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(C, B)-resolvents of closed linear operators

Belkacem ChaouchiPl and Marko Kostid?

Abstract. In this note, we analyze (C, B)-resolvents of closed linear
operators in sequentially complete locally convex spaces. We provide
a simple application in the qualitative analysis of solutions of abstract
degenerate Volterra integro-differential equations.
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1. Introduction and preliminaries

The theory of abstract degenerate Volterra integro-differential equations
and abstract degenerate fractional differential equations are growing fields of
research. For further information about these subjects, we refer the reader to
the recent monograph [6] by M. Kosti¢ and references cited therein.

As mentioned in the abstract, the main aim of this paper is to investigate
(C, B)-resolvents of closed linear operators in sequentially complete locally con-
vex spaces. In such a way, we continue our recent analyses of C-resolvents of
multivalued linear operators [6] and C-generalized resolvents of linear opera-
tors [§] (joint research with S. Pilipovié¢ and D. Velinov); see also the papers
[2] by R. deLaubenfels, F. Yao, S. W. Wang and [9] by Y.-C. Li and S.-Y.
Shaw. We provide an illustrative example of application in the analysis of
existence and uniqueness of strong solutions of abstract degenerate Volterra
integro-differential equations.

We use the standard notation throughout the paper. If not stated otherwise,
by E we denote a complex sequentially complete locally convex space, SCLCS
for short. If ) £ Q C C, then by C(£2 : E) we denote the vector space consisting
of all continuous functions from €2 into E. By A, B we denote two closed linear
operators with domain and range contained in F; the domain, kernel space and
range of A are denoted by D(A), N(A) and R(A), respectively. If 0 < 7 < o0
and a € L} _([0,7)), then we say that the function a(t) is a kernel on [0, 7) iff

loc
for each f € C([0,7)) the assumption fot a(t —s)f(s)ds =0, t € [0,7) implies
f(t) =0,t€]0,7). We will use the following condition

(P1): a(t) is Laplace transformable, i.e., it is locally integrable on [0, 00) and
there exists § € R such that
a(A) == L(a)(N) = limp_ oo fob e Ma(t)dt == [ e Ma(t) dt exists for all
A € C with RA > 6.
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Consider the following abstract degenerate Volterra integral equation:
t
(1.1) Bu(t) = f(t) + /a(t —s)Au(s)ds, t €[0,7),
0

where 0 < 7 < o0, t — f(t), t € [0,7) is a continuous mapping with values in
E and a € L}, ([0,7)). We will use the following definition from [6]:

Definition 1.1. Let 0 < 7 < co. A function u € C([0,7) : E) is said to be:

(i) a (mild) solution of iff (a*xwu)(t) € D(A), t € [0,7), A(a *u)(t) =
Bu(t) — f(t), t € [0,7) and the mapping ¢t — Bu(t), t € [0, 7) is continu-

(ii) a strong solution of (1.1)) iff the mapping ¢ — Au(t), t € [0,7) is contin-
uous, (a * Au)(t) = Bu(t) — f(t), t € [0,7) and the mapping ¢t — Bu(t),
t € [0,7) is continuous,

Multivalued linear operators. Now we will collect the basic definitions
and properties of multivalued linear operators in SCLCSs. Let X and Y be two
SCLCSs; by P(Y') we denote the power set of Y. A multivalued map (multimap)
A : X — P(Y) is said to be a multivalued linear operator (MLO) iff the
following holds:

(i) D(A) :={z € X : Az # 0} is a linear subspace of X;
(i) Az +Ay C A(z +y), z, y € D(A) and MMz C A(Ax), A€ C, z € D(A).

If X =Y, then we say that A is an MLO in X. An almost immediate con-
sequence of the definition is that, for any z, y € D(A) and A, n € C with
[A| + |n] # 0, we have Az + nAy = A(Ax + ny). If A is an MLO, then A0 is
a linear manifold in Y and Az = f 4+ A0 for any € D(A) and f € Ax. Set
R(A) :={Az : 2z € D(A)}. The set A710 = {x € D(A) : 0 € Az} is called the
kernel of A and it is denoted henceforth by N(A) or Kern(.A). The inverse A1
of an MLO is defined by D(A™!) := R(A) and Aty := {z € D(A) : y € Ax}.
It is checked at once that A~! is an MLO in X, as well as that N(A~1) = A0
and (A™H)71 = A

If A, B: X — P(Y) are two MLOs, then we define its sum A + B by
D(A+ B) := D(A)N D(B) and (A + B)x := Az + Bz, x € D(A+ B). Then
A + B is likewise an MLO.

Assume that A: X — P(Y) and B:Y — P(Z) are two MLOs, where Z
is an SCLCS. The product of A and B is defined by D(BA) := {z € D(A) :
D(B)N Az # 0} and BAx := B(D(B)NAz). Then BA: X — P(Z) is an MLO
and (BA)~! = A71B~!. The scalar multiplication of an MLO A : X — P(Y)
with the number z € C, zA for short, is defined by D(zA) := D(A) and
(zA)(z) = z Az, x € D(A).

Let C € L(X) be injective, let A is an MLO in X, and let CA C AC.
Then the C-resolvent set of A, pc(.A) for short, is defined as the union of those
complex numbers A € C for which
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(i) R(C) € R(A = A);
(ii) (A —.A)71C is a single-valued linear continuous operator on X.

The operator A — (A — A)71C is called the C-resolvent of A (A € pc(A));
the resolvent set of A is defined by p(A) = pr(A), RA: A) = (A — A)!
(A € p(A).

In [6] Section 3.9], we have also introduced and analyzed C-resolvents of
multivalued linear operators in the case that the regularizing operator C' is not
injective. In this paper, the injectiveness of the operator C' will be a blank
hypothesis.

For further information concerning multivalued linear operators, the reader
may consult the monographs [3], [6] and references cited therein.

2. The notion and properties of (C, B)-resolvents of closed
lienar operators

In this section, we investigate the main structural properties of (C, B)-
resolvents of closed linear operators in sequentially complete locally convex
space E. We assume that:

1. A:D(A) CE — F and B: D(B) C E — FE are closed linear operators;
2. C € L(FE) is an injective operator satisfying CA C AC and CB C BC;
3. The closed graph theorem holds for mappings from F into E.

Then the set L
pE(A) = {/\ eC:(\B—4A) 'Ce L(E)}

is called the (C, B)-resolvent set of A; the (C, B)-spectrum of A is defined by
oB(A) :=C\ pB(A). Sometimes we also write pc (A, B) (oc(A, B)) for pB(A)
(0B(A)); pP(A) = pP(A) and 0B(A) = oB(A). If C # I, then the (C, B)-
resolvent set of the operator A need not be open (for a counterexample of this
type, with B = I, E being the Hardy space H?({z € C: |z| < 1}), A € L(E)
being injective and C' = A, see [2, Example 2.5]). For any A € pZ(A), we define
the right (C, B)-resolvent of A, RS’B(A) for short, and the left (C, B)-resolvent
of A, LS’B(A) for short, by

R$P(A) := (AB — A)T'CB and L$P(4) := B(AB — A)”'C € L(E).

It is checked at once that the existence of an operator B~! € L(E) implies the
closedness of the operator AB~!, with domain and range contained in E, as
well as pB(A) C pc(AB~!) and

(2.1) (A—AB Y T'C=B(AB-A)"'C, AepB(A).

Now we will analyze the case in which pg (A) # (), the operator B is injective
and B~ ¢ L(FE). Fix temporarily a number A € pZ(A). Suppose that (z,) is a
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net in F as well as that z, — z as 7 — oo and AB™ 'z, — yas 7 — oo (see [10]
for the notion). This simply implies B(AB — A)~'Cxz, — B(AB — A)~!'Cx as
7 — oo and BAB—A)"'C(A\— AB™ )2, = BAB—A)"'C(AB— A)B™ 'z, =
Cz; — BOAB—A)"'C(A\x—y) as T — oco. Hence, Cx = B(AB—A)"1C(\z—y),
Czx € D(AB™') and AB~'Cz = AB™'B(AB — A)"1C(\x — y) = A(AB —
A)~1C(\x — y). Further on, B(AB — A)"'Cy = AB(AB — A)"'Cz — Cx =
AAB—A)"1Cx, AB—A)"'Cy =B 'A\NB—-A)"'Cz = —B 'Cx+\(\B -
A)~1Cx, whence it easily follows that Cy = —(AB— A)B~'Cx+ Cz and Cy =
AB~1Cxz. Hence, the operator AB~! is closable and the supposition C~!
L(E) implies that the operator AB~! is closed; before proceeding further,
we want to observe that the operator AB~! need not be closed if the above
requirements hold and C~1 ¢ L(E) (let A= B = C, and let R(C) be a proper
dense subspace of E; then CC~1 = [ # CC~!, see [2, Example 2.2]). It is
not problematic to verify that the operator AB—! commutes with the operator
B(AB — A)_lc (A € pB(A)), and that the operator A + AB~! is injective
(A € pB(A)). By the foregoing, we have pZ(A) C pc(AB~1) and the following
modification of :

(2.2) (A\—AB1)T'C=B(AB-A)"'C, XepE(A).

If the operator B is not injective, then AB~! is an MLO in E and, in this case,
we can simply prove that p8(A) C pc(AB™') and (2.1) continues to hold.
Therefore, we have arrived at the following propositions.

Proposition 2.1. Suppose that pg( ) # 0 and the operator B is z'njective.
(i) If B! € L(E) 07" C~! € L(E), then the operator AB™! is closed,
pE(A) C pc(AB~Y) and (2.1) holds.
(ii) Suppose B~' ¢ L(E) and C~' ¢ L(E). Then the operator AB~! is
closable, pB(A) C pc(AB1) and (2.2) holds.

Proposition 2.2. Suppose that the operator B is not injective. Then AB~1 is
an MLO in E, pB(A) C pc(AB™') and (2.1)) holds in the sense of multivalued
linear operators.

The inclusion pc(AB~!) C pB(A) also holds in some cases (for example,
if B € L(E)), but we will not go into further details concerning this question
here. Using the trivial identities

(AB—A)(uB—A)"'C=C+(\—p)B(uB—A)"'C, uepi(A), AeC,

(uB — A)"'C(AB — A)z = Cx

+(A—p)B(uB — A)"'Cx, p € pB(A), AeC, x € D(A)N D(B),
and observing that for each A € pZ(A) we have B(AB — A)~1C? = CB(AB —
A)~LC, the following version of Hilbert resolvent equation readily follows:
(2.3)

(AB—A)""

C2 = (uB—A)"'C? = (u—A)(uB—A)T'CB(AB—A)"'C,
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for any A, u € pB(A). From this, we may conclude the following:
(RE1) Suppose A, u € pB(A). Then
(24)  LPA)C — LP(A)C = (n = NLPP(A)LT P (A4)
and

LSB(ALYP(A) = LTP(A)LSB(A).

Hence, the nonemptiness of the set pZ(A) implies that the function A
LS’B(A) € L(E), A € pB(A) is a C-pseudoresolvent in the sense of [9, Def-
inition 3.1] and the following holds ([9]):

(RE1)’ The spaces N(LSP(A)), C~H(R(LS P (A4))), N(C — AL P (A)) and
C~YR(C — )\LS’B(A))) are independent of A € p5(A).

(RE1)” Suppose, additionally, that N(Lf’B(A)) = {0} for some A € pZ(A). Then
we can define the closed linear operator W on E by

D(W) = C(R(LS P (4)))
and Wz := (X — (LS’B(A))_lC)a: for x € D(W);

observe that (RE1)’ implies that the definition of W is independent of
A € pB(A). Then C'WC = W, pB(A) C pe(W) and LS (4) = (A -
W)LC, X € pB(A).

It is well known that the existence of the operator W from (RE1)” cannot be
proved in the case when there exists A € pZ(A) such that the kernel space of

the operator LS’B(A) is non-trivial (cf. also Example below; then (RE1)”
holds).
Further on, it is not difficult to prove that

A(AB — A)"'CBx = B(AB— A)'CAz, € D(A)nD(B), X € pE(A),
and (see the second equality in [1Il Lemma 2.1.2] with C' = I):
N(L$P(A)) = 07 [{Az 2 € D(A)NN(B)}], )€ pB(A).

The proof of the next resolvent equation follows from (2.4) and the fact
that, for every x € D(B), one has B(AB— A)"'CBCz = CB(AB — A)"1CBu:

(RE2) Suppose A, u € pB(A) and x € D(B). Then
RSP (A)Cx — R$P(A)Cx = (1 — N)RSP(A)RS P (A)x

and
R$E(A)R P (A)x = R P(A)RSP(A)a.

Taking into account (RE2) and proceeding as in the proofs of [9 Lemma 3.2,
Lemma 3.3], we can deduce the following:
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(RE2)" The spaces N(RSP(A)), C~1(R(RSP(A))) N D(B), N(C — AR (A))
and C~1(R(C — /\RS’B(A))) N D(B) are independent of A € p3(A).

Furthermore, if B € L(FE) is injective, then it is not difficult to show that the
operator B~1A is closed, as well as that pc(B~1A) = pB(A) and

(A=B'A)"'Cz = (\B—A)"'CBx, x¢E;

cf. also (RE1)”, [9, Theorem 3.4] and [3| Theorem 1.15]. Making use of [5]
Lemma 3.3], (2.3) and the argumentation from [2, Section 2] (cf. [2], Proposition
2.6, Remark 2.7]), we can prove the following:

Proposition 2.3. Let § # Q C pB(A) be open, and let x € E.

(i) The local boundedness of the mapping A\ — B(AB — A)~1Cx, \ € Q, resp.
the assumption that E is barreled and local boundedness of the mapping
A= B(AB — A)71C € L(E), X\ € Q, implies the analyticity of the
mappings A — (AB—A)"1C3z, A € Q and A — B(AB—A)"1C3z, X € Q,
resp. A+ (AB — A)7'C3 € L(E), A€ Q and A = B(AB — A)~1C3 ¢
L(E), X € Q. Furthermore, if R(C) is dense in E, resp. if R(C) is dense
in E and E is barreled, then the mappings A\ — (AB — A)~1Cz, \ € Q
and A — B(AB — A)~1Cxz, \ € Q are analytic, resp. the mappings \
(AB — A)"'C € L(E), A\ € Q and A — B(\B — A)~'C € L(E), A € Q
are analytic.

(ii) The continuity of the mapping A — B(AB — A)~1Cz, \ € Q implies its
analyticity. The continuity of mappings A — B(AB—A)"1Cx, A\ € Q and
A= (AB — A)~1Cz, \ € Q implies the analyticity of the mapping X —
(AB — A)~1Cz, X € Q; the strong continuity of the mapping A — (AB —
A)7IC e L(E), A€ Q A= (AB— A)"1CB, X € Q; with the meaning
clear) implies the analyticity of the mapping A — (AB — A)~1Cx, ) €
Q A= (AB—A)"'CBx, \ € Q, provided that x € D(B)), as well.
Furthermore, if E is barreled, then the continuity of the mapping A\ —
(AB—-A)"1C € L(E), A€ Q \A\+— B(AB—-A)"'1C € L(E), A € Q)
implies its analyticity; the same conclusion holds for the mapping A —
(AB—A)"'CB € L(E), X € Q, provided that E is barreled and B € L(E).

For clarity’s sake, we will prove parts (i) and (ii) of the following extension
of [2, Corollary 2.8].

Proposition 2.4. Let ) # Q C pB(A) be open, and let x € E.

(i) Suppose that the mapping A — (AB — A)~*Cx, X\ € Q is analytic. Then,
for every n € N and X\ € Q, we have

(B — A) ()\B A)7'Cr = (—n)B j;ll (\B—A)'Cz, ne
Cx e D(((AB — A)71B)"Y(AB — A)7Y), and
an (AB=A)"'Cx = (=1)" ' (n—1)|(AB=A)"'B)" "' (AB=A) "' C=.

d\n— I\n—1
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If, in addition, the mapping A — B(AB—A)"1Cx, X\ € Q is analytic, then
for each n € N and A € Q, Cz € D(B((AB — A)~'B)""1(AB — A)71),
and

dn—l

— (—1)" Y= 1)!B((AB—A)"'B)" ' (AB - 4)"'Cu.

(ii) Suppose that the mapping X — B(AB — A)~1Cz, X € Q is analytic. Then
for eachn € N and X\ € Q, (AB — A)"1B)""}(AB — A)~1C?z € R(C),
neN AeQ and

dnfl

-1
C?z.

— Y (=1)" Y (n—D!B((AB— A)'B)" ' (AB — A)
(iii) Suppose that E is barreled, and the mapping A — (AB — A)~!C €
L(E), X € Q is analytic, resp., B € L(E) and the mapping X\ — (AB —
A)"ICB € L(E), X € Q is analytic. Then for each n € N and \ € €,
R(C) € D(((AB — A)"'B)""'(AB — A)™1), resp.,
R(CB) C D(((AB—A)~'B)" Y(AB - A)™Y, and

dn—l
dAn 1(
= (=) Y n=1)((AB=A)"'B)" ' (AB—4)"'C € L(E),

AB-A)"'C

resp.,

dnfl
Tt (AB - A4)” ‘cB

— (=) Y n—1)!((AB—=A)"'B)" ' (\B—A)"'CB € L(E).

(iv) Suppose that E is barreled and the mapping X — B(AB —A)~1C € L(E),
A € Q is analytic. Then R((AB — A)~'B)""Y(AB — A)~1C?) C R(C),
neN AeQ and

dn—l
dAnfl

-1

B(AB—A) C=C"'(-1)""(n—1)

B(AB—A)"'B)"'(AB—-A)"'C? € L(E), neN, AeQ.

Proof. Let n € N, let A € Q, and let T" be a positively oriented circle around A
that is contained in ). Making use of the Cauchy integral formula, we get that

n! (zBfA)flCz
2mi Joo (2= 2

d’rl

T (AB—4)” 'ox =
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Since the operators A and B are closed, we get from the above that )\n ()\B

A)~1Cx € D(A) N D(B). Applying again the Cauchy integral formula, and
taking into account that the operators C~*(AB — A)C and B are closed, we
get that

ar -1

! B-A)"!
—C'(\B - A)ci',j[ wdz
2mi Jp (z—/\)
_nl [CT'AB-A)C(B-A) Cr
" 2mi (- :
B (ABfA)(zBfA)*lczd
"~ 2mi Jp (z— )\)nH :

-1
:7{ C’a:nJr1 & —j{ B(ZB — ABLHCJU @
r(z—A) r o (z-2)

% B(zB — A)_ICJJ
= — dz
r

(Z_)\)7L+1
B4 Cr
S e

dn— 1 1
=(—n )Bd)\ -(AB—A) Cu,

which proves the first equality in (i). This implies

dn

dn— 1 1
v

1

AB = A)~'Ca = (—n)|[(AB - 4)'B] Cz,
and now the remainder of (i) simply follows by induction. To prove (ii), suppose
that Ao € Q. Since the mapping A — B(AB — A)"'Cxz, A\ € Q is analytic,
the Hilbert resolvent equation shows that the mapping A — [(A\oB —
A)TLOIB(AB — A)71Cx = (1/(Ao — \)[(AB — A)~1C%z — (\B — A)~1C%x],
A€ Q\{)\o} is analytic, as well. From this, we may conclude that the mapping
A= (AB — A)71C%x, A € Q is analytic. By our assumption, the mapping
A= B(AB — A)71C?%z, X\ € Q is likewise analytic so that part (ii) follows
almost directly from (i). The proofs of (iii) and (iv) are simple and therefore
omitted. O

Summa summarum, Proposition[2.3]and Proposition[2.4] taken together pro-
vide a generalization of [5, Proposition 2.16] for degenerate (C, B)-resolvents.

Remark 2.5. In the case that C = I and E is a Banach space, it is well known
that the (I, B)-resolvent set of A is open, as well as that the (I, B)-resolvent,
right (I, B)-resolvent and left (I, B)-resolvent of the operator A are analytic
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in pg(A4) ([I1]). The corresponding statement in locally convex spaces has
recently been analyzed in [7, Theorem 1].

The validity of condition (RE1)” considered in this section, and the exis-
tence of the operator W obeying the properties clarified in (RE1)”, enable us
to formulate a great number of theoretical results about the C-wellposedness
of abstract degenerate Volterra equation , and numerous other degenerate
Cauchy problems, by using a trustworthy passing to the theory of abstract non-
degenerate integro-differential equations. We will present only one illustrative
example in support of this fact:

Example 2.6. Let the function a(t) be a kernel on [0, 7) and let the operator W
generate a (local) (a, k)-regularized C-resolvent family (R(t)):cjo,r) satisfying
Wfot a(t — s)R(s)zds = R(t)x — k(t)Cz, x € X, t € [0,7) (the use of the
operator W here seems to be much better than the use of the operator AB—1,
provided that B is injective and C' # I; cf. (2.2)). Then a simple computation
involving the definition of the operator W shows that for each element y € E
such that the element x = C”lLf’B(A)y is well-defined, we have

R(HCTLY P (A)y = k(LT (A)y

= /Ot a(t — s)R(s) [C’*lA()\B — A)_le} ds,

for any ¢ € [0, 7). In particular, if y = (AB — A)z for some z € D(A) N D(B),
then the above requirements hold and we get

R(t)Bz — k(t)CBz = /t a(t —s)R(s)Azds, te]0,7).
0

Assuming additionally that R(t) commutes with A and B for all ¢ € [0, 7), the
above implies that the function u(t) := R(t)z, t € [0, 7) is a unique strong solu-
tion of the abstract degenerate Volterra equation (1.1f), with f(¢) = k(¢)CBz,
te[0,7).

Remark 2.7. Assume that the functions k(t) and |a|(t) satisfy the condition
(P1), as well as that the operator B is injective. Using the definition of the
operator W, properties stated in (RE1)” and [6, Theorem 2.1.5], we have that W
generates a global exponentially equicontinuous (a, k)-regularized C-resolvent
family (R(t)):>0 (cf. [6] for the notion) provided that there exists a sufficiently
large real number w > 0 such that the family {e"“'R(t) : t > 0} C L(E) is
equicontinuous as well as that for each A € C with k(A)a(A) # 0 and R > w,
the operator B — a(A)A is injective and

k(\)B(B—a(\)A) " Ca = /Oo e MR(t)xdt, € E.
0

Combined with the conclusions clarified in the above example, we are in a posi-
tion to recover the assertion of [0, Theorem 2.2.8(ii)], with a much simpler proof
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given provided the injectiveness of B (see [6l Section 2.2] for certain applica-
tions). It is also worth noting that we can use [6, Theorem 2.1.6, Proposition
2.1.7, Theorem 2.1.29, Proposition 2.1.32] here.

We close the paper with the observation that W. Arendt has analyzed in
[1] approximations of pseudoresolvents and provided certain applications in
the study of approximations of degenerate strongly continuous semigroups, as
well as that Q. Hualing and Z. Huaxin have analyzed in [4] approximations
of C-pseudoresolvents and applied their results in the study of approximations
of degenerate C-regularized semigroups. For the sake of brevity, we will not
discuss related problems for (C, B)-resolvents of closed linear operators here.
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