array}{ccc}
3 n-2-\varphi(n) & \varphi(n) & n \\
n-\varphi(n) & 2 n-\varphi(n) & n \\
n-\varphi(n) & \varphi(n) & 3 n-2
\end{array}\right)
$$

The characteristic polynomial of Q_{π} is

$$
\begin{aligned}
\Lambda(x) & =x^{3}+(2 \varphi(n)-8 n+4) x^{2}+\left(2 \varphi(n)^{2}-12 \varphi(n) n\right. \\
& \left.+20 n^{2}+6 \varphi(n)-20 n+4\right) x-4 \varphi(n)^{2} n+16 \varphi(n) n^{2}-16 n^{3} \\
& +4 \varphi(n)^{2}-20 \varphi(n) n+24 n^{2}+4 \varphi(n)-8 n
\end{aligned}
$$

On solving, we find that solutions of $\Lambda(x)=0$ are $2(n-1)$ with multiplicity 1 and $3 n-\varphi(n)-1 \pm \sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1}$, each with multiplicity 1 . We further note that $\Lambda(2 n-\varphi(n)) \neq 0$, as otherwise

$$
\begin{array}{r}
2 n-\varphi(n)=3 n-\varphi(n)-1 \pm \sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1} \\
\text { which implies }(n-1)^{2}=n^{2}+2 n \varphi(n)-\varphi(n)^{2}-2 n+1
\end{array}
$$

which implies $2 n \varphi(n)-\varphi(n)^{2}=0$
which implies $(2 n-\varphi(n)) \varphi(n)=0$ which is false for $n=p q$.
Again, we further note that
$2 n-2 \neq 3 n-\varphi(n)-1 \pm \sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1}$, as otherwise

$$
2 n-2=3 n-\varphi(n)-1 \pm \sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1}
$$

which implies $(n+1-\varphi(n))^{2}=n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1$
which implies $2 \varphi(n)^{2}+4 n-2 \varphi(n)-4 n \varphi(n)=0$
which implies $(\varphi(n)-2 n)(\varphi(n)-1)=0$
which implies either $\varphi(n)=2 n$ or $\varphi(n)=1$, which are both false.
We thus conclude that the eigenvalues
$3 n-\varphi(n)-1 \pm \sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1}$ of Q_{π} are distinct from both $2 n-\varphi(n)$ and $2(n-1)$ for $n=p q$. Using Lemma 5.1 of [7, we find that $3 n-\varphi(n)-1 \pm \sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1}$ are eigenvalues of Q, each with multiplicity 1 . Thus, the eigenvalues of Q are $2(n-1)$ with multiplicity $2 n-\varphi(n)-1,2 n-\varphi(n)$ with multiplicity $\varphi(n)-1$ and $3 n-\varphi(n)-1 \pm$ $\sqrt{n^{2}+2 \varphi(n) n-\varphi(n)^{2}-2 n+1}$, each with multiplicity 1.

Proposition 5.5. If $n=p$, then the eigenvalues of $Q\left(\Theta\left(D_{n}\right)\right)$ are $2(n-1)$ with multiplicity 1 and $n-2$ with multiplicity $n-1$.

Proof. If $n=p$, then using Corollary $3.8, \Theta\left(\mathrm{D}_{n}\right)$ is complete. Thus, $Q=$ $(n-2) I+J$. Using Theorem 2.6, the eigenvalues of Q are $2(n-1)$ with multiplicity 1 and $n-2$ with multiplicity $n-1$.

Theorem 5.6. If $n=p^{m}$ where $m \geq 2$, then the eigenvalues of $Q\left(\Theta\left(D_{n}\right)\right)$ are $2 n-2$ with multiplicity $n+p-1, p+n$ with multiplicity $n-p-1$, and $2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$ each with multiplicity 1.

Proof. If $n=p^{m}$, using eqs. 5.1) and (5.4) we find that $Q=Q\left(\Theta\left(\mathrm{D}_{n}\right)\right)$ is of the following form:
$Q=\left(\begin{array}{ccc}((2 n-2) I+J)_{p \times p} & J_{p \times(n-p)} & J_{p \times n} \\ J_{(n-p) \times p} & (p+n) I_{(n-p) \times(n-p)} & J_{(n-p) \times n} \\ J_{n \times p} & J_{n \times(n-p)} & ((2 n-2) I+J)_{n \times n}\end{array}\right)$.
We note that $Q-(2 n-2) I$ has $n+p$ identical rows, and hence $2 n-2$ is an eigenvalue of Q with multiplicity at least $n+p-1$. Similarly, $Q-(p+n) I$ has $n-p$ identical rows, and hence $p+n$ is an eigenvalue of Q with multiplicity at least $n-p-1$.

We now partition the vertex set V of $\Theta\left(\mathrm{D}_{p^{m}}\right)$ as $V=V_{1} \cup V_{2} \cup V_{3}$ where

$$
V_{1}=\left\{1, r^{p^{m-1}}, r^{2\left(p^{m-1}\right)}, \ldots, r^{(p-1)\left(p^{m-1}\right)}\right\}
$$

$V_{2}=\left\{r^{i}: 0 \leq i \leq n-1\right\} \backslash V_{1}$, and $V_{3}=\left\{s r^{i}: 0 \leq i \leq n\right\}$. Each vertex $v \in V_{1}$ has $p-1$ neighbors in $V_{1}, n-p$ neighbors in V_{2} and n neighbors in V_{3}. Each vertex $v \in V_{2}$ has p neighbors in $V_{1}, 0$ neighbors in V_{2} and n neighbors in V_{3} and each vertex $v \in V_{3}$ has p neighbors in $V_{1}, n-p$ neighbors in V_{2} and $n-1$ neighbors in V_{3}. Hence, the partition is an equitable partition, and we call it π.

The equitable quotient matrix of Q corresponding to π is given by:

$$
Q_{\pi}=\left(\begin{array}{ccc}
2(n-1)+p & n-p & n \\
p & n+p & n \\
p & n-p & 3 n-2
\end{array}\right)
$$

The characteristic polynomial of Q_{π} is

$$
\begin{aligned}
\Lambda(x) & =x^{3}+(-6 n-2 p+4) x^{2}+\left(10 n^{2}+8 n p+2 p^{2}-14 n-6 p+4\right) x \\
& -4 n^{3}-8 n^{2} p-4 n p^{2}+8 n^{2}+12 n p+4 p^{2}-4 n-4 p
\end{aligned}
$$

The solutions of $\Lambda(x)=0$ are $2(n-1)$ and $2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$. We further note that, $\Lambda(n+p) \neq 0$, as otherwise it would imply,

$$
n+p=2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}
$$

which implies $-n+1= \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$.
which implies $(n-1)^{2}=2 n^{2}-2 n-p^{2}+1$
which implies $n^{2}=p^{2}$, which is false.
We further note that $2(n-1) \neq 2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$, as otherwise

$$
2(n-1)=2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}
$$

which implies $-p-1= \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$
which implies $(p+1)^{2}=2 n^{2}-2 n-p^{2}+1$
which implies $2 p(p+1)=2 n(n-1)$
which implies $p+1=p^{m-1}\left(p^{m}-1\right)$
which implies $\frac{p^{m}-1}{p+1}=\frac{1}{p^{m-1}}<1$, which is false.
Thus, the eigenvalues $2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$ of Q_{π} are different from both $n+p$ and $2(n-1)$ for $n=p^{m}$. Using Lemma 5.1 of [7], we conclude that $2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$ are eigenvalues of Q each with multiplicity 1. Thus, the eigenvalues of Q are $2 n-2$ with multiplicity $n+p-1, p+n$ with multiplicity $n-p-1$, and $2 n+p-1 \pm \sqrt{2 n^{2}-2 n-p^{2}+1}$ each with multiplicity 1.

6. Acknowledgement

The second author receives Ph.D. scholarship from the National Board of Higher Mathematics, Government of India, Grant Number-2/39(2)/2015/R\&DII/NBHM/7458.

References

[1] Abdollahi, A., and Vatandoost, E. Which Cayley graphs are integral? Electron. J. Combin. 16, 1 (2009), Research Paper 122, 17.
[2] Abdussakir, A., Elvierayani, R. R., and Nafisah, M. On the spectra of commuting and non commuting graph on dihedral group. CAUCHY: Jurnal Matematika Murni dan Aplikasi 4, 4 (2017), 176-182.
[3] Babai, L. Spectra of Cayley graphs. J. Combin. Theory Ser. B 27, 2 (1979), 180-189.
[4] Banerjee, S. Laplacian spectra of coprime graph of finite cyclic and dihedral groups. Discrete Mathematics, Algorithms and Applications (2020), 2150020.
[5] Banerjee, S. The metric dimension \& distance spectrum of non-commuting graph of dihedral group. Discrete Mathematics, Algorithms and Applications (2021), 2150082.
[6] Banerjee, S., and Adhikari, A. On spectra and spectral radius of signless laplacian of power graphs of some finite groups. Asian-European Journal of Mathematics (2020), 2150090.
[7] Banerjee, S., and Adhikari, A. Signless Laplacian spectrum of power graphs of finite cyclic groups. AKCE Int. J. Graphs Comb. 17, 1 (2020), 356-366.
[8] Bapat, R. B. Graphs and matrices, second ed. Universitext. Springer, London; Hindustan Book Agency, New Delhi, 2014.
[9] Bondy, J. A., and Murty, U. S. R. Graph theory with applications. American Elsevier Publishing Co., Inc., New York, 1976.
[10] BоsА́к, J. The graphs of semigroups. In Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963) (1964), Publ. House Czechoslovak Acad. Sci., Prague, pp. 119-125.
[11] Budden, F. Cayley graphs for some well-known groups. The Mathematical Gazette 69, 450 (1985), 271-278.
[12] Cameron, P. J. The power graph of a finite group, II. J. Group Theory 13, 6 (2010), 779-783.
[13] Cameron, P. J., and Ghosh, S. The power graph of a finite group. Discrete Math. 311, 13 (2011), 1220-1222.
[14] Chakrabarty, I., Ghosh, S., and Sen, M. K. Undirected power graphs of semigroups. Semigroup Forum 78, 3 (2009), 410-426.
[15] Cheng, T., Feng, L., and Huang, H. Integral Cayley graphs over dicyclic group. Linear Algebra Appl. 566 (2019), 121-137.
[16] Chvátal, V. Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973), 215-228.
[17] Cvetković, D., and Simić, S. K. Towards a spectral theory of graphs based on the signless Laplacian. I. Publ. Inst. Math. (Beograd) (N.S.) 85(99) (2009), 19-33.
[18] Cvetković, D., and Simić, S. K. Towards a spectral theory of graphs based on the signless Laplacian. II. Linear Algebra Appl. 432, 9 (2010), 2257-2272.
[19] Cvetković, D., and Simić, S. K. Towards a spectral theory of graphs based on the signless Laplacian. III. Appl. Anal. Discrete Math. 4, 1 (2010), 156-166.
[20] Diestel, R. Graph theory, fifth ed., vol. 173 of Graduate Texts in Mathematics. Springer, Berlin, 2018. Paperback edition of [MR3644391].
[21] Dorbidi, H. R. A note on the coprime graph of a group. Int. J. Group Theory 5, 4 (2016), 17-22.
[22] Dummit, D. S., and Foote, R. M. Abstract algebra, third ed. John Wiley \& Sons, Inc., Hoboken, NJ, 2004.
[23] Gallian, J. Contemporary abstract algebra. Nelson Education, 2012.
[24] Hamzeh, A., and Ashrafi, A. R. Automorphism groups of supergraphs of the power graph of a finite group. European J. Combin. 60 (2017), 82-88.
[25] Hamzeh, A., and Ashrafi, A. R. Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups. Filomat 31, 16 (2017), 5323-5334.
[26] Hamzeh, A., and Ashrafi, A. R. The order supergraph of the power graph of a finite group. Turkish J. Math. 42, 4 (2018), 1978-1989.
[27] Kelarev, A. V., and Quinn, S. J. Directed graphs and combinatorial properties of semigroups. J. Algebra 251, 1 (2002), 16-26.
[28] Ma, X., Wei, H., and Yang, L. The coprime graph of a group. Int. J. Group Theory 3, 3 (2014), 13-23.
[29] Mehranian, Z., Gholami, A., and Ashrafi, A. R. The spectra of power graphs of certain finite groups. Linear Multilinear Algebra 65, 5 (2017), 10031010.
[30] Sattanathan, M., and Kala, R. An introduction to order prime graph. Int. J. Contemp. Math. Sci. 4, 9-12 (2009), 467-474.
[31] Selvakumar, K., and Subajini, M. Classification of groups with toroidal coprime graphs. Australas. J. Combin. 69 (2017), 174-183.
[32] Zelinka, B. Intersection graphs of finite abelian groups. Czechoslovak Math. J. 25(100) (1975), 171-174.

Received by the editors May 16, 2020
First published online March 30, 2021

[^0]: ${ }^{1}$ Department of Mathematics, Presidency University, India.
 ${ }^{2}$ Department of Pure Mathematics, 35 Ballygunge Circular Road, Kol-700019, University of Calcutta, India. e-mail: subarshabnrj@gmail.com
 ${ }^{3}$ Corresponding Author

