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(C,B)-resolvents of closed linear operators
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Abstract. In this note, we analyze (C,B)-resolvents of closed linear
operators in sequentially complete locally convex spaces. We provide
a simple application in the qualitative analysis of solutions of abstract
degenerate Volterra integro-differential equations.
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1. Introduction and preliminaries

The theory of abstract degenerate Volterra integro-differential equations
and abstract degenerate fractional differential equations are growing fields of
research. For further information about these subjects, we refer the reader to
the recent monograph [6] by M. Kostić and references cited therein.

As mentioned in the abstract, the main aim of this paper is to investigate
(C,B)-resolvents of closed linear operators in sequentially complete locally con-
vex spaces. In such a way, we continue our recent analyses of C-resolvents of
multivalued linear operators [6] and C-generalized resolvents of linear opera-
tors [8] (joint research with S. Pilipović and D. Velinov); see also the papers
[2] by R. deLaubenfels, F. Yao, S. W. Wang and [9] by Y.-C. Li and S.-Y.
Shaw. We provide an illustrative example of application in the analysis of
existence and uniqueness of strong solutions of abstract degenerate Volterra
integro-differential equations.

We use the standard notation throughout the paper. If not stated otherwise,
by E we denote a complex sequentially complete locally convex space, SCLCS
for short. If ∅ ≠ Ω ⊆ C, then by C(Ω : E) we denote the vector space consisting
of all continuous functions from Ω into E. By A, B we denote two closed linear
operators with domain and range contained in E; the domain, kernel space and
range of A are denoted by D(A), N(A) and R(A), respectively. If 0 < τ ≤ ∞
and a ∈ L1

loc([0, τ)), then we say that the function a(t) is a kernel on [0, τ) iff

for each f ∈ C([0, τ)) the assumption
∫ t

0
a(t − s)f(s) ds = 0, t ∈ [0, τ) implies

f(t) = 0, t ∈ [0, τ). We will use the following condition

(P1): a(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists β ∈ R such that

ã(λ) := L(a)(λ) := limb→∞
∫ b

0
e−λta(t) dt :=

∫∞
0

e−λta(t) dt exists for all
λ ∈ C with ℜλ > β.
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Consider the following abstract degenerate Volterra integral equation:

(1.1) Bu(t) = f(t) +

t∫
0

a(t− s)Au(s) ds, t ∈ [0, τ),

where 0 < τ ≤ ∞, t 7→ f(t), t ∈ [0, τ) is a continuous mapping with values in
E and a ∈ L1

loc([0, τ)). We will use the following definition from [6]:

Definition 1.1. Let 0 < τ ≤ ∞. A function u ∈ C([0, τ) : E) is said to be:

(i) a (mild) solution of (1.1) iff (a ∗ u)(t) ∈ D(A), t ∈ [0, τ), A(a ∗ u)(t) =
Bu(t)− f(t), t ∈ [0, τ) and the mapping t 7→ Bu(t), t ∈ [0, τ) is continu-
ous,

(ii) a strong solution of (1.1) iff the mapping t 7→ Au(t), t ∈ [0, τ) is contin-
uous, (a ∗ Au)(t) = Bu(t) − f(t), t ∈ [0, τ) and the mapping t 7→ Bu(t),
t ∈ [0, τ) is continuous,

Multivalued linear operators. Now we will collect the basic definitions
and properties of multivalued linear operators in SCLCSs. Let X and Y be two
SCLCSs; by P (Y ) we denote the power set of Y. A multivalued map (multimap)
A : X → P (Y ) is said to be a multivalued linear operator (MLO) iff the
following holds:

(i) D(A) := {x ∈ X : Ax ̸= ∅} is a linear subspace of X;

(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

If X = Y, then we say that A is an MLO in X. An almost immediate con-
sequence of the definition is that, for any x, y ∈ D(A) and λ, η ∈ C with
|λ| + |η| ≠ 0, we have λAx + ηAy = A(λx + ηy). If A is an MLO, then A0 is
a linear manifold in Y and Ax = f + A0 for any x ∈ D(A) and f ∈ Ax. Set
R(A) := {Ax : x ∈ D(A)}. The set A−10 = {x ∈ D(A) : 0 ∈ Ax} is called the
kernel of A and it is denoted henceforth by N(A) or Kern(A). The inverse A−1

of an MLO is defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}.
It is checked at once that A−1 is an MLO in X, as well as that N(A−1) = A0
and (A−1)−1 = A.

If A, B : X → P (Y ) are two MLOs, then we define its sum A + B by
D(A + B) := D(A) ∩ D(B) and (A + B)x := Ax + Bx, x ∈ D(A + B). Then
A+ B is likewise an MLO.

Assume that A : X → P (Y ) and B : Y → P (Z) are two MLOs, where Z
is an SCLCS. The product of A and B is defined by D(BA) := {x ∈ D(A) :
D(B)∩Ax ̸= ∅} and BAx := B(D(B)∩Ax). Then BA : X → P (Z) is an MLO
and (BA)−1 = A−1B−1. The scalar multiplication of an MLO A : X → P (Y )
with the number z ∈ C, zA for short, is defined by D(zA) := D(A) and
(zA)(x) := zAx, x ∈ D(A).

Let C ∈ L(X) be injective, let A is an MLO in X, and let CA ⊆ AC.
Then the C-resolvent set of A, ρC(A) for short, is defined as the union of those
complex numbers λ ∈ C for which
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(i) R(C) ⊆ R(λ−A);

(ii) (λ−A)−1C is a single-valued linear continuous operator on X.

The operator λ 7→ (λ − A)−1C is called the C-resolvent of A (λ ∈ ρC(A));
the resolvent set of A is defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ − A)−1

(λ ∈ ρ(A)).
In [6, Section 3.9], we have also introduced and analyzed C-resolvents of

multivalued linear operators in the case that the regularizing operator C is not
injective. In this paper, the injectiveness of the operator C will be a blank
hypothesis.

For further information concerning multivalued linear operators, the reader
may consult the monographs [3], [6] and references cited therein.

2. The notion and properties of (C,B)-resolvents of closed
lienar operators

In this section, we investigate the main structural properties of (C,B)-
resolvents of closed linear operators in sequentially complete locally convex
space E. We assume that:

1. A : D(A) ⊆ E → E and B : D(B) ⊆ E → E are closed linear operators;

2. C ∈ L(E) is an injective operator satisfying CA ⊆ AC and CB ⊆ BC;

3. The closed graph theorem holds for mappings from E into E.

Then the set
ρBC(A) :=

{
λ ∈ C :

(
λB −A

)−1
C ∈ L(E)

}
is called the (C,B)-resolvent set of A; the (C,B)-spectrum of A is defined by
σB
C (A) := C \ ρBC(A). Sometimes we also write ρC(A,B) (σC(A,B)) for ρBC(A)

(σB
C (A)); ρB(A) ≡ ρBI (A) and σB(A) ≡ σB

I (A). If C ̸= I, then the (C,B)-
resolvent set of the operator A need not be open (for a counterexample of this
type, with B = I, E being the Hardy space H2({z ∈ C : |z| ≤ 1}), A ∈ L(E)
being injective and C = A, see [2, Example 2.5]). For any λ ∈ ρBC(A), we define

the right (C,B)-resolvent of A, RC,B
λ (A) for short, and the left (C,B)-resolvent

of A, LC,B
λ (A) for short, by

RC,B
λ (A) :=

(
λB −A

)−1
CB and LC,B

λ (A) := B
(
λB −A

)−1
C ∈ L(E).

It is checked at once that the existence of an operator B−1 ∈ L(E) implies the
closedness of the operator AB−1, with domain and range contained in E, as
well as ρBC(A) ⊆ ρC(AB−1) and

(2.1)
(
λ−AB−1

)−1
C = B

(
λB −A

)−1
C, λ ∈ ρBC(A).

Now we will analyze the case in which ρBC(A) ̸= ∅, the operator B is injective
and B−1 /∈ L(E). Fix temporarily a number λ ∈ ρBC(A). Suppose that (xτ ) is a
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net in E as well as that xτ → x as τ → ∞ and AB−1xτ → y as τ → ∞ (see [10]
for the notion). This simply implies B(λB − A)−1Cxτ → B(λB − A)−1Cx as
τ → ∞ and B(λB−A)−1C(λ−AB−1)xτ = B(λB−A)−1C(λB−A)B−1xτ =
Cxτ → B(λB−A)−1C(λx−y) as τ → ∞. Hence, Cx = B(λB−A)−1C(λx−y),
Cx ∈ D(AB−1) and AB−1Cx = AB−1B(λB − A)−1C(λx − y) = A(λB −
A)−1C(λx − y). Further on, B(λB − A)−1Cy = λB(λB − A)−1Cx − Cx =
A(λB−A)−1Cx, (λB−A)−1Cy = B−1A(λB−A)−1Cx = −B−1Cx+λ(λB−
A)−1Cx, whence it easily follows that Cy = −(λB−A)B−1Cx+Cx and Cy =
AB−1Cx. Hence, the operator AB−1 is closable and the supposition C−1 ∈
L(E) implies that the operator AB−1 is closed; before proceeding further,
we want to observe that the operator AB−1 need not be closed if the above
requirements hold and C−1 /∈ L(E) (let A = B = C, and let R(C) be a proper
dense subspace of E; then CC−1 = I ̸= CC−1, see [2, Example 2.2]). It is
not problematic to verify that the operator AB−1 commutes with the operator

B
(
λB − A

)−1
C (λ ∈ ρBC(A)), and that the operator λ + AB−1 is injective

(λ ∈ ρBC(A)). By the foregoing, we have ρBC(A) ⊆ ρC(AB−1) and the following
modification of (2.1):

(2.2)
(
λ−AB−1

)−1
C = B

(
λB −A

)−1
C, λ ∈ ρBC(A).

If the operator B is not injective, then AB−1 is an MLO in E and, in this case,
we can simply prove that ρBC(A) ⊆ ρC(AB−1) and (2.1) continues to hold.
Therefore, we have arrived at the following propositions.

Proposition 2.1. Suppose that ρBC(A) ̸= ∅ and the operator B is injective.

(i) If B−1 ∈ L(E) or C−1 ∈ L(E), then the operator AB−1 is closed,
ρBC(A) ⊆ ρC(AB−1) and (2.1) holds.

(ii) Suppose B−1 /∈ L(E) and C−1 /∈ L(E). Then the operator AB−1 is
closable, ρBC(A) ⊆ ρC(AB−1) and (2.2) holds.

Proposition 2.2. Suppose that the operator B is not injective. Then AB−1 is
an MLO in E, ρBC(A) ⊆ ρC(AB−1) and (2.1) holds in the sense of multivalued
linear operators.

The inclusion ρC(AB−1) ⊆ ρBC(A) also holds in some cases (for example,
if B ∈ L(E)), but we will not go into further details concerning this question
here. Using the trivial identities

(λB −A)
(
µB −A

)−1
C = C + (λ− µ)B

(
µB −A

)−1
C, µ ∈ ρBC(A), λ ∈ C,(

µB −A
)−1

C(λB −A)x = Cx

+ (λ− µ)B
(
µB −A

)−1
Cx, µ ∈ ρBC(A), λ ∈ C, x ∈ D(A) ∩D(B),

and observing that for each λ ∈ ρBC(A) we have B(λB − A)−1C2 = CB(λB −
A)−1C, the following version of Hilbert resolvent equation readily follows:

(
λB −A

)−1
C2 −

(
µB −A

)−1
C2 = (µ− λ)

(
µB −A

)−1
CB

(
λB −A

)−1
C,

(2.3)



(C,B)-resolvents of closed linear operators 35

for any λ, µ ∈ ρBC(A). From this, we may conclude the following:

(RE1) Suppose λ, µ ∈ ρBC(A). Then

(2.4) LC,B
λ (A)C − LC,B

µ (A)C = (µ− λ)LC,B
µ (A)LC,B

λ (A)

and
LC,B
µ (A)LC,B

λ (A) = LC,B
λ (A)LC,B

µ (A).

Hence, the nonemptiness of the set ρBC(A) implies that the function λ 7→
LC,B
λ (A) ∈ L(E), λ ∈ ρBC(A) is a C-pseudoresolvent in the sense of [9, Def-

inition 3.1] and the following holds ([9]):

(RE1)’ The spaces N(LC,B
λ (A)), C−1(R(LC,B

λ (A))), N(C − λLC,B
λ (A)) and

C−1(R(C − λLC,B
λ (A))) are independent of λ ∈ ρBC(A).

(RE1)” Suppose, additionally, that N(LC,B
λ (A)) = {0} for some λ ∈ ρBC(A). Then

we can define the closed linear operator W on E by

D(W ) := C−1
(
R
(
LC,B
λ (A)

))
and Wx :=

(
λ−

(
LC,B
λ (A)

)−1
C
)
x for x ∈ D(W );

observe that (RE1)’ implies that the definition of W is independent of

λ ∈ ρBC(A). Then C−1WC = W, ρBC(A) ⊆ ρC(W ) and LC,B
λ (A) = (λ −

W )−1C, λ ∈ ρBC(A).

It is well known that the existence of the operator W from (RE1)” cannot be
proved in the case when there exists λ ∈ ρBC(A) such that the kernel space of

the operator LC,B
λ (A) is non-trivial (cf. also Example 2.6 below; then (RE1)”

holds).
Further on, it is not difficult to prove that

A
(
λB −A

)−1
CBx = B

(
λB −A

)−1
CAx, x ∈ D(A) ∩D(B), λ ∈ ρBC(A),

and (see the second equality in [11, Lemma 2.1.2] with C = I):

N
(
LC,B
λ (A)

)
= C−1

[
{Ax : x ∈ D(A) ∩N(B)}

]
, λ ∈ ρBC(A).

The proof of the next resolvent equation follows from (2.4) and the fact
that, for every x ∈ D(B), one has B(λB−A)−1CBCx = CB(λB−A)−1CBx:

(RE2) Suppose λ, µ ∈ ρBC(A) and x ∈ D(B). Then

RC,B
λ (A)Cx−RC,B

µ (A)Cx = (µ− λ)RC,B
µ (A)RC,B

λ (A)x

and
RC,B

µ (A)RC,B
λ (A)x = RC,B

λ (A)RC,B
µ (A)x.

Taking into account (RE2) and proceeding as in the proofs of [9, Lemma 3.2,
Lemma 3.3], we can deduce the following:
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(RE2)’ The spaces N(RC,B
λ (A)), C−1(R(RC,B

λ (A))) ∩D(B), N(C − λRC,B
λ (A))

and C−1(R(C − λRC,B
λ (A))) ∩D(B) are independent of λ ∈ ρBC(A).

Furthermore, if B ∈ L(E) is injective, then it is not difficult to show that the
operator B−1A is closed, as well as that ρC(B

−1A) = ρBC(A) and(
λ−B−1A

)−1
Cx =

(
λB −A

)−1
CBx, x ∈ E;

cf. also (RE1)”, [9, Theorem 3.4] and [3, Theorem 1.15]. Making use of [5,
Lemma 3.3], (2.3) and the argumentation from [2, Section 2] (cf. [2, Proposition
2.6, Remark 2.7]), we can prove the following:

Proposition 2.3. Let ∅ ≠ Ω ⊆ ρBC(A) be open, and let x ∈ E.

(i) The local boundedness of the mapping λ 7→ B(λB−A)−1Cx, λ ∈ Ω, resp.
the assumption that E is barreled and local boundedness of the mapping
λ 7→ B(λB − A)−1C ∈ L(E), λ ∈ Ω, implies the analyticity of the
mappings λ 7→ (λB−A)−1C3x, λ ∈ Ω and λ 7→ B(λB−A)−1C3x, λ ∈ Ω,
resp. λ 7→ (λB − A)−1C3 ∈ L(E), λ ∈ Ω and λ 7→ B(λB − A)−1C3 ∈
L(E), λ ∈ Ω. Furthermore, if R(C) is dense in E, resp. if R(C) is dense
in E and E is barreled, then the mappings λ 7→ (λB − A)−1Cx, λ ∈ Ω
and λ 7→ B(λB − A)−1Cx, λ ∈ Ω are analytic, resp. the mappings λ 7→
(λB − A)−1C ∈ L(E), λ ∈ Ω and λ 7→ B(λB − A)−1C ∈ L(E), λ ∈ Ω
are analytic.

(ii) The continuity of the mapping λ 7→ B(λB − A)−1Cx, λ ∈ Ω implies its
analyticity. The continuity of mappings λ 7→ B(λB−A)−1Cx, λ ∈ Ω and
λ 7→ (λB − A)−1Cx, λ ∈ Ω implies the analyticity of the mapping λ 7→
(λB −A)−1Cx, λ ∈ Ω; the strong continuity of the mapping λ 7→ (λB −
A)−1C ∈ L(E), λ ∈ Ω (λ 7→ (λB − A)−1CB, λ ∈ Ω; with the meaning
clear) implies the analyticity of the mapping λ 7→ (λB − A)−1Cx, λ ∈
Ω (λ 7→ (λB − A)−1CBx, λ ∈ Ω, provided that x ∈ D(B)), as well.
Furthermore, if E is barreled, then the continuity of the mapping λ 7→
(λB − A)−1C ∈ L(E), λ ∈ Ω (λ 7→ B(λB − A)−1C ∈ L(E), λ ∈ Ω)
implies its analyticity; the same conclusion holds for the mapping λ 7→
(λB−A)−1CB ∈ L(E), λ ∈ Ω, provided that E is barreled and B ∈ L(E).

For clarity’s sake, we will prove parts (i) and (ii) of the following extension
of [2, Corollary 2.8].

Proposition 2.4. Let ∅ ≠ Ω ⊆ ρBC(A) be open, and let x ∈ E.

(i) Suppose that the mapping λ 7→ (λB −A)−1Cx, λ ∈ Ω is analytic. Then,
for every n ∈ N and λ ∈ Ω, we have

(λB −A)
dn

dλn

(
λB −A

)−1
Cx = (−n)B

dn−1

dλn−1

(
λB −A

)−1
Cx, n ∈

Cx ∈ D(((λB −A)−1B)n−1(λB −A)−1), and

dn−1

dλn−1

(
λB−A

)−1
Cx = (−1)n−1(n−1)!

(
(λB−A)−1B

)n−1(
λB−A

)−1
Cx.
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If, in addition, the mapping λ 7→ B(λB−A)−1Cx, λ ∈ Ω is analytic, then
for each n ∈ N and λ ∈ Ω, Cx ∈ D(B((λB − A)−1B)n−1(λB − A)−1),
and

dn−1

dλn−1
B
(
λB −A

)−1
Cx

= (−1)n−1(n− 1)!B
(
(λB −A)−1B

)n−1(
λB −A

)−1
Cx.

(ii) Suppose that the mapping λ 7→ B(λB−A)−1Cx, λ ∈ Ω is analytic. Then
for each n ∈ N and λ ∈ Ω, ((λB − A)−1B)n−1(λB − A)−1C2x ∈ R(C),
n ∈ N, λ ∈ Ω and

dn−1

dλn−1
B
(
λB −A

)−1
Cx

= C−1(−1)n−1(n− 1)!B
(
(λB −A)−1B

)n−1(
λB −A

)−1
C2x.

(iii) Suppose that E is barreled, and the mapping λ 7→ (λB − A)−1C ∈
L(E), λ ∈ Ω is analytic, resp., B ∈ L(E) and the mapping λ 7→ (λB −
A)−1CB ∈ L(E), λ ∈ Ω is analytic. Then for each n ∈ N and λ ∈ Ω,
R(C) ⊆ D(((λB −A)−1B)n−1(λB −A)−1), resp.,
R(CB) ⊆ D(((λB −A)−1B)n−1(λB −A)−1), and

dn−1

dλn−1

(
λB −A

)−1
C

= (−1)n−1(n− 1)!
(
(λB −A)−1B

)n−1(
λB −A

)−1
C ∈ L(E),

resp.,

dn−1

dλn−1

(
λB −A

)−1
CB

= (−1)n−1(n− 1)!
(
(λB −A)−1B

)n−1(
λB −A

)−1
CB ∈ L(E).

(iv) Suppose that E is barreled and the mapping λ 7→ B(λB−A)−1C ∈ L(E),
λ ∈ Ω is analytic. Then R(((λB − A)−1B)n−1(λB − A)−1C2) ⊆ R(C),
n ∈ N, λ ∈ Ω and

dn−1

dλn−1
B
(
λB −A

)−1
C = C−1(−1)n−1(n− 1)!

×B
(
(λB −A)−1B

)n−1
(λB −A)−1C2 ∈ L(E), n ∈ N, λ ∈ Ω.

Proof. Let n ∈ N, let λ ∈ Ω, and let Γ be a positively oriented circle around λ
that is contained in Ω. Making use of the Cauchy integral formula, we get that

dn

dλn

(
λB −A

)−1
Cx =

n!

2πi

∮
Γ

(
zB −A

)−1
Cx(

z − λ
)n+1 dz.
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Since the operators A and B are closed, we get from the above that dn

dλn (λB−
A)−1Cx ∈ D(A) ∩ D(B). Applying again the Cauchy integral formula, and
taking into account that the operators C−1(λB − A)C and B are closed, we
get that

(λB −A)
dn

dλn

(
λB −A

)−1
Cx

= C−1(λB −A)C
n!

2πi

∮
Γ

(
zB −A

)−1
Cx(

z − λ
)n+1 dz

=
n!

2πi

∮
Γ

C−1(λB −A)C
(
zB −A

)−1
Cx(

z − λ
)n+1 dz

=
n!

2πi

∮
Γ

(λB −A)
(
zB −A

)−1
Cx(

z − λ
)n+1 dz

=

∮
Γ

Cx(
z − λ

)n+1 dz −
∮
Γ

B
(
zB −A

)−1
Cx(

z − λ
)n+1 dz

= −
∮
Γ

B
(
zB −A

)−1
Cx(

z − λ
)n+1 dz

= −B

∮
Γ

(
zB −A

)−1
Cx(

z − λ
)n dz

= (−n)B
dn−1

dλn−1

(
λB −A

)−1
Cx,

which proves the first equality in (i). This implies

dn

dλn

(
λB −A

)−1
Cx = (−n)

[(
λB −A

)−1
B
] dn−1

dλn−1

(
λB −A

)−1
Cx,

and now the remainder of (i) simply follows by induction. To prove (ii), suppose
that λ0 ∈ Ω. Since the mapping λ 7→ B(λB − A)−1Cx, λ ∈ Ω is analytic,
the Hilbert resolvent equation (2.3) shows that the mapping λ 7→ [(λ0B −
A)−1C]B(λB − A)−1Cx = (1/(λ0 − λ))[(λB − A)−1C2x − (λ0B − A)−1C2x],
λ ∈ Ω\{λ0} is analytic, as well. From this, we may conclude that the mapping
λ 7→ (λB − A)−1C2x, λ ∈ Ω is analytic. By our assumption, the mapping
λ 7→ B(λB − A)−1C2x, λ ∈ Ω is likewise analytic so that part (ii) follows
almost directly from (i). The proofs of (iii) and (iv) are simple and therefore
omitted.

Summa summarum, Proposition 2.3 and Proposition 2.4 taken together pro-
vide a generalization of [5, Proposition 2.16] for degenerate (C,B)-resolvents.

Remark 2.5. In the case that C = I and E is a Banach space, it is well known
that the (I,B)-resolvent set of A is open, as well as that the (I,B)-resolvent,
right (I,B)-resolvent and left (I,B)-resolvent of the operator A are analytic
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in ρB(A) ([11]). The corresponding statement in locally convex spaces has
recently been analyzed in [7, Theorem 1].

The validity of condition (RE1)” considered in this section, and the exis-
tence of the operator W obeying the properties clarified in (RE1)”, enable us
to formulate a great number of theoretical results about the C-wellposedness
of abstract degenerate Volterra equation (1.1), and numerous other degenerate
Cauchy problems, by using a trustworthy passing to the theory of abstract non-
degenerate integro-differential equations. We will present only one illustrative
example in support of this fact:

Example 2.6. Let the function a(t) be a kernel on [0, τ) and let the operatorW
generate a (local) (a, k)-regularized C-resolvent family (R(t))t∈[0,τ) satisfying

W
∫ t

0
a(t − s)R(s)x ds = R(t)x − k(t)Cx, x ∈ X, t ∈ [0, τ) (the use of the

operator W here seems to be much better than the use of the operator AB−1,
provided that B is injective and C ̸= I; cf. (2.2)). Then a simple computation
involving the definition of the operator W shows that for each element y ∈ E
such that the element x = C−1LC,B

λ (A)y is well-defined, we have

R(t)C−1LC,B
λ (A)y − k(t)LC,B

λ (A)y

=

∫ t

0

a(t− s)R(s)
[
C−1A

(
λB −A

)−1
Cy

]
ds,

for any t ∈ [0, τ). In particular, if y = (λB − A)z for some z ∈ D(A) ∩D(B),
then the above requirements hold and we get

R(t)Bz − k(t)CBz =

∫ t

0

a(t− s)R(s)Az ds, t ∈ [0, τ).

Assuming additionally that R(t) commutes with A and B for all t ∈ [0, τ), the
above implies that the function u(t) := R(t)z, t ∈ [0, τ) is a unique strong solu-
tion of the abstract degenerate Volterra equation (1.1), with f(t) = k(t)CBz,
t ∈ [0, τ).

Remark 2.7. Assume that the functions k(t) and |a|(t) satisfy the condition
(P1), as well as that the operator B is injective. Using the definition of the
operatorW, properties stated in (RE1)” and [6, Theorem 2.1.5], we have thatW
generates a global exponentially equicontinuous (a, k)-regularized C-resolvent
family (R(t))t≥0 (cf. [6] for the notion) provided that there exists a sufficiently
large real number ω > 0 such that the family {e−ωtR(t) : t ≥ 0} ⊆ L(E) is
equicontinuous as well as that for each λ ∈ C with k̃(λ)ã(λ) ̸= 0 and ℜλ > ω,
the operator B − ã(λ)A is injective and

k̃(λ)B
(
B − ã(λ)A

)−1
Cx =

∫ ∞

0

e−λtR(t)x dt, x ∈ E.

Combined with the conclusions clarified in the above example, we are in a posi-
tion to recover the assertion of [6, Theorem 2.2.8(ii)], with a much simpler proof
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given provided the injectiveness of B (see [6, Section 2.2] for certain applica-
tions). It is also worth noting that we can use [6, Theorem 2.1.6, Proposition
2.1.7, Theorem 2.1.29, Proposition 2.1.32] here.

We close the paper with the observation that W. Arendt has analyzed in
[1] approximations of pseudoresolvents and provided certain applications in
the study of approximations of degenerate strongly continuous semigroups, as
well as that Q. Hualing and Z. Huaxin have analyzed in [4] approximations
of C-pseudoresolvents and applied their results in the study of approximations
of degenerate C-regularized semigroups. For the sake of brevity, we will not
discuss related problems for (C,B)-resolvents of closed linear operators here.
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