Prime coprime graph of a finite group

Avishek Adhikari¹ and Subarsha Banerjee²³

Abstract. In this paper, a new graph structure called the *prime* coprime graph of a finite group G denoted by $\Theta(G)$ has been introduced. The *coprime graph* of a finite group, introduced by Ma, Wei, and Yang The coprime graph of a group. International Journal of Group Theory, 3(3), pp.13-23.] is a subgraph of the prime coprime graph introduced in this paper. The vertex set of $\Theta(G)$ is G, and any two vertices x, y in $\Theta(G)$ are adjacent if and only if gcd(o(x), o(y)) is equal to 1 or a prime number. We study how the graph properties of $\Theta(G)$ and group properties of G are related. We provide a necessary and sufficient condition for $\Theta(G)$ to be Eulerian for any finite group G. We also study $\Theta(G)$ for certain finite groups like \mathbb{Z}_n and \mathbb{D}_n and derive conditions when it is connected, complete, planar, and Hamiltonian for various $n \in \mathbb{N}$. We also study the vertex connectivity of $\Theta(\mathbb{Z}_n)$ for various $n \in \mathbb{N}$. Finally, we have computed the signless Laplacian spectrum of $\Theta(G)$ when $G = \mathbb{Z}_n$ and $G = D_n$ for $n \in \{pq, p^m\}$ where p, q are distinct primes and $m \in \mathbb{N}$.

AMS Mathematics Subject Classification (2010): 05C25; 05C50

Key words and phrases: finite cyclic group; dihedral group; graph; vertex connectivity; signless laplacian.

1. Introduction

Generating graphs from various algebraic structures like groups and semigroups is nothing new. Bosak in [10] studied various kinds of graphs that were defined on semigroups. In [32], the author studied the *intersection graph* defined on a finite abelian group. A *Cayley digraph* is also an important class of directed graphs defined on finite groups, and readers may refer to [11, 23] in order to find some information about them. Kelarev and Quinn in [27] introduced the *power graph* on a semigroup S as a directed graph in which the set of vertices is S, and two distinct elements $a, b \in S$ are adjacent if and only if $b = a^m$ for some positive integer m. Motivated by the work in [27], Chakrabarty et al. studied the *undirected power graph* on semigroups in [14]. The undirected power graph on a semigroup S is the graph whose vertex set is S, and two distinct vertices $a, b \in S$ are adjacent if and only if $a = b^m$ or $b = a^n$ for some positive integers m, n. Several properties of the power graph were investigated by Cameron and Ghosh in [12] and [13]. In [26], the authors introduced a new graph known as the *order supergraph* of the power graph of

¹Department of Mathematics, Presidency University, India.

²Department of Pure Mathematics, 35 Ballygunge Circular Road, Kol-700019, University of Calcutta, India. e-mail: subarshabnrj@gmail.com

³Corresponding Author

a finite group G, whose vertex set is G and any two vertices x, y are adjacent if and only if o(x) | o(y) or o(y) | o(x). The automorphism group of this graph was studied in [24].

Recently, several researchers have studied spectral properties of graphs associated with algebraic structures. The spectral properties of power graph of a finite group ([29],[25],[7],[6]), Cayley graph of certain groups ([3], [1], [15]), commuting and non-commuting graph of dihedral groups ([2],[5]) etc. have been studied over the last few years.

The notion of *coprime graph* of a finite group G has existed in the literature for a long time. It was first introduced by Sattanathan and Kala as the order prime graph in [30]. Later on, in [28] Ma et al. reintroduced and renamed the order prime graph as the *coprime graph* and studied various properties of it. The coprime graph was studied extensively in [21] and [31]. In [4], the Laplacian spectra of the coprime graph of finite cyclic and dihedral groups were studied. In this paper, we introduce a new graph known as the prime coprime graph of a finite group G. We denote it by $\Theta(G)$. Clearly for a given finite group G, the coprime graph is a subgraph of the prime coprime graph introduced in this paper. We characterize some properties of $\Theta(G)$ using the algebraic properties of the group G. We study the connectedness and the diameter of the graph $\Theta(G)$. We show that $\Theta(G)$ is Eulerian if and only if G has odd order and every non-identity element of G has prime order. We also find out when $\Theta(\mathbb{Z}_n)$ is planar and Hamiltonian for various $n \in \mathbb{N}$. We also study the vertex connectivity of $\Theta(\mathbb{Z}_n)$ for various n. Finally, we find the signless Laplacian spectra of $\Theta(\mathbb{Z}_n)$ and $\Theta(\mathbb{D}_n)$ for $n \in \{pq, p^m\}$ where p, q are distinct primes and $m \in \mathbb{N}$.

The paper has been organized as follows: In Section 2, we have provided the preliminary definitions and theorems that have been used throughout the paper. In Section 3, we formally introduce the *prime coprime graph* of a finite group G, denoted by $\Theta(G)$, and study various properties of $\Theta(G)$. In Section 4, we study the vertex connectivity of $\Theta(\mathbb{Z}_n)$. In Section 5, we determine the signless Laplacian spectra of $\Theta(\mathbb{Z}_n)$ and $\Theta(D_n)$ for $n \in \{pq, p^m\}$.

2. Preliminaries

In this section, for the convenience of the readers, we provide some preliminary definitions and theorems that have been used throughout the paper. We denote a graph \mathcal{G} by $\mathcal{G} = (V, E)$ where V is the set of all vertices of \mathcal{G} and E denotes the set of all edges of \mathcal{G} . A graph \mathcal{G} is said to be *simple* if it has no loops or parallel edges. A graph with one vertex and no edges is called a *trivial* graph. We denote the degree of a vertex $v \in V(\mathcal{G})$ by deg(v). For a given graph \mathcal{G} , $\delta(\mathcal{G}) = \min\{\deg(v) : v \in \mathcal{G}\}$. A subgraph $\mathcal{H} = (W, F)$ of $\mathcal{G} = (V, E)$ is a graph such that $W \subseteq V$ and $F \subseteq E$. If there exists an edge between two vertices a and b, then a and b are said to be adjacent, and it is denoted by $a \sim b$. If there exists an edge between any two vertices of \mathcal{G} , then \mathcal{G} is said to be *complete* and is denoted by K_n . A path P of length k in a graph G is an alternating sequence of vertices and edges $v_0, e_0, v_1, e_1, v_2, e_2, \ldots, v_{k-1}, e_{k-1}, v_k$, where $v_i's$ are distinct vertices, and e_i is the edge joining v_i and v_{i+1} . If $v_0 = v_k$, then P is said to be a cycle of length k. The length of the shortest cycle in \mathcal{G} is known as its girth. A graph \mathcal{G} is said to be connected if for any pair of vertices $u, v \in V$ there exists a path joining u and v. For a connected graph \mathcal{G} , the distance between two vertices u, v denoted by d(u, v), is defined as the length of the shortest path joining u and v. The diameter of a connected graph \mathcal{G} , denoted by diam(\mathcal{G}), is defined as diam(\mathcal{G}) = max{ $d(u, v) : u, v \in V$ }. A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. An isomorphism of graphs \mathcal{G} and \mathcal{H} denoted by $\mathcal{G} \cong \mathcal{H}$ is a bijection f between $V(\mathcal{G})$ and $V(\mathcal{H})$ such that any two vertices $u, v \in V(\mathcal{G})$ are adjacent if and only if the vertices $f(u), f(v) \in V(\mathcal{H})$ are adjacent. An Eulerian cycle in a graph \mathcal{G} is a cycle which visits every edge exactly once. A graph \mathcal{G} is said to be *Eulerian* if it has an Eulerian cycle. A Hamiltonian cycle in a graph \mathcal{G} is a cycle which visits every vertex exactly once. A graph \mathcal{G} is said to be *Hamiltonian* if it has a Hamiltonian cycle. The vertex connectivity $\kappa(\mathcal{G})$ of a graph \mathcal{G} is the minimum number of vertices whose removal results in a disconnected or trivial graph. We define the connectivity of a disconnected graph to be 0. Given a positive integer k, a graph \mathcal{G} is said to be k-tough if for any integer t > 1, \mathcal{G} cannot be split into t different connected components by the removal of fewer than ktvertices. The toughness of a graph \mathcal{G} is defined as the largest real number t such that deletion of any s vertices from \mathcal{G} results in a graph which is either connected or else has at most $\frac{s}{t}$ components. A *dominating set* of a graph \mathcal{G} is a subset D of V such that for every $v \notin D$, there exists a vertex $w \in D$ for which v is adjacent to w. The *domination number* is the number of vertices in a smallest dominating set of \mathcal{G} . For more information on the terms used above, the readers may refer to any standard book on graph theory, say [20] or [9].

Let \mathcal{G} be a finite simple undirected graph with $V(\mathcal{G}) = \{v_1, v_2, \ldots, v_n\}$. The adjacency matrix of \mathcal{G} , denoted by $A(\mathcal{G}) = (a_{ij})$ is defined as $a_{ij} = 1$ if $v_i \sim v_j$ and $a_{ij} = 0$ otherwise. The degree matrix of \mathcal{G} , denoted by $D(\mathcal{G}) = (d_{ii})$ is a diagonal matrix, where d_{ii} denotes the degree of the i^{th} vertex of \mathcal{G} . The Laplacian matrix $L(\mathcal{G})$ is defined as $L(\mathcal{G}) = D(\mathcal{G}) - A(\mathcal{G})$. The signless Laplacian matrix $Q(\mathcal{G})$ is defined as $Q(\mathcal{G}) = D(\mathcal{G}) + A(\mathcal{G})$. The matrix $Q(\mathcal{G})$ is a real and symmetric matrix and hence all its eigenvalues are real. Also, $Q(\mathcal{G})$ is a positive semi-definite matrix and hence all its eigenvalues are non-negative. For more information on $Q(\mathcal{G})$, readers may refer to [17], [18] and [19]. We arrange the eigenvalues of $Q(\mathcal{G})$ as $\lambda_1(\mathcal{G}) \geq \lambda_2(\mathcal{G}) \geq \cdots \geq \lambda_n(\mathcal{G})$ in non-increasing order, and repeated according to their multiplicities.

For $n \in \mathbb{N}$, the number of positive integers that are less than or equal to nand are relatively prime to n is denoted by $\varphi(n)$. The function φ is known as *Euler's phi function*. We know that a finite cyclic group of order n is isomorphic to $(\mathbb{Z}_n, +)$, where $\mathbb{Z}_n = \{0, 1, 2, ..., n-2, n-1\}$, and hence we prove our results for \mathbb{Z}_n instead of an arbitrary cyclic group. An element $a \in \mathbb{Z}_n$ is said to be a *generator* of \mathbb{Z}_n if gcd(a, n) = 1. An element which is not a generator is known as a *non-generator*. We denote the *dihedral group* of order 2n by D_n . The *order* of an element $g \in G$, denoted by o(g), is the least positive integer n such that $g^n = e$, where e is the identity element of G. The number of elements in a set S is denoted by |S|. For basic definitions and notations on group theory, the readers are referred to [22].

The theorems used in the paper have been listed below. The proof of Theorems 2.1 to 2.4 can be found in [9] or [20], while the proof of Theorem 2.6 can be found in [8].

Theorem 2.1. A connected graph \mathcal{G} has an Eulerian cycle if and only if deg(v) is even for all $v \in \mathcal{G}$.

Theorem 2.2. For any graph \mathcal{G} , $\kappa(\mathcal{G}) \leq \delta(\mathcal{G})$.

Theorem 2.3. The complete graph K_5 and the complete bipartite graph $K_{3,3}$ are non-planar.

Theorem 2.4 (Ore). Let \mathcal{G} be a finite and simple graph with n vertices where $n \geq 3$. If $\deg(v) + \deg(w) \geq n$ for every pair of distinct non-adjacent vertices v and w of \mathcal{G} , then \mathcal{G} is Hamiltonian.

Theorem 2.5. [16] If \mathcal{G} is Hamiltonian, then \mathcal{G} is 1-tough.

Theorem 2.6. If J denotes the square matrix of order n with all entries equal to one and I denotes the identity matrix of order n then the eigenvalues of aI + bJ are a with multiplicity n - 1 and a + nb with multiplicity 1.

3. Prime Coprime Graph of a Finite Group

Let G be a finite group such that |G| > 2. The prime coprime graph $\Theta(G) = (V, E)$ is defined as follows: The vertex set V is the set G, and any two distinct vertices x, y are adjacent if and only if gcd(o(x), o(y)) is equal to 1 or a prime number. We now study some basic properties of $\Theta(G)$.

Theorem 3.1. The graph $\Theta(G)$ satisfies the following properties:

- (a). The domination number of $\Theta(G)$ is 1 and $\{e\}$ is a dominating set of $\Theta(G)$.
- (b). The set $\{x\}$ is a dominating set of $\Theta(G)$ if and only if o(x) is equal to 1 or a prime number.
- *Proof.* (a). Since gcd(o(a), o(e)) = o(e) = 1, we find that e is adjacent to a for all $a \in G$. Hence, the set $\{e\}$ is a dominating set of $\Theta(G)$, which implies that the domination number of $\Theta(G)$ is 1.
- (b). Let $x \in G$. If o(x) is equal to 1 or a prime number, then gcd(o(a), o(x)) is equal to 1 or a prime number for all $a \in G$. Thus, x is adjacent to a for all $a \in G$, which implies that $\{x\}$ is a dominating set of $\Theta(G)$. Conversely, let $\{x\}$ be a dominating set of $\Theta(G)$. Assume the contrary that o(x) is neither 1 nor a prime number. Then, o(x) is composite which implies that $x \neq x^{-1}$. Thus, $gcd(o(x), o(x^{-1})) = o(x)$, which is

composite. Hence, x is not adjacent to x^{-1} . Since $x \neq x^{-1}$, it contradicts the fact that $\{x\}$ is a dominating set of $\Theta(G)$. Hence, o(x) is either equal to 1 or a prime number.

Theorem 3.2. The graph $\Theta(G)$ is connected and the diameter of $\Theta(G)$ is at most 2.

Proof. Let $x, y \in \Theta(G)$. If gcd(o(x), o(y)) is equal to 1 or a prime number, then x is adjacent to y, and we are done. If gcd(o(x), o(y)) is composite then x and y are not adjacent. Consider the identity element e of G. Since o(e) = 1, so x and y are both adjacent to e. Thus, we find that there always exists a path of length 2 between any two non-adjacent vertices $x, y \in \Theta(G)$. Thus, $\Theta(G)$ is connected and the diameter of $(\Theta(G))$ is at most 2.

Theorem 3.3. If the girth of $\Theta(G)$ is finite, then it equals 3.

Proof. The proof follows from the simple fact that for any two distinct vertices $x, y \in G$ where $x, y \neq e$, there exists a path of length 2 given by $x \sim e \sim y$ from x to y. If x, y are adjacent for some x and y, then the girth of $\Theta(G)$ is finite and it equals 3.

Theorem 3.4. The graph $\Theta(G)$ is Eulerian if and only if G is an odd-order group, and every non-identity element has prime order.

Proof. Suppose the graph $\Theta(G)$ is Eulerian. Using Theorem 3.2, we find that $\Theta(G)$ is connected. Since $\Theta(G)$ is Eulerian, using Theorem 2.1 we find that every vertex in $\Theta(G)$ has an even degree. Since the identity element e of G is connected to every other vertex in $\Theta(G)$, $\deg(e) = |G| - 1$. Since $\deg(e)$ must be even, the order of G must be odd. Thus, G has no elements of order 2. Now let a be any non-identity element of G. We claim that a has prime order. Assume that the order of a is composite. Let us consider the set

 $E_a = \{b \in G : \gcd(o(a), o(b)) \text{ is equal to 1 or a prime number} \}.$

We notice that $b \in E_a$ if and only if $b^{-1} \in E_a$. Thus, the number of nonidentity elements present in E_a (if any) are even. Also, the identity element e of G is in E_a . Thus, E_a has an odd number of elements. Thus, $|E_a|$ is an odd number. Let $E_a^* = E_a \setminus \{a\}$. Since the order of a is composite, so $a \notin E_a$. Thus, $E_a = E_a^*$. We further note that the elements of E_a^* are those vertices of $\Theta(G)$ which are adjacent to the vertex a of $\Theta(G)$. Thus, $|E_a| = |E_a^*| = \deg(a)$. Since $\Theta(G)$ is Eulerian, $\deg(a)$ must be even, but we have proved that $\deg(a)$ is odd, which is contradictory. Hence, our initial assumption that order of a is composite, is false. Thus, the order of a must be a prime number. Thus, we find that if $\Theta(G)$ is Eulerian, then the order of G is odd and every non-identity element has prime order.

Conversely, assume that |G| is odd and every non-identity element of G has prime order. Thus, for any element $a \in G$, we have $E_a^* = G \setminus \{a\}$. Also,

(3.1)
$$\deg(a) = |E_a^*| = |G \setminus \{a\}|.$$

Since |G| is an odd number, so $|G \setminus \{a\}|$ is an even number for every $a \in G$. Using Equation (3.1), we find that for every $a \in G$, deg(a) must be an even number. Thus, $\Theta(G)$ is connected and every vertex in $\Theta(G)$ has an even degree. Using Theorem 2.1, we conclude that $\Theta(G)$ is Eulerian. Thus, the result follows.

Theorem 3.5. The graph $\Theta(G)$ is complete if and only if G has no elements of composite order.

Proof. Suppose $\Theta(G)$ is complete. Let $g \in G$ be an element of composite order. Clearly $g \neq g^{-1}$. Since $gcd(o(g), o(g^{-1})) = o(g)$, we find that g is not adjacent to g^{-1} in $\Theta(G)$. Thus, $\Theta(G)$ is not complete which is a contradiction. Hence, we conclude that G has no element whose order is composite. Conversely, if all elements of G have prime order, then for any two elements $x, y \in G$, gcd(o(x), o(y)) is equal to 1 or a prime number, which in turn implies that $\Theta(G)$ is complete. \Box

Corollary 3.6. Let G be a finite cyclic group of order n. Then, $\Theta(G)$ is complete if and only if n is a prime number.

Corollary 3.7. Let G be a finite commutative group of order p^m where p is a prime and m > 1. Then, $\Theta(G)$ is complete if and only if $G \cong (\mathbb{Z}_p)^m$.

Proof. We know that any finite commutative group is a direct product of cyclic groups. Hence, $G \cong \mathbb{Z}_{p^{\alpha_1}} \times \mathbb{Z}_{p^{\alpha_2}} \times \cdots \times \mathbb{Z}_{p^{\alpha_k}}$ where $\alpha_1 + \alpha_2 + \cdots + \alpha_k = m$ and $1 \leq \alpha_i \leq m$. Assume that $\Theta(G)$ is complete. Now if $\alpha_i = 1$ for all $1 \leq i \leq k$, we are done. So, let us assume that there exists α_i such that $\alpha_i > 1$ for some i. Since $\mathbb{Z}_{p^{\alpha_i}}$ is a cyclic group of order p^{α_i} , it has $\varphi(p^{\alpha_i}) \geq 2$ generators, and hence we can find $x \in \mathbb{Z}_{p^{\alpha_i}}$ such that $o(x) = p^{\alpha_i}$. Consider the element $\mathbf{x} = (0, 0, \dots, 0, x, 0, \dots, 0, 0) \in G$. Clearly $o(\mathbf{x})$ is composite which contradicts Theorem 3.5. Hence, $\alpha_i = 1$ for all $1 \leq i \leq m$ which implies that $G \cong (\mathbb{Z}_p)^m$. The converse part is trivial and hence skipped.

Corollary 3.8. The graph $\Theta(D_n)$ for $n \ge 2$ is complete if and only if n is prime.

Proof. We know that the dihedral group of order 2n has the following presentation:

$$D_n = \{ \langle r, s \rangle : r^n = s^2 = 1, rs = sr^{-1} \}.$$

We partition the vertex set of $\Theta(D_n)$ as $D_n = A \cup B$ where $A = \{r^i : 0 \le i \le n-1\}$, and $B = \{sr^i : 0 \le i \le n-1\}$. The graph induced by the elements of A forms a subgraph of $\Theta(D_n)$, and is isomorphic to $\Theta(\mathbb{Z}_n)$. Since every element of B has order 2, so the subgraph induced by the elements of B is isomorphic to K_n . Also since the order of each member of B is 2, every vertex of A is adjacent to every vertex of B. Using the above facts, we observe that $\Theta(D_n)$ is complete if and only if $\Theta(\mathbb{Z}_n)$ is complete. Using Corollary 3.6, $\Theta(\mathbb{Z}_n)$ is prime.

Theorem 3.9. The graph $\Theta(\mathbb{Z}_n)$ is planar if and only if n = 3 or $n = 2^i$ where $i \in \mathbb{N}$.

Proof. Assume that $\Theta(\mathbb{Z}_n)$ is planar. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where p_i 's are primes, and α_i 's are positive integers. Assume that $\alpha_i \geq 1$ for $i = i_0$ and $i = i_1$. We choose two elements $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i_0}^{\alpha_{i_0}-1} \cdots p_k^{\alpha_k}$ and $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i_1}^{\alpha_{i_1}-1} \cdots p_k^{\alpha_k}$, and consider the subgroup generated by these two elements. Every element in the subgroup generated by $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i_0}^{\alpha_{i_0}-1} \cdots p_k^{\alpha_k}$ except the identity element has order p_{i_0} , which is prime. Every element in the subgroup generated by $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i_0}^{\alpha_{i_0}-1} \cdots p_k^{\alpha_k}$ except the identity element has order p_{i_1} , which is also prime. Thus, we obtain $p_{i_0} + p_{i_1} - 2$ elements of prime order. Note that $p_{i_0} + p_{i_1} \geq 5$ is always true, and hence we can always get at least 3 elements of prime order. If we take 3 elements of prime order, together with the zero element and a generator of \mathbb{Z}_n , then we can find 5 elements that are adjacent to each other. Thus, there always exists a subgraph in $\Theta(\mathbb{Z}_n)$ which is contrary to our assumption. Hence, we cannot find i_0 and i_1 such that $\alpha_{i_0}, \alpha_{i_1} \geq 1$.

Again if $p \geq 5$, we can consider the element p^{i-1} . We again notice that all elements in the set $\{p^{i-1}, 2p^{i-1}, 3p^{i-1}, \ldots, (p-1)p^{i-1}\}$ have prime order, and hence are adjacent to all other members of the graph $\Theta(\mathbb{Z}_n)$. Since $p \geq 5$, so we have $p-1 \geq 4$. Hence, if we take 4 elements from the set $\{p^{i-1}, 2p^{i-1}, 3p^{i-1}, \ldots, (p-1)p^{i-1}\}$ together with the zero element of \mathbb{Z}_n , then the graph induced by them is isomorphic to K_5 , and hence by Theorem 2.3 we find that $\Theta(\mathbb{Z}_n)$ is not planar. Thus, we are left with primes p = 2, 3. Hence, either $n = 2^i$ or $n = 3^i$ for some $i \in \mathbb{N}$. We claim that the graph $\Theta(\mathbb{Z}_n)$ is planar when $n = 2^i$ for all $i \geq 1$. If $n = 2^i$ for some i, then $\Theta(\mathbb{Z}_n)$ has exactly two vertices of degree n - 1, and the remaining vertices will each have degree 2. We illustrate $\Theta(\mathbb{Z}_n)$ for n = 8 below. The graph $\Theta(\mathbb{Z}_8)$ can be drawn as in Figure 1, from which it is evident that $\Theta(\mathbb{Z}_8)$ is planar.

Using similar arguments as done for $\Theta(\mathbb{Z}_8)$, it can be established that $\Theta(\mathbb{Z}_n)$ is planar for $n = 2^i$ where $i \in \mathbb{N}$.

Now we show that $\Theta(\mathbb{Z}_n)$ is planar for $n = 3^i$ only for i = 1. Note that when i = 1, then $\Theta(\mathbb{Z}_3) \cong K_3$ which is planar. We illustrate $\Theta(\mathbb{Z}_9)$ in Figure 2.

Now for $i \geq 2$, if we take the vertices $0, 3^{i-1}, 2 \cdot 3^{i-1}$, and any three vertices other than these, then the graph obtained contains $K_{3,3}$ as a subgraph. Using Theorem 2.3, we can conclude that $\Theta(\mathbb{Z}_n)$ is not planar for $n = 3^i$ where $i \geq 2$. Hence, the graph is planar only when n = 3. Thus, $\Theta(\mathbb{Z}_n)$ is planar if and only if n = 3 or $n = 2^i$ where $i \in \mathbb{N}$.

Theorem 3.10. If p and q are distinct primes with p < q then $\Theta(\mathbb{Z}_{pq})$ is Hamiltonian if and only if p = 2.

Proof. Assume that p = 2. Let v_1 and v_2 be two non-adjacent vertices in $\Theta(\mathbb{Z}_{2q})$. Then, v_1 and v_2 are generators of \mathbb{Z}_{2q} . Note that v_1 is adjacent to any

Figure 1: $\Theta(\mathbb{Z}_8)$

Figure 2: $\Theta(\mathbb{Z}_9)$

non-generator of \mathbb{Z}_{2q} and so is v_2 . Then, $\deg(v_i) = 2q - \varphi(2q) = 2q - (q-1) = q+1$, where $i \in \{1, 2\}$. Thus, $\deg(v_1) + \deg(v_2) = 2(q+1) > 2q$. Thus, the sum of degrees of two non-adjacent vertices is greater than the number of vertices in $\Theta(\mathbb{Z}_{2q})$. By Theorem 2.4, we conclude that $\Theta(\mathbb{Z}_{2q})$ is Hamiltonian.

Now we show that if $2 then the graph <math>\Theta(\mathbb{Z}_{2q})$ is not Hamiltonian. Consider the sets

$$A = \{i : \gcd(i, n) = 1\} \text{ and } B = \{0\} \cup \{i : \gcd(i, n) \neq 1\}.$$

If we remove all vertices of $\Theta(\mathbb{Z}_{2q})$ which are in *B* then $\Theta(\mathbb{Z}_{2q})$ has $|A| = \varphi(pq)$ components. Since 2 , we obtain,

$$(p-2)(q-2) > 2 \implies pq - 2p - 2q + 2 > 0$$
$$\implies pq + 2 > 2(p+q)$$
$$\implies pq - p - q + 1 > p + q - 1$$
$$\implies (p-1)(q-1) > p + q - 1$$
$$\implies \varphi(pq) > pq - \varphi(pq)$$
$$\implies |A| > |B|.$$

Using Equation (3.2) we find that $\Theta(\mathbb{Z}_{pq})$ is not 1-tough. Using Theorem 2.5 we conclude that $\Theta(\mathbb{Z}_{pq})$ is not Hamiltonian when $2 . Thus, <math>\Theta(\mathbb{Z}_{pq})$ is Hamiltonian if and only if p = 2.

We observe that if two groups G_1 and G_2 are isomorphic, then the corresponding graphs $\Theta(G_1)$ and $\Theta(G_2)$ are isomorphic to each other. However, the converse is false. To illustrate it we consider the following example:

Example 3.11. Consider the unitriangular matrix group
$$\mathfrak{F} = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

 $a, b, c \in \mathbb{F}_3$ where \mathbb{F}_3 denotes the finite field of order 3. Clearly \mathfrak{F} forms a group under matrix multiplication. Now consider the group $(\mathbb{Z}_3)^3$. Using Corollary 3.7, $\Theta((\mathbb{Z}_3)^3)$ is complete. We also notice that each non-identity element of the group \mathfrak{F} has order 3. Thus, any two elements of $\Theta(\mathfrak{F})$ are adjacent to each other which in turn implies that $\Theta(\mathfrak{F})$ is complete. Since \mathfrak{F} is non-commutative whereas $(\mathbb{Z}_3)^3$ is commutative, we find that the two groups are not isomorphic to each other. However, $\Theta(\mathfrak{F})$ and $\Theta((\mathbb{Z}_3)^3)$ are isomorphic to each other as both are complete graphs having 27 elements.

4. Vertex Connectivity of $\Theta(G)$

In this section, we first investigate the vertex connectivity of $\Theta(\mathbb{Z}_n)$ for $n \geq 2$. For a given group G, we fix the following notations: Let $S^*(G)$ denote set of all those elements G which have prime order. Let $S(G) = \{e\} \cup S^*(G)$ where e denotes the identity element of G.

Proposition 4.1. If n is prime, then $\kappa(\Theta(\mathbb{Z}_n)) = n - 1$.

Proof. Since n is prime, $\Theta(\mathbb{Z}_n)$ is complete (Corollary 3.6). Since vertex connectivity of a complete graph on n vertices is n-1, we conclude that $\kappa(\Theta(\mathbb{Z}_n)) = n-1$.

Theorem 4.2. If n is composite, then $\kappa(\Theta(\mathbb{Z}_n)) = |S(\mathbb{Z}_n)|$.

Proof. Let v_0 be a generator of \mathbb{Z}_n . Thus, $o(v_0) = n$. Since v_0 is a generator so deg $(v_0) \leq$ deg(w) for all vertices $w \in \Theta(\mathbb{Z}_n)$ which implies that $\delta(\Theta(\mathbb{Z}_n)) =$ deg (v_0) . Now we notice that the vertex $v_0 \in \Theta(\mathbb{Z}_n)$ is adjacent only to all the elements of $S(\mathbb{Z}_n)$ and nothing else. Thus, deg $(v_0) = |S(\mathbb{Z}_n)|$. By Theorem 2.2, $\kappa(\Theta(\mathbb{Z}_n)) \leq |S(\mathbb{Z}_n)|$. Now we claim that $S(\mathbb{Z}_n)$ is a minimum separating set of $\Theta(\mathbb{Z}_n)$. If not, then suppose we remove $|S(\mathbb{Z}_n)| - 1$ elements from the vertex set of $\Theta(\mathbb{Z}_n)$. Then, there exists $a \in S(\mathbb{Z}_n)$ such that a is adjacent to all other vertices of $\Theta(\mathbb{Z}_n)$, making $\Theta(\mathbb{Z}_n)$ connected. Thus, $S(\mathbb{Z}_n)$ is a minimum separating set of $\Theta(\mathbb{Z}_n)$, which proves the fact that $\kappa(\Theta(\mathbb{Z}_n)) = |S(\mathbb{Z}_n)|$. \Box

Corollary 4.3. If n = pq where p, q are distinct primes with p < q, then $\kappa(\Theta(\mathbb{Z}_n)) = p + q - 1$.

Proof. If n = pq, then $S(\mathbb{Z}_{pq}) = \{0, p, 2p, 3p, \dots, (q-1)p, q, 2q, 3q, \dots, (p-1)q\}$. Since $|S(\mathbb{Z}_{pq})| = p + q - 1$, the result follows.

Corollary 4.4. If $n = p^m$ where p is a prime and $m \in \mathbb{N}$ then $\kappa(\Theta(\mathbb{Z}_n)) = p$.

Proof. If $n = p^m$, then $S(\mathbb{Z}_{p^m}) = \{0, p^{m-1}, 2p^{m-1}, 3p^{m-1}, \dots, (p-1)p^{m-1}\}$. Since $|S(\mathbb{Z}_{p^m})| = p$, the result follows.

Now it is quite natural to ask that if $\Theta(G)$ is not complete, is it true that $\kappa(\Theta(G))$ equals |S(G)|? We show that it is false. Consider the Dicyclic group Dic_n of order 4n given by :

$$\text{Dic}_n = \{ \langle a, x \rangle : a^{2n} = 1, x^2 = a^n, ax = xa^{-1} \}.$$

We illustrate $\Theta(\text{Dic}_3)$ in Figure 3.

Figure 3: $\Theta(\text{Dic}_3)$

From Figure 3, we observe that $\{1, a, a^2, a^3, a^4, a^5\}$ is a minimum separating set of $\Theta(\text{Dic}_3)$. So, $\kappa(\Theta(\text{Dic}_3)) = 6$. Also, $S(\text{Dic}_n) = \{1, a^2, a^3, a^4\}$. Hence, $\kappa(\Theta(\text{Dic}_3)) > |S(\text{Dic}_3)|$.

We thus end this section by proposing the following open problem which can be considered for further research.

Problem 4.5. Characterize all finite groups G, such that $\Theta(G)$ is not complete, but $\kappa(\Theta(G)) = |S(G)|$.

5. Signless Laplacian Spectrum of $\Theta(G)$

In this section, we shall find the signless Laplacian spectra of $\Theta(\mathbb{Z}_n)$ and $\Theta(\mathbb{D}_n)$ for $n \in \{pq, p^m\}$ where p, q are distinct primes with p < q and $m \in \mathbb{N}$. We denote the signless Laplacian matrix of $\Theta(G)$ by $Q = Q(\Theta(G))$.

5.1. Signless Laplacian Spectrum of $\Theta(\mathbb{Z}_n)$

Theorem 5.1. If n = pq, then the eigenvalues of $Q(\Theta(\mathbb{Z}_n))$ are p + q - 1 with multiplicity pq - p - q, pq - 2 with multiplicity p + q - 2 and the other two are solutions of the equation $x^2 - x(pq + 2p + 2q - 4) + 2(p + q - 1)(p + q - 2) = 0$.

Proof. The rows and columns of $Q = Q(\Theta(\mathbb{Z}_n))$ have been indexed in the following way:

We start with the zero element 0 of \mathbb{Z}_n . We then list those elements $m \in \mathbb{Z}_n$ such that $gcd(m,n) \neq 1$. Finally, we list those elements $m \in \mathbb{Z}_n$ such that gcd(m,n) = 1. Using the above indexing, Q takes the following form,

(5.1)

$$Q = \begin{pmatrix} ((n-2)I + J)_{(n-\varphi(n))\times(n-\varphi(n))} & J_{(n-\varphi(n))\times\varphi(n)} \\ J_{\varphi(n)\times(n-\varphi(n))}^T & (n-\varphi(n))I_{\varphi(n)\times\varphi(n)} \end{pmatrix}.$$

Here, $J_{m \times n}$ is a matrix of order $m \times n$ all of whose entries are 1. If we consider the matrix Q - (n-2)I, we obtain

(5.2)
$$Q - (n-2)I = \begin{pmatrix} J_{n-\varphi(n)} & J_{(n-\varphi(n))\times\varphi(n)} \\ J_{\varphi(n)\times(n-\varphi(n))}^T & (2-\varphi(n))I_{\varphi(n)} \end{pmatrix}$$

Since the matrix in eq. (5.2) has $n - \varphi(n)$ identical rows, we conclude that n-2 is an eigenvalue of Q with multiplicity at least $n - \varphi(n) - 1$. Similarly, if we consider the matrix $Q - (n - \varphi(n))I$ we find that it has $\varphi(n)$ identical rows, which makes us conclude that $n - \varphi(n)$ is an eigenvalue of Q with multiplicity at least $\varphi(n) - 1$. We shall use the concept of equitable partitions (see [7, Section 5]) to find the remaining two eigenvalues of Q. In short, given a graph \mathcal{G} , a partition π of $V(\mathcal{G}) = V_1 \cup V_2 \cup \cdots \cup V_k$ is an equitable partition of \mathcal{G} , if every vertex in V_i has the same number of neighbors in V_j for all $i, j \in \{1, 2, \ldots, k\}$. Also, given an equitable partition π of \mathcal{G} , and its signless Laplacian matrix Q, we can form the matrix $Q_{\pi} = (q_{ij})$ in the following way

(5.3)
$$q_{ij} = \begin{cases} b_{ij} & \text{if } i \neq j \\ b_{ii} + \sum_{j=1}^{k} b_{ij} & \text{if } i = j \end{cases}$$

where b_{ij} is the number of neighbors a vertex $v \in V_i$ has in V_j , and b_{ii} is the number of neighbors a vertex $v \in V_i$ has in V_i . We refer to the matrix Q_{π} as the matrix corresponding to the partition π of \mathcal{G} . It is further known that the multiset of eigenvalues of Q_{π} is contained in the multiset of eigenvalues of Q [7, Lemma 5.1].

We partition the vertex set V of $\Theta(\mathbb{Z}_n)$ as $V_1 \cup V_2$ where $V_1 = \{0\} \cup \{m : \text{gcd}(m,n) \neq 1\}$ and $V_2 = V \setminus V_1$. We notice that each vertex v in V_1 has $n - \varphi(n) - 1$ neighbors in V_1 , and $\varphi(n)$ neighbors in V_2 . Also, each vertex v in V_2 has $n - \varphi(n)$ neighbors in V_1 , and 0 neighbors in V_2 . We call this partition π . Using eq. (5.3), we can construct the *equitable quotient* matrix Q_{π} corresponding to this partition π of $\Theta(\mathbb{Z}_n)$,

$$Q_{\pi} = \begin{pmatrix} 2n - \varphi(n) - 2 & \varphi(n) \\ & & \\ n - \varphi(n) & n - \varphi(n) \end{pmatrix}$$

The characteristic polynomial of Q_{π} is $\Lambda(x) = x^2 + x(2 - 3n + 2\varphi(n)) + (2n - 2\varphi(n))(n - 1 - \varphi(n))$. The solutions of $\Lambda(x) = 0$ are $\frac{1}{2}\{3n - 2 - 2\varphi(n) \pm (2n - 2\varphi(n))\}$.

 $\sqrt{4n\varphi(n)-4\varphi(n)^2+n^2-4n+4}$. Since n>2, so $\varphi(n)\geq 2$. Hence we have

$$\Lambda(n-\phi(n)) = \phi(n)(\phi(n)-n) \neq 0$$

and $\Lambda(n-2) = 2(\phi(n)-1)(\phi(n)-n) \neq 0.$

Since the eigenvalues of Q_{π} are different from $n - \varphi(n)$ and n - 2, using Lemma 5.1 of [7] we find that the remaining eigenvalues of Q are $\frac{1}{2}\{3n - 2-2\varphi(n) \pm \sqrt{4n\varphi(n) - 4\varphi(n)^2 + n^2 - 4n + 4}\}$. Thus, the eigenvalues of Q are $n - \varphi(n)$ with multiplicity $\varphi(n) - 1$, n - 2 with multiplicity $n - \varphi(n) - 1$, and the other two are solutions of the equation $x^2 + x(2 - 3n + 2\varphi(n)) + (2n - 2\varphi(n))(n - 1 - \varphi(n)) = 0$. On substituting n = pq, we find that the eigenvalues of Q are p+q-1 with multiplicity pq-p-q, pq-2 with multiplicity p+q-2, and the other two are solutions of the equation $x^2 - x(pq+2p+2q-4) + 2(p+q-1)(p+q-2) = 0$, and hence the result follows.

Proposition 5.2. If n = p, then the eigenvalues of $Q(\Theta(\mathbb{Z}_n))$ are 2(n-1) with multiplicity 1 and n-2 with multiplicity n-1.

Proof. If n = p, then using Corollary 3.6, $\Theta(\mathbb{Z}_n)$ is complete. Thus, Q = (n-2)I + J. Using Theorem 2.6, the eigenvalues of Q are 2(n-1) with multiplicity 1 and n-2 with multiplicity n-1.

Theorem 5.3. If $n = p^m$, where $m \ge 2$, then the eigenvalues of $Q(\Theta(\mathbb{Z}_n))$ are p with multiplicity $p^m - p - 1$, $p^m - 2$ with multiplicity p - 1, and the other two are given by the solutions of the equation $x^2 - x(p^m + 2p - 2) + 2p(p - 1) = 0$.

Proof. The rows and columns of the matrix Q have been indexed in the following way,

We start with the zero element 0 of \mathbb{Z}_n . We then list the following elements of \mathbb{Z}_n :

$$\{p^{m-1}, 2p^{m-1}, 3p^{m-1}, \dots, (p-2)p^{m-1}, (p-1)p^{m-1}\}.$$

We then list the remaining non-generators of \mathbb{Z}_n , and finally we list the generators of \mathbb{Z}_n . Since each element of the set $\{p^{m-1}, 2p^{m-1}, 3p^{m-1}, \ldots, (p-2)p^{m-1}, (p-1)p^{m-1}\}$ has order p we find that they are adjacent to all other vertices of $\Theta(\mathbb{Z}_n)$. Using the above indexing, Q takes the following form,

$$Q = \begin{pmatrix} ((n-2)I+J)_{p \times p} & J_{p \times (n-p)} \\ & & \\ J_{(n-p) \times p}^T & pI_{(n-p) \times (n-p)} \end{pmatrix}.$$

If we consider the matrix Q - (n-2)I, we find that it has p identical rows, and hence n-2 is an eigenvalue of Q with multiplicity at least p-1. Similarly, if we consider the matrix Q - pI, we find that it has $p^m - p$ identical rows, and hence p is an eigenvalue of Q with multiplicity at least $p^m - p - 1$.

We again partition the vertex set V of $\Theta(\mathbb{Z}_n)$ as $V = V_1 \cup V_2$ where $V_1 = \{0, p^{m-1}, 2p^{m-1}, \dots, (p-2)p^{m-1}, (p-1)p^{m-1}\}$ and $V_2 = V \setminus V_1$. We observe

that each vertex v in V_1 has p-1 neighbors in V_1 and $p^m - p$ neighbors in V_2 . Similarly, each vertex v in V_2 has p neighbors in V_1 and 0 neighbors in V_2 . Thus, the partition is an equitable partition, and we call the partition π .

According to eq. (5.3), the equitable quotient matrix corresponding to the partition π becomes

$$Q_{\pi} = \left(\begin{array}{cc} p^m + p - 2 & p^m - p \\ p & p \end{array}\right)$$

The characteristic polynomial of Q_{π} is

$$\Lambda(x) = x^2 - x(p^m + 2p - 2) + 2p(p - 1).$$

Note that for a given p and $m \ge 2$,

$$\Lambda(p) = p(p-p^m) \neq 0$$

and $\Lambda(p^m-2) = -2p(p^m-p-1) \neq 0$

The solutions of $\Lambda(x) = 0$ are $\frac{1}{2} \left(p^m + 2p - 2 \pm \sqrt{(p^m + 2p - 2)^2 - 8p(p - 1)} \right)$. Since the eigenvalues of Q_{π} are different from p and $p^m - 2$, using Lemma 5.1 of [7] we find that the eigenvalues of Q are p with multiplicity $p^m - p - 1$, $p^m - 2$ with multiplicity p - 1, and the other two are solutions of the equation $x^2 - x(p^m + 2p - 2) + 2p(p - 1) = 0$.

5.2. Signless Laplacian Spectrum of $\Theta(\mathbf{D}_n)$

In this section, we shall find the signless Laplacian spectrum of $\Theta(D_n)$. We know that

$$D_n = \{ \langle r, s \rangle : r^n = s^2 = 1, rs = sr^{-1} \}.$$

We first index the elements r^i , and then index the elements sr^i where $0 \leq i \leq n-1$. We also note that $o(sr^i) = 2$ for all $0 \leq i \leq n-1$, and hence $gcd(o(sr^i), o(sr^j)) = 2$ for all $0 \leq i, j \leq n-1$. Also, r^i is adjacent to sr^j for all $0 \leq i, j \leq n-1$. The signless Laplacian matrix of $\Theta(D_n)$ is given by:

(5.4)
$$Q(\Theta(\mathbf{D}_n)) = \begin{pmatrix} (Q(\Theta(\mathbb{Z}_n)) + nI)_{n \times n} & J_{n \times n} \\ \\ J_{n \times n}^T & ((2n-2)I + J)_{n \times n} \end{pmatrix}.$$

Using eq. (5.4), we find that the signless Laplacian matrix of $\Theta(D_n)$ depends on the signless Laplacian matrix of $\Theta(\mathbb{Z}_n)$. In the previous section we had determined the eigenvalues of $Q(\Theta(\mathbb{Z}_n))$ for $n \in \{p^m, pq\}$. We will use those in this section to find the eigenvalues of $Q(\Theta(D_n))$ for $n \in \{p^m, pq\}$.

Theorem 5.4. If n = pq, then the eigenvalues of $Q(\Theta(D_n))$ are 2(n-1) with multiplicity $2n - \varphi(n) - 1$, $2n - \varphi(n)$ with multiplicity $\varphi(n) - 1$, and $3n - \varphi(n) - 1 \pm \sqrt{n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1}$, each with multiplicity 1.

Proof. If n = pq, using eqs. (5.1) and (5.4), we find that the signless Laplacian matrix of $\Theta(D_n)$ is of the following form:

$$Q = \begin{pmatrix} ((2n-2)I+J)_{(n-\varphi(n))^2} & J_{(n-\varphi(n)\times\varphi(n))} & J_{(n-\varphi(n)\times n)} \\ \\ J_{\varphi(n)\times(n-\varphi(n))} & (2n-\varphi(n))I_{(\varphi(n))^2} & J_{\varphi(n)\times n} \\ \\ \\ J_{n\times(n-\varphi(n))} & J_{n\times\varphi(n)} & ((2n-2)I+J)_{n^2} \end{pmatrix}.$$

If we consider the matrix Q - (2n - 2)I, we find that it has $2n - \varphi(n)$ identical rows. Thus, 2n - 2 is an eigenvalue of Q with multiplicity at least $2n - \varphi(n) - 1$. We also note that $Q - (2n - \varphi(n))I$ has $\varphi(n)$ identical rows, which makes us conclude that $2n - \varphi(n)$ is an eigenvalue of Q with multiplicity at least $\varphi(n) - 1$.

We partition the vertex set V of $\Theta(D_n)$ in the following way: $V_1 = \{1\} \cup \{r^i : \gcd(i, n) \neq 1\}, V_2 = \{r^i : \gcd(i, n) = 1\}$ and $V_3 = \{sr^i : 0 \le i \le n-1\}$. Each vertex $v \in V_1$ has $n - \varphi(n) - 1$ neighbors in V_1 , $\varphi(n)$ neighbors in V_2 and n neighbors in V_3 . Each vertex $v \in V_2$ has $n - \varphi(n)$ neighbors in V_1 , 0 neighbors in V_2 and n neighbors in V_3 , and each vertex $v \in V_3$ has $n - \varphi(n)$ neighbors in V_1 , $\varphi(n)$ neighbors in V_2 and n - 1 neighbors in V_3 . Hence, the partition is an equitable partition, and we call it π . Using eq. (5.3), the equitable quotient matrix corresponding to π is given by:

$$Q_{\pi} = \begin{pmatrix} 3n - 2 - \varphi(n) & \varphi(n) & n \\ \\ n - \varphi(n) & 2n - \varphi(n) & n \\ \\ n - \varphi(n) & \varphi(n) & 3n - 2 \end{pmatrix}$$

The characteristic polynomial of Q_{π} is

$$\begin{split} \Lambda(x) &= x^3 + (2\varphi(n) - 8n + 4)x^2 + (2\varphi(n)^2 - 12\varphi(n)n \\ &+ 20n^2 + 6\varphi(n) - 20n + 4)x - 4\varphi(n)^2n + 16\varphi(n)n^2 - 16n^3 \\ &+ 4\varphi(n)^2 - 20\varphi(n)n + 24n^2 + 4\varphi(n) - 8n. \end{split}$$

On solving, we find that solutions of $\Lambda(x) = 0$ are 2(n-1) with multiplicity 1 and $3n - \varphi(n) - 1 \pm \sqrt{n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1}$, each with multiplicity 1. We further note that $\Lambda(2n - \varphi(n)) \neq 0$, as otherwise

$$\begin{split} 2n-\varphi(n) &= 3n-\varphi(n)-1\pm\sqrt{n^2+2\varphi(n)n-\varphi(n)^2-2n+1}\\ \text{which implies } (n-1)^2 &= n^2+2n\varphi(n)-\varphi(n)^2-2n+1\\ \text{which implies } 2n\varphi(n)-\varphi(n)^2 &= 0\\ \text{which implies } (2n-\varphi(n))\varphi(n) &= 0 \text{ which is false for } n = pq. \end{split}$$

Again, we further note that

 $2n - 2 \neq 3n - \varphi(n) - 1 \pm \sqrt{n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1}, \text{ as otherwise}$ $2n - 2 = 3n - \varphi(n) - 1 \pm \sqrt{n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1}$ which implies $\left(n + 1 - \varphi(n)\right)^2 = n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1$ which implies $2\varphi(n)^2 + 4n - 2\varphi(n) - 4n\varphi(n) = 0$ which implies $\varphi(n) - 2n \exp(\varphi(n) - 2n) \left(\varphi(n) - 1\right) = 0$ which implies $\varphi(n) = 2n \exp(\varphi(n) - 1$, which are both false.

which implies either $\varphi(n) = 2n$ or $\varphi(n) = 1$, which are both false.

We thus conclude that the eigenvalues $3n - \varphi(n) - 1 \pm \sqrt{n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1}$ of Q_{π} are distinct from both $2n - \varphi(n)$ and 2(n-1) for n = pq. Using Lemma 5.1 of [7], we find that $3n - \varphi(n) - 1 \pm \sqrt{n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1}$ are eigenvalues of Q, each with multiplicity 1. Thus, the eigenvalues of Q are 2(n-1) with multiplicity $2n - \varphi(n) - 1$, $2n - \varphi(n)$ with multiplicity $\varphi(n) - 1$ and $3n - \varphi(n) - 1 \pm \sqrt{n^2 + 2\varphi(n)n - \varphi(n)^2 - 2n + 1}$, each with multiplicity 1.

Proposition 5.5. If n = p, then the eigenvalues of $Q(\Theta(D_n))$ are 2(n-1) with multiplicity 1 and n-2 with multiplicity n-1.

Proof. If n = p, then using Corollary 3.8, $\Theta(D_n)$ is complete. Thus, Q = (n-2)I + J. Using Theorem 2.6, the eigenvalues of Q are 2(n-1) with multiplicity 1 and n-2 with multiplicity n-1.

Theorem 5.6. If $n = p^m$ where $m \ge 2$, then the eigenvalues of $Q(\Theta(D_n))$ are 2n - 2 with multiplicity n + p - 1, p + n with multiplicity n - p - 1, and $2n + p - 1 \pm \sqrt{2n^2 - 2n - p^2 + 1}$ each with multiplicity 1.

Proof. If $n = p^m$, using eqs. (5.1) and (5.4) we find that $Q = Q(\Theta(D_n))$ is of the following form:

$$Q = \begin{pmatrix} ((2n-2)I + J)_{p \times p} & J_{p \times (n-p)} & J_{p \times n} \\ \\ J_{(n-p) \times p} & (p+n)I_{(n-p) \times (n-p)} & J_{(n-p) \times n} \\ \\ \\ J_{n \times p} & J_{n \times (n-p)} & ((2n-2)I + J)_{n \times n} \end{pmatrix}$$

We note that Q - (2n-2)I has n + p identical rows, and hence 2n - 2 is an eigenvalue of Q with multiplicity at least n + p - 1. Similarly, Q - (p + n)I has n - p identical rows, and hence p + n is an eigenvalue of Q with multiplicity at least n - p - 1.

We now partition the vertex set V of $\Theta(D_{p^m})$ as $V = V_1 \cup V_2 \cup V_3$ where

$$V_1 = \{1, r^{p^{m-1}}, r^{2(p^{m-1})}, \dots, r^{(p-1)(p^{m-1})}\},\$$

 $V_2 = \{r^i : 0 \le i \le n-1\} \setminus V_1$, and $V_3 = \{sr^i : 0 \le i \le n\}$. Each vertex $v \in V_1$ has p-1 neighbors in V_1 , n-p neighbors in V_2 and n neighbors in V_3 . Each vertex $v \in V_2$ has p neighbors in V_1 , 0 neighbors in V_2 and n neighbors in V_3 and each vertex $v \in V_3$ has p neighbors in V_1 , n-p neighbors in V_2 and n-1 neighbors in V_3 . Hence, the partition is an equitable partition, and we call it π .

The equitable quotient matrix of Q corresponding to π is given by:

$$Q_{\pi} = \begin{pmatrix} 2(n-1) + p & n-p & n \\ p & n+p & n \\ p & n-p & 3n-2 \end{pmatrix}$$

The characteristic polynomial of Q_{π} is

$$\begin{split} \Lambda(x) &= x^3 + (-6n - 2p + 4)x^2 + (10n^2 + 8np + 2p^2 - 14n - 6p + 4)x \\ &- 4n^3 - 8n^2p - 4np^2 + 8n^2 + 12np + 4p^2 - 4n - 4p. \end{split}$$

The solutions of $\Lambda(x) = 0$ are 2(n-1) and $2n + p - 1 \pm \sqrt{2n^2 - 2n - p^2 + 1}$. We further note that, $\Lambda(n+p) \neq 0$, as otherwise it would imply,

$$n + p = 2n + p - 1 \pm \sqrt{2n^2 - 2n - p^2 + 1}$$

which implies $-n + 1 = \pm \sqrt{2n^2 - 2n - p^2 + 1}$.
which implies $(n - 1)^2 = 2n^2 - 2n - p^2 + 1$
which implies $n^2 = p^2$, which is false.

We further note that $2(n-1) \neq 2n+p-1 \pm \sqrt{2n^2-2n-p^2+1}$, as otherwise

$$2(n-1) = 2n + p - 1 \pm \sqrt{2n^2 - 2n - p^2} +$$

which implies $-p - 1 = \pm \sqrt{2n^2 - 2n - p^2 + 1}$
which implies $(p+1)^2 = 2n^2 - 2n - p^2 + 1$
which implies $2p(p+1) = 2n(n-1)$
which implies $p+1 = p^{m-1}(p^m - 1)$
which implies $\frac{p^m - 1}{p+1} = \frac{1}{p^{m-1}} < 1$, which is false.

Thus, the eigenvalues $2n + p - 1 \pm \sqrt{2n^2 - 2n - p^2 + 1}$ of Q_{π} are different from both n + p and 2(n-1) for $n = p^m$. Using Lemma 5.1 of [7], we conclude that $2n + p - 1 \pm \sqrt{2n^2 - 2n - p^2 + 1}$ are eigenvalues of Q each with multiplicity 1. Thus, the eigenvalues of Q are 2n - 2 with multiplicity n + p - 1, p + nwith multiplicity n - p - 1, and $2n + p - 1 \pm \sqrt{2n^2 - 2n - p^2 + 1}$ each with multiplicity 1.

6. Acknowledgement

The second author receives Ph.D. scholarship from the National Board of Higher Mathematics, Government of India, Grant Number-2/39(2)/2015/R&D-II/NBHM/7458.

References

- ABDOLLAHI, A., AND VATANDOOST, E. Which Cayley graphs are integral? Electron. J. Combin. 16, 1 (2009), Research Paper 122, 17.
- [2] ABDUSSAKIR, A., ELVIERAYANI, R. R., AND NAFISAH, M. On the spectra of commuting and non commuting graph on dihedral group. CAUCHY: Jurnal Matematika Murni dan Aplikasi 4, 4 (2017), 176–182.
- [3] BABAI, L. Spectra of Cayley graphs. J. Combin. Theory Ser. B 27, 2 (1979), 180–189.
- [4] BANERJEE, S. Laplacian spectra of coprime graph of finite cyclic and dihedral groups. Discrete Mathematics, Algorithms and Applications (2020), 2150020.
- [5] BANERJEE, S. The metric dimension & distance spectrum of non-commuting graph of dihedral group. Discrete Mathematics, Algorithms and Applications (2021), 2150082.
- [6] BANERJEE, S., AND ADHIKARI, A. On spectra and spectral radius of signless laplacian of power graphs of some finite groups. Asian-European Journal of Mathematics (2020), 2150090.
- [7] BANERJEE, S., AND ADHIKARI, A. Signless Laplacian spectrum of power graphs of finite cyclic groups. AKCE Int. J. Graphs Comb. 17, 1 (2020), 356–366.
- [8] BAPAT, R. B. Graphs and matrices, second ed. Universitext. Springer, London; Hindustan Book Agency, New Delhi, 2014.
- [9] BONDY, J. A., AND MURTY, U. S. R. Graph theory with applications. American Elsevier Publishing Co., Inc., New York, 1976.
- [10] BOSÁK, J. The graphs of semigroups. In *Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963)* (1964), Publ. House Czechoslovak Acad. Sci., Prague, pp. 119–125.
- [11] BUDDEN, F. Cayley graphs for some well-known groups. The Mathematical Gazette 69, 450 (1985), 271–278.
- [12] CAMERON, P. J. The power graph of a finite group, II. J. Group Theory 13, 6 (2010), 779–783.
- [13] CAMERON, P. J., AND GHOSH, S. The power graph of a finite group. *Discrete Math.* 311, 13 (2011), 1220–1222.
- [14] CHAKRABARTY, I., GHOSH, S., AND SEN, M. K. Undirected power graphs of semigroups. Semigroup Forum 78, 3 (2009), 410–426.
- [15] CHENG, T., FENG, L., AND HUANG, H. Integral Cayley graphs over dicyclic group. *Linear Algebra Appl. 566* (2019), 121–137.
- [16] CHVÁTAL, V. Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973), 215–228.

- [17] CVETKOVIĆ, D., AND SIMIĆ, S. K. Towards a spectral theory of graphs based on the signless Laplacian. I. Publ. Inst. Math. (Beograd) (N.S.) 85(99) (2009), 19–33.
- [18] CVETKOVIĆ, D., AND SIMIĆ, S. K. Towards a spectral theory of graphs based on the signless Laplacian. II. *Linear Algebra Appl.* 432, 9 (2010), 2257–2272.
- [19] CVETKOVIĆ, D., AND SIMIĆ, S. K. Towards a spectral theory of graphs based on the signless Laplacian. III. Appl. Anal. Discrete Math. 4, 1 (2010), 156–166.
- [20] DIESTEL, R. Graph theory, fifth ed., vol. 173 of Graduate Texts in Mathematics. Springer, Berlin, 2018. Paperback edition of [MR3644391].
- [21] DORBIDI, H. R. A note on the coprime graph of a group. Int. J. Group Theory 5, 4 (2016), 17–22.
- [22] DUMMIT, D. S., AND FOOTE, R. M. Abstract algebra, third ed. John Wiley & Sons, Inc., Hoboken, NJ, 2004.
- [23] GALLIAN, J. Contemporary abstract algebra. Nelson Education, 2012.
- [24] HAMZEH, A., AND ASHRAFI, A. R. Automorphism groups of supergraphs of the power graph of a finite group. *European J. Combin.* 60 (2017), 82–88.
- [25] HAMZEH, A., AND ASHRAFI, A. R. Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups. *Filomat 31*, 16 (2017), 5323–5334.
- [26] HAMZEH, A., AND ASHRAFI, A. R. The order supergraph of the power graph of a finite group. *Turkish J. Math.* 42, 4 (2018), 1978–1989.
- [27] KELAREV, A. V., AND QUINN, S. J. Directed graphs and combinatorial properties of semigroups. J. Algebra 251, 1 (2002), 16–26.
- [28] MA, X., WEI, H., AND YANG, L. The coprime graph of a group. Int. J. Group Theory 3, 3 (2014), 13–23.
- [29] MEHRANIAN, Z., GHOLAMI, A., AND ASHRAFI, A. R. The spectra of power graphs of certain finite groups. *Linear Multilinear Algebra 65*, 5 (2017), 1003– 1010.
- [30] SATTANATHAN, M., AND KALA, R. An introduction to order prime graph. Int. J. Contemp. Math. Sci. 4, 9-12 (2009), 467–474.
- [31] SELVAKUMAR, K., AND SUBAJINI, M. Classification of groups with toroidal coprime graphs. Australas. J. Combin. 69 (2017), 174–183.
- [32] ZELINKA, B. Intersection graphs of finite abelian groups. Czechoslovak Math. J. 25(100) (1975), 171–174.

Received by the editors May 16, 2020 First published online March 30, 2021