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Atoms and coatoms in three-generated lattices1
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Abstract. In addition to the unique coverM+ of the variety of modular
lattices, we also deal with those twenty-three known covers of M+ that
can be extracted from the literature. For M+ and for each of these
twenty-three known varieties covering it, we determine what the pair
formed by the number of atoms and that of coatoms of a three-generated
lattice belonging to the variety in question can be. Furthermore, for each
variety W of lattices that is obtained by forming the join of some of the
twenty-three varieties mentioned above, that is, for 223 possible choices of
W, we determine how many atoms a three-generated lattice belonging to
W can have. The greatest number of atoms occurring in this way is only
six. In order to point out that this need not be so for larger varieties,
we construct a 47 092-element three-generated lattice that has exactly
eighteen atoms. In addition to purely lattice theoretical proofs, which
constitute the majority of the paper, some computer-assisted arguments
are also presented.
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1. Introduction and target

This paper is devoted to the following question: For some varieties V of
lattices, how many atoms and how many coatoms can a three-generated lattice
in V have?

1.1. Outline

The paper is structured as follows. Subsections 1.2 (the next subsection)
gives the basic concept and notation used in the paper. Subsection 1.3 re-
calls all the results that have previously been known on the number of atoms
in three-generated lattices; see statements (1.5)–(1.8). Subsection 1.4, after
introducing some further notation, formulates our goal; note that the main
result, Theorem 5.1, comes later. Section 2 proves some lemmas. The (Key)
Lemma 2.3 of this section is worth separate mentioning since it could be useful

1This research was supported by the National Research, Development and Innovation
Fund of Hungary under funding scheme K 134851.

2University of Szeged, Bolyai Institute, Szeged, Aradi vértanúk tere 1, Hungary 6720,
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in extending our results to more lattice varieties. Section 3 contributes a little
to our knowledge of the lattice of all lattice varieties; in particular, Proposi-
tion 3.1(iv) asserts that the varieties occurring in the Main Theorem form a
223-element Boolean interval in this lattice. Section 4 determines the possible
numbers of atoms and, in some cases, these numbers jointly with the numbers
of coatoms for some of the 223 lattice varieties described in the previous sec-
tion. Section 5 determines these possible numbers of atoms for the rest of the
223 lattice varieties and formulates the main result of the paper, Theorem 5.1.
Finally, Section 6 contains some additional observations on the numbers of
atoms. In particular, Example 6.1 presents a three-generated lattice with eigh-
teen atoms; this lattice consists of 47 092 elements. Note that, as opposed to
the earlier sections, Sections 5 and 6 include some computer-assisted arguments
in addition to theoretical considerations.

1.2. Basic notation

For an at most countable lattice L, let At(L) and Ct(L) stand for the set
of atoms of L and that of coatoms of L, respectively. The acronyms come from
Atoms and Coatoms. The cardinality |At(L)| is in N0 := {0, 1, 2, 3, . . . } or it
is ℵ0, and the same holds for Ct(L). For a variety V of lattices, we define three
sorts of spectra of V as follows.

AS(V) = {|At(L)| : L ∈ V and L is three-generated},(1.1)

CS(V) = {|Ct(L)| : L ∈ V and L is three-generated},(1.2)

DS(V) = {(|At(L)|, |Ct(L)|) : L ∈ V, L is three-generated}.(1.3)

These spectra are called the Atom Spectrum, the Coatom Spectrum, and the
Double Spectrum of V, respectively; the capital letters here are to explain the
acronyms.

1.3. Earlier results on the numbers of atoms

To present some examples for the concepts introduced in (1.1)–(1.3),

(1.4)

{
let M, D, and L be the variety of modular lattices, that of
distributive lattices, and that of all lattices, respectively.

By Czédli [6] and duality, we know that

AS(M) = CS(M) = {1, 2, 3}, so AS(D) = CS(D) = {1, 2, 3},(1.5)

{0, 1, 2, 3, 4} ⊆ AS(L) ∩ CS(L) but (0, 0) /∈ DS(L). Trivially,(1.6)

if (1, k) or (k, 1) is in DS(L), then k ∈ {1, 2}. Also,(1.7)

DS(D) = DS(M) = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.(1.8)

Note that (1.8) follows from (1.5) since each pair listed in (1.8) is easy to
represent; for example, (2, 2) ∈ DS(D) and (2, 3) ∈ DS(D) are witnessed by
the lattices labeled by (2, 2) and (2, 3) in Figure 1. In these two lattices, the
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generators are black-filled. Since for arbitrary varieties W1, W2, and W3 of
lattices,

(1.9)

{
if we have that W1 ⊆ W2 ⊆ W3 and AS(W1) = AS(W3),
then AS(W2) = AS(W3), and analogously with CS and DS,

we obtain AS(W), CS(W), DS(W) from (1.5) and (1.8) for every lattice variety
W between D and M. Note that there are continuously many such varieties
W; see, for example, Hutchinson and Czédli [10].

Figure 1: M3, N5, U8, and representing two (|At(L)|, |Ct(L)|) pairs

Examples (1.5)–(1.9) represent what has previously been known about the
three spectra we have defined. However, there are continuously many lattice
varieties not included in M and so not belonging to the scope of (1.5)–(1.9).
Hence, the examples above also show how little has been known about the
number of atoms and that of coatoms in a three-generated lattice in general.

Figure 2: A sketch ofBBB23; the dotted lines and the dashed lines denote intervals
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1.4. Our goal

Our goal in this paper is to enrich the above-mentioned little knowledge by
proving some facts about the spectra of some varieties that are slightly larger
than the variety M of modular lattices. In the lattice ΛΛΛ of all lattice varieties,
M has a unique cover Nmmm

5 = M+; it is the least variety containing N5 in Fig-
ure 1 and all modular lattices. (Here M+ is the traditional notation but we
also write Nmmm

5 , which fits better in the present paper.) Based on deep classical
results, mainly Bjarni Jónsson’s results, it needs only a trivial consideration to
present twenty-three lattice varieties covering M+. These twenty-three vari-
eties will be called the known covers of M+ since M+ may have further covers.
We are going to point out in Proposition 3.1(iv) that

(1.10)


in ΛΛΛ, the lattice of all lattice varieties, the above-mentioned
known covers generate a Boolean sublattice of length 23
(and of size 223); we denote this sublattice by BBB23.

In fact, in Proposition 3.1(iv) we will say more, namely,

(1.11) BBB23 is an interval in ΛΛΛ.

The bottom of BBB23 is M+ = Nmmm

5 and its atoms are the twenty-three known
covers of M+.

(1.12)

{
We denote the top of BBB23 by T23; this lattice variety is the
join of the twenty-three known covers of M+ = Nmmm

5 .

Although a 223-element lattice cannot be drawn in the practice, the schematic
diagram given in Figure 2 gives some insight into it; the details will be explained
in Section 5. For each of the 223 lattice varieties belonging toBBB23, we determine
the atom spectrum of the variety in question. The description of atom spectra
of members of BBB23 is even visualized by Figure 2; we will later explain how.
Since this description can be dualized in a trivial way, we are not going to
pay separate attention to coatom spectra. The double spectra create so much
computational difficulty that they are determined only for a quarter of the
varieties belonging to BBB23, including the twenty-three known covers of Nmmm

5 .
It turns out that the largest number in At(T23) is 6, so a three-generated

lattice in a variety belonging to BBB23 has at most six atoms. Even six is larger
than all what previously have been known, but it is not the largest number of
atoms of a three-generated lattice in this paper. Let U8 denote the eight element
lattice given by Figure 1, and let U8 := HSP{U8} be the variety generated by
U8. As it will be pointed out, Ummm

8 := U8 ∨ M is not in BBB23 but it covers one
of the members of BBB23 in ΛΛΛ. Witnessed by a 47 092-element three-generated
lattice belonging to U8, we show that 18 ∈ AS(U8) ⊆ AS(Ummm

8 ).

Remark. With the exception of L, see (1.4), the free lattice FLW(3) of W
on three generators is finite by trivial reasons in each of the lattice varieties
W occurring in the present paper. Hence, up to isomorphism, there are only
finitely many three-generated lattices in these varieties, whereby each of the
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three spectra is a finite set for these varieties. Apart from straightforward
consequences of the results we are going to prove here, we do not know anything
about the spectra of varieties W with FLW(3) infinite.

2. Some lemmas

The first lemma we are going to formulate belongs to the folklore. Its
particular case for free algebras and automorphisms is mentioned in page 272
of Berman and Wolk [1], and a more general case with homomorphisms can
also be extracted from [1, page 273]. For later reference and for the reader’s
convenience, we are going to give an explicit formulation and a short proof.
Before stating the lemma, we need some preparation. Although we are only
interested in lattices in the present paper, we can allow more general algebras
in the first lemma without extra work.

The least congruence of an algebra K is called the zero congruence of K;
it is denoted by ∆ or, if K needs to be specified, by ∆K . An algebra K is
subdirectly irreducible if it has a least nonzero congruence; this congruence is
called the monolith of K and it is denoted by µ = µK . We use the notation
L ≤sp

∏
i∈I Li to denote that Li, i ∈ I, are algebras and L is a subdirect

product of them. That is, L is a subalgebra of the direct product
∏

i∈I Li such
that the projection map

(2.1) πi : L→ Li, defined by u 7→ u(i),

is surjective for every i ∈ I. Let X be a generating set of L. We say that

(2.2)


a homomorphism ψ : Li → Lj criticizes the generating set
X if i, j ∈ I, i ̸= j, and ψ(x(i)) = x(j) for all x ∈ X. If
no homomorphism criticizes X, then L ≤sp

∏
i∈I Li is an

irredundant subdirect product (with respect to X).

Algebras consisting of at least two elements are said to be nontrivial. For
|I| ≥ 2, if L ≤sp

∏
i∈I Li above is an irredundant subdirect product, then all

the Li, i ∈ I, are nontrivial. If the condition given in (2.2) fails, then the
subdirect product is redundant (with respect to X).

Lemma 2.1. Let L be a nontrivial finite algebra with a fixed generating set X.
Then, up to isomorphism, L is an irredundant subdirect product L ≤sp

∏
i∈I Li

with respect to X in the sense of (2.2) such that I is a finite index set and, for
every i ∈ I, Li is a finite subdirectly irreducible algebra generated by {πi(x) :
x ∈ X}.

Proof. By a classical theorem of G. Birkhoff, see [3, Theorem 1], L is a subdirect
product of finitely many subdirectly irreducible algebras. Hence, we can choose
L ≤sp

∏
i∈I Li such that the finite number of factors |I| is minimal. Since

a surjective homomorphism takes a generating set to a generating set, Li is
generated by {πi(x) : x ∈ X} for all i. Also, |Li| = |πi(L)| ≤ |L| shows that Li

is finite. We claim that our subdirect product is irredundant (with respect to
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X). Suppose the contrary, and pick j, k ∈ I and a homomorphism ψ : Lj → Lk

that criticizes X. Let J := I \ {k}. Note that j ∈ J since j ̸= k. Let us agree
that

(2.3)

{
the restriction of a map κ to a subset A
of its domain will be denoted by κ⌉A.

For u ∈
∏

i∈I Li, we let u′ := u⌉J ∈
∏

i∈J Li. Also, let L′ := {u′ : u ∈ L} and
X ′ := {x′ : x ∈ X}. Clearly, L′ ≤sp

∏
i∈J Li, and the map φ : L → L′, defined

by u 7→ u′, is a surjective homomorphism. Since φ(X) = X ′, it follows that X ′

generates L′. Next, let u ∈ L and pick a term t and elements x1, . . . , xs ∈ X
such that u = t(x1, . . . , xs) holds in L. Since t commutes with φ, we have that
u′ = t(x′1, . . . , x

′
s). We obtain that

u(k) = t(x1, . . . , xs)(k) = t(x1(k), . . . , xs(k))

= t(ψ(x1(j)), . . . , ψ(xs(j))) = ψ(t(x1(j), . . . , xs(j)))

= ψ(t(x′1(j), . . . , x
′
s(j))) = ψ(t(x′1, . . . , x

′
s)(j)) = ψ(u′(j)).

Since we also have, trivially, that u(i) = u′(i) for i ∈ I \ {k}, it follows that
u′ = φ(u) determines u, whereby φ is injective. So φ is an isomorphism and
we can identify X ′ = φ(X) with X. Hence, up to isomorphism, L ≤sp

∏
i∈I Li

and X can be replaced by L′ ≤sp

∏
i∈J Li and X

′. This is a contradiction since
|J | < |I| but |I| was assumed to be minimal. Therefore, the subdirect product
L ≤sp

∏
i∈I Li is irredundant, as required.

As usual, for a class X of lattices, the class of homomorphic images, that
of sublattices, and that of direct products of lattices belonging to X will be
denoted byHX , SX , andPX , respectively. By the classical “HSP theorem” of
Birkhoff [2], HSPX , called the variety generated by X, is the least equationally
defined class of lattices that includes X . For a class X of lattices, the class of
subdirectly irreducible lattices of X will be denoted by SiX . Since we will
repeatedly use some celebrated results of Jónsson [12], we formulate them for
later references and for the reader’s convenience. Namely, a particular case of
Jónsson [12, Lemma 4.1] asserts that

(2.4)

{
If W1 and W2 are lattice varieties, then
Si(W1 ∨W2) = (SiW1) ∪ (SiW2).

Also, Jónsson [12, Corollary 3.4] applied to lattices gives that

(2.5)

{
if X is a finite set of finite lattices,
then Si(HSPX ) ⊆ HSX .

Lemma 2.2. Let V be a variety of lattices, and let k be a positive integer.
Also, let K be a finite lattice. Denote by W the variety HSP(V ∪ {K}). If the
free lattice FLV(k) in V on k generators is finite, then every k-generated lattice
in W is finite.
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Proof. Since FLV(k) is finite, it has only finitely many quotient lattices. Let E
be the direct product ofK and these quotient lattices, and note that E is a finite
lattice. Let E := HSP{E}. Since K ∈ H{E}, we have that HSP{K} ⊆ E .
We know from Hobby and McKenzie [9, Theorem 0.1] that a finitely generated
algebra in a variety generated by a finite set of finite algebras is necessarily
finite. Hence, every k-generated lattice in E is finite. Thus, it suffices to show
that every k-generated lattice of W belongs to E . To do so, let L ∈ W be a
k-generated lattice. By Birkhoff [3, Theorem 2], L is a subdirect product of
subdirectly irreducible lattices Li, i ∈ I, where I is a (not necessarily finite)
index set. As a homomorphic image of L, the lattice Li is generated by at
most k elements for every i ∈ I. Since Li ∈ Si(W), (2.4) gives that Li ∈
Si(V) ∪ Si(HSP{K}) ⊆ V ∪ HSP{K}, which permits only two cases for an
i ∈ I. First, assume that Li is in V. Then it is a homomorphic image of
FLV(k). So it is isomorphic to one of the direct factors of E. Hence Li is a
homomorphic image of E, whereby it belongs to the variety HSP{E} = E .
Second, assume that Li ∈ HSP{K}. Then Li ∈ E since HSP{K} ⊆ E . We
have seen that Li ∈ E for all i ∈ I. This yields that L ∈ E , completing the
proof of the lemma.

To formulate our key lemma, we need to introduce some further concepts.
We say that

(2.6)


a lattice L satisfies meet condition (2.6) if for each
(u1, u2, u3) ∈ L3 such that {u1, u2, u3} generates L, there
are at least two pairs (i, j) in {(1, 2), (1, 3), (2, 3)} such
that ui ∧ uj ̸= 0.

Dually, we say that

(2.7)


a lattice L satisfies join condition (2.7) if for each
(u1, u2, u3) ∈ L3 such that {u1, u2, u3} generates L, there
are at least two pairs (i, j) in {(1, 2), (1, 3), (2, 3)} such
that ui ∨ uj ̸= 1.

Clearly,

(2.8)

 if |L| ≥ 3 and L has no three-element gen-
erating set, then L satisfies both meet con-
dition (2.6) and join condition (2.7).

As usual, we will write 0 ∈ L and 1 ∈ L to express that L has the smallest ele-
ment and the largest element, respectively. Note that, as a trivial consequence
of (2.8), 0 /∈ L implies the validity of (2.6) and dually.

A congruence Θ of a lattice L will be called 0-separating if 0 ∈ L and
the Θ-block of 0, denoted by 0/Θ, is the singleton set {0}. We define 1-
separating congruences dually. A variety of lattices is nontrivial if it contains a
nonsingleton lattice. For a finite latticeK, a homomorphic image or a sublattice
of K is proper if it has fewer elements than K. Now we are ready to formulate
the following lemma.
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Lemma 2.3 (Key Lemma). Let V be a nontrivial variety of lattices such that
the three-generated V-free lattice FLV(3) is finite, and let K be a finite subdi-
rectly irreducible lattice such that all proper homomorphic images and all proper
sublattices of K belong to V. If W = HSP(V ∪ {K}) denotes the lattice va-
riety generated by V ∪ {K}, then FLW(3) is also finite and, furthermore, the
following three assertions hold.

(i) If K satisfies meet condition (2.6) or the monolith µK is 0-separating,
then AS(W) = AS(V).

(ii) If K satisfies join condition (2.7) or the monolith µK is 1-separating,
then CS(W) = CS(V).

(iii) Assume that K satisfies both meet condition (2.6) and join condition
(2.7), or that µK is both 0-separating and 1-separating. Then DS(W) =
DS(V).

It will be clear from the proof that a weaker assumption would be sufficient
for the finiteness of FLW(3), but we do not need this fact. Note also that if
K ∈ V, then W = V and the statement of the lemma trivially holds.

Proof. We say that a surjective lattice homomorphism is 0-separating if so is
its congruence kernel. Equivalently, a surjective lattice homomorphism is 0-
separating if it sends nonzero elements to nonzero elements. We claim that for
arbitrary finite lattices T1 and T2 and a homomorphism κ : T1 → T2,

(2.9)


if κ is surjective, then κ(At(T1)) ⊆ {0} ∪ At(T2). If,
in addition to its surjectivity, κ is 0-separating, then
κ⌉At(T1) : At(T1) → At(T2) is a bijective map.

For the sake of contradiction, suppose that p ∈ At(T1) but p
′ := κ(p) /∈ {0} ∪

At(T2). Pick an element q′ ∈ T2 such that 0 < q′ < p′. Since κ is surjective,
there is a q ∈ T1 with κ(q) = q′. Let r := p ∧ q. Since r ≤ p and κ(r) =
κ(p) ∧ κ(q) = p′ ∧ q′ = q′ ̸= p′ = κ(p), we have that r < p. From κ(0) =
0 ̸= q′ = κ(r) we obtain that r ̸= 0. Hence, we have obtained 0 < r < p,
contradicting p ∈ At(T1) and proving the inclusion κ(At(T1)) ⊆ {0} ∪ At(T2).
Now, to prove the second half of (2.9), assume that p ∈ At(T1). If we had that
κ(p) = 0 = κ(0), then (p, 0) would belong to the kernel Ker(κ) of κ, which is
impossible since Ker(κ) is 0-separating. Hence κ(p) ̸= 0, and it follows from
the already proven first half of (2.9) that κ⌉At(T1) is an At(T1) → At(T2) map.
It is clearly injective since otherwise κ(p) = κ(q) would hold with some distinct
p, q ∈ At(T1) and κ(p) = κ(p)∧κ(p) = κ(p)∧κ(q) = κ(p∧ q) = κ(0) = 0 would
contradict the 0-separability of κ. To show the surjectivity of κ, let p′ ∈ At(T2).
Let p :=

∧
{q ∈ T1 : κ(q) = p′}; this is a nonempty and existing meet since

κ is surjective and T1 is finite. Note that p is the least preimage of p′ since
κ(p) =

∧
{κ(q) ∈ T1 : κ(q) = p′} = p′. Since p′ is distinct from 0, so is p. For

the sake of contradiction, suppose that p /∈ At(T1) and pick an element s ∈ T1
with 0 < s < p. Then κ(s) ≤ κ(p) = p′. Actually, κ(s) < p′ since p is the least
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preimage of p′. Also, κ(s) ̸= 0 since κ is 0-separating. Hence, 0 < κ(s) < p′

contradicts that p′ ∈ At(T2) and proves the surjectivity of κ. Thus, (2.9) has
been proved.

Next, let L ∈ W be a three-generated lattice. By a classical theorem of
Birkhoff [3], we can assume that it is a subdirect product

(2.10) L ≤sp

∏
i∈I

Li, where Li is 3-generated and subdirectly irreducible

for all i ∈ I. (At present, we do not claim that I is finite.) By (2.4), Li ∈
V∪HSP{K} for every i ∈ I. For a moment, let us focus on the possibility that
Li ∈ HSP{K}. Since Li is subdirectly irreducible and K is finite, (2.5) yields
that Li ∈ HS{K}, and there are only two cases. Either |Li| = |K| and then Li

is isomorphic toK and so we can assume that Li = K in this case, or |Li| < |K|
and then Li in V follows from the assumption on proper homomorphic images
and sublattices of K. If Li /∈ HSP{K}, then Li ∈ V ∪HSP{K} gives again
that Li in V. Hence, letting

(2.11)

{
H := {i ∈ I : Li = K} and J := {i ∈ I : Li ̸∼= K and
Li ∈ V}, we can assume that I = H ∪J and H ∩J = ∅.

Note that one of H or J can be empty but this will not cause any problem
since the direct product of an empty family of lattices is meaningful: it is
the trivial lattice, that is, the singleton lattice. Clearly, the projection maps
πH : L→

∏
i∈H , defined by u 7→ u⌉H , and πJ : L→

∏
i∈J , defined by u 7→ u⌉J ,

are homomorphisms. Let LH := πH(L) and LJ := πJ(L). Since LH and
LJ are homomorphic images of L, both are three-generated. We know from
Hobby and McKenzie [9, Theorem 0.1] that a finitely generated algebra in a
variety generated by a finite set of finite algebras is necessarily finite. This fact
and LH ∈ HSP{K} yield that the three-generated lattice LH is finite. On
the other hand, LJ ∈ V is a homomorphic image of FLV(3) and so LJ is also
finite. Using that the map (in fact, homomorphism) L → LH × LJ , defined
by u 7→ (πH(u), πJ(u)) = (u⌉H , u⌉J) is injective, it follows that L is finite. In
particular, FLW(3) is finite, as required.

Now that we know that L is finite, Lemma 2.1 applies. So from now on, I,
H, and J in (2.10) and (2.11) are finite index sets and (2.10) is an irredundant
subdirect product with respect for a fixed three-element generating set X =
{x, y, z} of L. Keeping (2.11) in mind, consider the map

(2.12)

φ : L→
∏
i∈H

(K/µK)×
∏
i∈J

Li, defined by u 7→ u′ such

that, for i ∈ I, u′(i) =

{
u(i)/µK , if i ∈ H,

u(i), if i ∈ J.

Clearly, φ is a lattice homomorphism. Since K/µK and the Li for i ∈ J are all
in V, the lattice

(2.13) L′ := φ(L) = {u′ : u ∈ L} belongs to V.
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Since L′ is defined as the φ-image of L, the map φ : L → L′ is a surjective
lattice homomorphism, whereby L′ is also a three-generated lattice.

Now, we are in the position to prove part (i) of Lemma 2.3. We assume that
K /∈ V since otherwise the statement is trivial. Note that {1, 2, 3} ⊆ AS(V),
because V is a nontrivial variety of lattices, whence D ⊆ V and (1.5) applies.
We need to show that |At(L)| ∈ AS(V). There are two cases to consider.

First, assume that K satisfies meet condition (2.6). Based on Czédli [6], we
can assume that

(2.14) at least two of x ∧ y, x ∧ z, and y ∧ z are 0 = 0L;

indeed, if (2.14) fails, then |At(L)| ∈ {2, 3} by [6, Observation 1.2.(ii)] and
so |At(L)| ∈ AS(V), as required. For the sake of contradiction, suppose that
H ̸= ∅, see (2.11), and let i ∈ H. Then πi from (2.1) is a surjective L → K
homomorphism, and {πi(x), πi(y), πi(z)} = {x(i), y(i), z(i)} generates K. But
this contradicts our recent assumption that K satisfies meet condition (2.6)
since πi preserves (2.14). This shows that H = ∅. Using that

(2.15) H = ∅, (2.12), and (2.13) lead to L = L′ ∈ V,

we obtain that |At(L)| = |At(L′)| ∈ AS(V). We have settled the case when K
satisfies meet condition (2.6).

Second, we assume that µK is 0-separating but K fails to satisfy meet
condition (2.6). Since K /∈ V has been assumed, K cannot be generated by less
than three elements. Hence, we conclude from (2.8) that K is three-generated.
Assume also that u ∈ L \ {0}, let u′ := φ(u), and pick an index i ∈ I such
that u(i) ̸= 0. Either since i ∈ H and µK is 0-separating, or since i ∈ J and
u′(i) = u(i), (2.12) yields that u′(i) ̸= 0 and so u′ ̸= 0. Hence, the surjective
homomorphism φ is 0-separating. Applying (2.9) to φ, we obtain that

(2.16) φ⌉At(L) : At(L) → At(L′) is a bijective map.

Since L′ ∈ V by (2.13), (2.16) above yields that |At(L)| = |At(L′)| ∈ AS(V).
This shows that AS(W) ⊆ AS(V). Since the converse inclusion is a trivial
consequence of V ⊆ W, we have proved part (i).

Part (ii) follows from part (i) by duality.
Finally, the argument for (iii) also splits into two cases. Again, still as-

suming that L ∈ W, it suffices to show that (|At(L),Ct(L)|) ∈ DS(V). First,
assume thatK satisfies both meet condition (2.6) and join condition (2.7). As a
subcase, assume also that the index setH is nonempty and pick an i ∈ H. If the
fixed generating setX = {x, y, z} of L satisfied (2.14), then {πi(x), πi(y), πi(z)}
would be a generating set of K and πi would preserve the equalities listed in
(2.14), but this would contradict that meet condition (2.6) holds in K. Hence,
(2.14) fails, whereby Czédli [6, Observation 1.2.(ii)] gives that |At(L)| ∈ {2, 3}.
Since join condition (2.7) is also assumed, duality applies and we also have
that |Ct(L)| ∈ {2, 3}. Hence, (|At(L)|, |Ct(L)|) ∈ {2, 3}2 ⊆ DS(D) ⊆ DS(V),
provided there is an i in H. If there is no such i, then H = ∅ gives that L ∈ V
by (2.12), whence (|At(L)|, |Ct(L)|) ∈ DS(V) again, as required.
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Second, assume that µK is both 0-separating and 1-separating. Then, in
addition to (2.16), we also have that φ⌉Ct(L) : Ct(L) → Ct(L′) is a bijective
map by duality. Hence, similarly to the proof of part (i), (|At(L),Ct(L)|) =
(|At(L′),Ct(L′)|) ∈ DS(V) as required. The proof of Lemma 2.3 is complete.

Since the projection maps πi from (2.1) preserve equalities, the following
remark is a trivial; we formulate it for later reference.

Remark 2.4. If X = {x, y, z} is a fixed generating set of a subdirect product
L ≤sp

∏
i∈I Li such that (x, y, z) witnesses a failure of meet condition (2.6) in

L, then so does (πi(x), πi(y), πi(z)) in Li for every i ∈ I. Hence, using that x,
y, and z play symmetric roles and based on the explanation around (2.14), we
will frequently assume that x ∧ z = y ∧ z = 0 in L and so

(2.17) πi(x) ∧ πi(z) = πi(y) ∧ πi(z) = 0 in Li, for every i ∈ I.

Figure 3: L1, . . . , L15, and their monolith congruences

3. An interval in the lattice of all lattice varieties

First of all, we need to recall some known concepts and notations and
introduce some further notations. Let N5 denote the lattice variety HSP{N5}
generated by the pentagon lattice N5; see Figure 1. As usual, M3 stands for
the 5-element modular but not distributive lattice, see Figure 1 again, and we
denote byM3 the variety it generates. The dual of a lattice L will be denoted by
Ldual. When dealing with elements of ΛΛΛ, that is, with lattice varieties, then ≺
stands for the covering relation understood in ΛΛΛ. In Figures 3 and 4 (disregard
the dotted ovals in the moment), we give the lattices playing the main role in
this paper. Namely, L1, ..., L15 are taken from McKenzie [14] while the lattices
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V1, . . . , V8 are from Ruckelshausen [15]; see also Jipsen and Rose [11, Pages
19–20] for a secondary source. Note that in addition to McKenzie’s original
notations like Q∗ and P1, Figure 1 gives the notations due to Jónsson and Rival
[13]. For i ∈ {1, . . . , 15} and j ∈ {1, . . . , 8}, we let N5 := HSP{N5}, M3 := HSP{M3},

Li := HSP{Li}, Vj := HSP{Vj}, and, for
any lattice variety Z, we let Zmmm

:= Z ∨M.
(3.1)

Note that Jipsen and Rose [11, Page 21] denotes Nmmm

5 by M+. In addition to
this variety, (3.1) defines twenty-three varieties larger than the variety M of
modular lattices; these varieties are the Lmmm

i for i ∈ {1, . . . , 15} and the Vmmm

j for
j ∈ {1, . . . , 8}.

The following proposition is likely to belong to the folklore of lattice theory
since it follows easily from widely known ideas. Having no reference at hand,
we are going to present a proof for it.

Figure 4: V1, . . . , V8, and the monolith congruence of V6

Proposition 3.1. In the lattice ΛΛΛ of all lattice varieties, the following hold.

(i) M ≺ Nmmm

5 and Nmmm

5 is the only cover of M in ΛΛΛ. Furthermore, for every
Y ∈ ΛΛΛ, Y ̸≤ M implies that Nmmm

5 ≤ Y.

(ii) For i ∈ {1, . . . , 15}, we have that Nmmm

5 ≺ Lmmm

i .

(iii) For j ∈ {1, . . . , 8}, we have that Nmmm

5 ≺ Vmmm

j .

(iv) The set {Lmmm

i : 1 ≤ i ≤ 15} ∪ {Vmmm

j : 1 ≤ j ≤ 8} is a 23-element subset of

ΛΛΛ and it generates a sublattice isomorphic to the 223-element Boolean
lattice, which is an interval in ΛΛΛ; this sublattice is denoted by BBB23.

Some elements of BBB23 are outlined in Figure 2. We do not know whether
all covers of Nmmm

5 are listed in Proposition 3.1.

Proof of Proposition 3.1. First, we collect some known results that are needed.
McKenzie [14] conjectured and Jónsson and Rival [13] proved that

(3.2)


L1, . . . , L15, and N5∨M3 are sixteen distinct covers
of N5 in ΛΛΛ. Furthermore, if Y ∈ ΛΛΛ such that N5 < Y,
then Y includes at least one of these sixteen covers.
Also, Li is join-irreducible in ΛΛΛ for i ∈ {1, . . . , 15}.
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The join-irreducibility of Li is an easy consequence of B. Jónsson’s (2.4) and
(2.5), and it is explicitly mentioned in the last paragraph of page 18 in Jipsen
and Rose [11]. Note that it follows from the second half of (3.2) that N5 has
exactly sixteen covers. Ruckelshausen [15] proved that

(3.3)

{
V1, . . . ,V8 are pairwise distinct join-irreducible ele-
ments of ΛΛΛ and M3 ∨N5 ≺ Vj for j ∈ {1, . . . , 8};

see also Jipsen and Rose [11, Pages 19–20] for a secondary source. Unfortu-
nately, we do not know whether V1, . . . ,V8 is the list of all covers or N5 ∨M3.

Part (i) of Proposition 3.1 is trivial by Dedekind’s modularity criterion.
To prove (ii), let i ∈ {1, . . . , 15}. Since N5 ≺ Li by (3.2), the (upper)

semimodularity of ΛΛΛ yields that either Nmmm

5 = N5∨M = Li∨M = Lmmm

i , or N
mmm

5 ≺
Lmmm

i . We need to exclude the first alternative. For the sake of contradiction,
suppose that Nmmm

5 = Lmmm

i . Since Li is subdirectly irreducible and Li ∈ Lmmm

i =
Nmmm

5 = N5 ∨ M, (2.4) gives that Li ∈ N5 or Li ∈ M. This leads to Li ∈ N5

since Li is not modular. Hence (2.5) gives that Li ∈ HS{N5}, contradicting
|Li| > 5 = |N5|. This excludes the first alternative and proves part (ii).

To prove (iii), let j ∈ {1, . . . , 8}. Since M3 ∨ N5 ≺ Vj by (3.3), the
semimodularity of ΛΛΛ gives that either Nmmm

5 = M ∨ N5 = (M ∨ M3) ∨ N5 =
M∨ (M3 ∨ N5) = M∨Vj = Vmmm

j , or N
mmm

5 ≺ Vmmm

j . For the sake of contradiction,
suppose that Nmmm

5 = Vmmm

j . Similarly to the previous paragraph, the subdirect
irreducibility of Vj , Vj ∈ Vmmm

j = Nmmm

5 = N5 ∨ M, (2.4), and (2.5) give that
Vj ∈ M or Vj ∈ HS{N5}, but this is a contradiction since Vj is not modular
and |Vj [> |N5|. We have excluded the first alternative and proved part (iii).

Observe that L1, . . . , L15, as distinct covers of N5, are pairwise incompa-
rable. Hence, Li /∈ Si(Li′) if i′ ̸= i and {i, i′} ⊆ {1, . . . , 15}. Also, Li /∈ M.
Thus, the subdirect irreducibility of Li and (2.4) give that Li /∈ Li′ ∨M = Lmmm

i′ ,
whereby Lmmm

i ̸≤ Lmmm

i′ . Therefore, the varieties Lmmm

1 , . . . , L
mmm

15 are pairwise distinct.
So are Vmmm

1 , . . . , V
mmm

8 by an analogous reasoning. By (3.2) and (3.3), Vj is of
height 2 in the principal filter ↑N5 of ΛΛΛ but Li is only of height 1. Conse-
quently, Vj ̸≤ Li and so Vj /∈ Li. Also, Vj is not in M but it is subdirectly
irreducible, whereby (2.4) yields that Vj /∈ Li ∨M = Lmmm

i . Thus, Vmmm

j ̸≤ Lmmm

i . In
particular, Vmmm

j ̸= Lmmm

i , and we conclude that (iv) presents a 23-element set, as
required. By the already proven (ii) and (iii), this set consists of atoms of the
filter ↑Nmmm

5 .
Next, we extract from the literature that, for any positive integer n,

(3.4)
{
every n-element set of atoms of a distributive lattice generates a
2n-element Boolean sublattice and this sublattice is an interval.

To show this, let D be a distributive lattice, let a1, . . . , an be pairwise distinct
atoms of D, and let S be the sublattice generated by {a1, . . . , an}. If we had
that ai ≤ a1 ∨ · · · ∨ ai−1 for some i ∈ {2, . . . , n}, then distributivity would
give that ai = ai ∧ (a1 ∨ . . . ai−1) = (ai ∧ a1) ∨ · · · ∨ (ai ∧ ai−1). But atoms
are join-irreducible, whence ai = ai ∧ aj for some j ∈ {1, . . . , i − 1}, that
is, we would have that ai ≤ aj , contradicting that ai and aj are distinct
atoms. Hence, ai ̸≤ a1 ∨ . . . ai−1 for all i ∈ {2, . . . , n}. By the (ii) ⇒ (i) and



202 Gábor Czédli

(ii) ⇒ (iii) parts of Theorem 380 of Grätzer [8], it follows that {a1, . . . , an} is
an independent set of atoms and the height of a1 ∨ · · · ∨ an is n. Thus, by the
definition of independence, S is a Boolean lattice of length n and size 2n. By the
structure theorem of finite distributive lattices, see Grätzer [8, Theorem 107], a
distributive lattice of length n cannot have more than 2n elements. Hence, all
elements of the interval [0, a1∨· · ·∨an] of D belong to the 2n-element sublattice
S. Therefore, this interval is S. This proves (3.4). Note that (3.4) also follows
from Czédli [4, Proposition 2.1.(iv)] since D is a locally finite lattice.

We have already seen that the set mentioned in (iv) is a 23-element set of
atoms in the filter ↑Nmmm

5 . Thus, (3.4) implies part (iv) of Proposition (3.1).

4. The spectra of some lattice varieties

Proposition 4.1. Let W be a nontrivial variety of lattices and let

B := Vmmm

8 ∨
15∨
i=6

Lmmm

i ∨
5∨

j=1

Vmmm

j and B′ := B ∨ Lmmm

2 ∨ Vmmm

7 .(4.1)

(i) If W ⊆ B, then DS(W) equals DS(D), which is given in (1.8).

(ii) If W ⊆ B′, then AS(W) = AS(D) = {1, 2, 3}; see (1.5).

Also, if E is a lattice variety such that Nmmm

5 ≤ E then

(iii) DS(W) = DS(E) for every lattice variety W belonging to the interval
[E , E ∨ B] of ΛΛΛ, and

(iv) AS(W) = AS(E) for every W ∈ [E , E ∨ B′].

Proof. To prove part (i), define W0 := M,

W1 := Nmmm

5 = HSP(W0 ∪ {N5}),
W2 := Vmmm

8 = W1 ∨ Vmmm

8 = HSP(W1 ∪ {V8}),
W3 := Vmmm

8 ∨ Lmmm

6 = W2 ∨ L6 = HSP(W2 ∪ {L6}),
W4 := Vmmm

8 ∨ Lmmm

6 ∨ Lmmm

7 = W3 ∨ L7 = HSP(W3 ∪ {L7}), . . . ,

W16 := Vmmm

8 ∨
15∨
i=6

Lmmm

i ∨
4∨

j=1

Vmmm

j = W15 ∨ V4 = HSP(W15 ∪ {V4}),

W17 := Vmmm

8 ∨
15∨
i=6

Lmmm

i ∨
5∨

j=1

Vmmm

j = W16 ∨ V5 = HSP(W16 ∪ {V5}).

For later reference, let us point out that the order in the list V8, L6, . . . , V4, V5
of lattices above is irrelevant in the sense that although the sequence W2, . . . ,
W17 depends on this order, any other order gives rise to a sequence of varieties
that makes the rest of the proof work without any essential change.
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Clearly, W0 ⊆ W1 ⊆ · · · ⊆ W17 = B. As (2.8) and Figures 3–4 show,

(4.2)


the monoliths of the lattices N5, L6, L7, . . . , L15 oc-
curring above are both 0-separating and 1-separating
while V8 and V1, . . . , V5 satisfy both meet condition
(2.6) and join condition (2.7).

All proper sublattices and homomorphic images of N5 belong to D, so they
belong to W0 = M. We claim that for every i ∈ {1, . . . , 15} and j ∈ {1, . . . , 8},{

if K is a proper homomorphic image or a proper
sublattice of Li, then K ∈ N5 ⊆ W1;

(4.3) {
if K is a proper homomorphic image or a proper
sublattice of Vj , then K ∈ N5 ∨M3 ⊆ Nmmm

5 = W1.
(4.4)

Both (4.3) and (4.4) could be proved by inspecting lots of straightforward
but tiring cases. Fortunately, (3.2) and (3.3) permit a shorter proof. For the
sake of contradiction, suppose that K is a proper homomorphic image or a
proper sublattice of Li but K /∈ N5. Note that |K| < |Li|. With X :=
N5 ∨ HSP{K}, we have that N5 < X . On the other hand, N5 ≤ Li and
K ∈ HS{Li} ⊆ HSP{Li} = Li give that X ≤ Li. So N5 < X ≤ Li,
and we conclude from (3.2) that X = Li. Since Li is subdirectly irreducible,
Li ∈ Li = X = N5 ∨HSP{K}. Using (2.4), due to Jónsson [12], we have that
Li ∈ N5 = HSP{N5} or Li ∈ HSP{K}. Hence, by (2.5), Li ∈ HS{N5} or
Li ∈ HS{K}. This gives that |Li| ≤ max{|N5|, |K|}, which is a contradiction
proving (4.3).

With less details, the proof of (4.4) runs similarly as follows. Suppose that
(4.4) fails. Pick a proper homomorphic image or a proper sublattice K of Vj
such that K /∈ N5 ∨ M3. With X := N5 ∨ M3 ∨ HSP{K}, we have that
N5 ∨ M3 < X ≤ Vj . Using (3.3), we obtain that X = Vj . This leads to
Vj ∈ Vj = X = (N5 ∨ M3) ∨ HSP{K}. By (2.4) and (2.5), Vj ∈ N5 ∨ M3

or Vj ∈ HS{K}, but the first alternative contradicts (3.3) while the second to
|Vj | > |K|. This yields the validity of (4.4).

Since FLM(3), consisting of 28 elements, is finite, it follows from Lemma 2.2
that free lattice FLWi

(3) is also finite for every i ∈ {0, 1, . . . , 17}. Armed with
(4.2), (4.3), and (4.4), we can apply Lemma 2.3(iii) and, at the last step, (1.8)
to obtain that DS(B) = DS(W17) = DS(W16) = · · · = DS(W0) = DS(M) =
DS(D). So DS(B) = DS(D). This together with D ≤ W and (1.9) prove part
(i).

The monolith of L2 and that of V7 are 0-separating. Using these two lattices
in the same way as the earlier ones, we can continue the sequence W0, . . .W17

with W18 = HSP(W17 ∪ {L2}) and B′ = W19 = HSP(W18 ∪ {V7}). Now,
instead of Lemma 2.3(iii), we can apply Lemma 2.3(i). In this way, we obtain
the validity of part (ii) in the same way as that of (i).

Next, to prove part (iii), assume that E ≥ Nmmm

5 . We can even assume that
E > Nmmm

5 since otherwise the already proven part (i) would apply. Let F := B∧E ,
and observe that F belongs to the interval [Nmmm

5 ,B] of ΛΛΛ. It follows from (1.11),
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or rather, say from Proposition 3.1(iv) that F ∈ BBB23. Hence, F is the join of
Nmmm

5 and some of the varieties belonging to the set {Vmmm

8 ,L
mmm

6 , . . . ,V
mmm

5 } that occur
in the definition of B in (4.1). Therefore, based on the sentence following the
definition ofW17, we can assume that F = Wj for some j ∈ {1, . . . , 17}. To ease
the notation, we let j = 2; the general case is the practically the same. Take
the sequence W ′

2 := E ∨W2 = E ∨F = E , W ′
3 := E ∨W3 = HSP(W ′

2 ∪ {L6}),
W ′

4 := E ∨W4 = HSP(W ′
3 ∪ {L7}), W ′

5 := E ∨W5 = HSP(W ′
4 ∪ {L8}), . . . ,

W ′
17 := E ∨W17 = HSP(W ′

16∪{V5}). Since W17 = B, our sequence terminates
with W ′

17 = E ∨ B. The argument used in (i) applies for the sequence W ′
2, . . . ,

W ′
17 and yields that DS(E ∨ B) = DS(W ′

17) = DS(W ′
16) = · · · = DS(W ′

2) =
DS(E). Hence, applying (1.9), we obtain the validity of part (iii).

Finally, the proof of part (iv) is obtained by modifying that of (iii) in the
same straightforward way as we modified the proof of part (i) to obtain that
of (ii). The proof of Proposition 4.1 is complete.

Remark 4.2. The rudiments of the theory of distributive lattices yield that
the interval [Nmmm

5 ,B′] of ΛΛΛ is (isomorphic to) the 218-element Boolean lattice;
see also the proof of Proposition 3.1(iv). Therefore, Proposition 4.1(ii) extends
the scope of (1.5) from Czédli [6] with 218 new lattice varieties. Similarly,
Proposition 4.1(i) adds 216 new lattice varieties to the scope of the previously
known (1.8).

Next, we conclude this section by exceeding (1.6), an earlier result. In the
direct cube of L4 = P0

dual, see Figure 3, let

(4.5) x⃗ := (c, a, a), y⃗ = (a, c, b), z⃗ = (b, b, c),

and let L92 be the sublattice of the direct cube L4
3 generated by {x⃗, y⃗, z⃗}. In

fact, L92 is a subdirect power of L4. We are in the position to present the
following observation; its proof will be given after a remark.

Observation 4.3. The lattice L92 is three-generated and it has at least six
atoms.

Remark 4.4. The proof to be given soon has also been checked by a computer
program. Hence, we know that |L92| = 92, explaining the notation, and L92

has exactly six atoms.

Proof of Observation 4.3. For brevity, we write triples without commas and
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parentheses; for example, caa stands for x⃗ = (c, a, a). Let us compute:

0aa = x⃗ ∧ d11 = x⃗ ∧ (y⃗ ∨ z⃗) ∈ L92,

a0b = y⃗ ∧ 1d1 = y⃗ ∧ (x⃗ ∨ z⃗) ∈ L92,

bb0 = z⃗ ∧ 11d = z⃗ ∧ (x⃗ ∨ y⃗) ∈ L92,

a00 = y⃗ ∧ 1da = y⃗ ∧ (x⃗ ∨ bb0) ∈ L92,(4.6)

0a0 = x⃗ ∧ d1b = x⃗ ∧ (y⃗ ∨ bb0) ∈ L92,(4.7)

00a = x⃗ ∧ db1 = x⃗ ∧ (z⃗ ∨ a0b) ∈ L92,(4.8)

b00 = z⃗ ∧ 1ad = z⃗ ∧ (x⃗ ∨ a0b) ∈ L92,(4.9)

0b0 = z⃗ ∧ a1d = z⃗ ∧ (y⃗ ∨ 0aa) ∈ L92,(4.10)

00b = y⃗ ∧ bd1 = y⃗ ∧ (z⃗ ∨ 0aa) ∈ L92.(4.11)

Since the elements (4.6)–(4.11) are atoms even in the direct cube L4
3, they are

also atoms in L92.

Note that Observation 4.3 explains why Lemma 2.3(i) contains the stip-
ulation that K should satisfy meet condition (2.6) or its monolith should be
0-separating. Also, the definition of L92 together with Observation 4.3 show
that L4 cannot occur among the joinands in (4.1).

5. More about the spectra of varieties belonging to BBB23

Recall thatBBB23 and some related notations are defined in (1.10), (1.12), and
(3.1). Here we are going to have a closer look at the structure of BBB23. The six-
teen vertices in Figure 2 form a sublattice ofBBB23. The solid line segments in the
figure denote coverings inBBB23 while the dotted and dashed line segments stand
for intervals having more than two elements in BBB23. By Proposition 3.1(iv),
BBB23 is an interval of ΛΛΛ,

At(BBB23) := {Lmmm

1 , . . . ,L
mmm

15} ∪ {Vmmm

1 , . . . ,V
mmm

8 }, and(5.1)

each element ofBBB23 \{Nmmm

5 } can be given as the
join of a unique nonempty subset of At(BBB23).

(5.2)

Equivalently, an X ∈ BBB23 is uniquely determined by its intersection with
{L1, . . . , L15} ∪ {V1, . . . , V8}. In harmony with Figure 2, we let

(5.3) Hmmm

3 := Lmmm

1 ∨ Lmmm

5 ∨ Vmmm

6 and Hmmm

6 := Hmmm

3 ∨ Lmmm

3 ∨ Lmmm

4 .

The interval [Nmmm

5 ,H
mmm

3 ] is isomorphic to the eight-element Boolean lattice. So
are seven other intervals in the figure that are transposed to [Nmmm

5 ,H
mmm

3 ]; these
eight intervals are drawn by dotted northwest–southeast oriented lines segments
and we call them dotted intervals. The interval [Nmmm

5 ,H
mmm

6 ] is yellow-filled (or,
in a non-colored printed version, light-grey) in Figure 2; we call it the yellow
interval. The yellow interval is isomorphic to the 32-element Boolean lattice.
Furthermore, it is the union of four dotted intervals:

(5.4) [Nmmm

5 ,H
mmm

6 ] = [Nmmm

5 ,H
mmm

3 ] ∪̇ [Lmmm

3 ,L
mmm

3 ∨Hmmm

3 ] ∪̇ [Lmmm

4 ,L
mmm

4 ∨Hmmm

3 ] ∪̇ [Lmmm

3 ∨Lmmm

4 ,H
mmm

6 ];
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in this paper, ∪̇ means that we form the union of pairwise disjoint sets. The
interval [Nmmm

5 ,B′] and seven other intervals transposed to it are drawn by dashed
line segments; we call them dashed intervals. As in Remark 4.2, we can see
that each dashed interval is a Boolean lattice of size 218. Note that, by (5.2),

(5.5)

{
every member of BBB23 can uniquely be written in the form X ∨Y
such that X is in the yellow interval and Y ∈ [Nmmm

5 ,B′].

In fact, BBB23
∼= [Nmmm

5 ,H
mmm

6 ]× [Nmmm

5 ,B′]. We have that

(5.6)
BBB23 = [Nmmm

5 ,H
mmm

3 ∨ B′] ∪̇ [Lmmm

3 ,H
mmm

3 ∨ Lmmm

3 ∨ B′]

∪̇ [Lmmm

4 ,H
mmm

3 ∨ Lmmm

4 ∨ B′] ∪̇ [Lmmm

3 ∨ Lmmm

4 ,H
mmm

6 ∨ B′].

According to Figure 2, the four intervals occurring in (5.6) are called the layers
of BBB23. They are 221-element Boolean lattices, and each of them has its own
fill pattern in the figure. Hence, as the “Notation” part of the figure indicates,
each layer is colored by one of the numbers 3, 4, and 6. Namely, in the order
they occur in (5.6), the layers are 3-colored, 4-colored, 6-colored, and 6-colored,
respectively. We define the color of a variety X ∈BBB23 as follows:

(5.7) the color of X ∈BBB23 is the color of the layer containing X ;

it follows from (5.6) that the color of X is uniquely defined.
Now, keeping Figure 2 and the notations (1.1)–(1.3), (1.10), (3.1), (4.1),

and (5.3)–(5.7) in mind and introducing

δ(3) := {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)},(5.8)

δ(4) := δ(3) ∪ {(4, 3), (3, 4), (4, 2), (2, 4)},(5.9)

δ(6) := δ(3) ∪ {(4, 2), (4, 3), (6, 3)},(5.10)

δ(6)−1 := δ(3) ∪ {(2, 4), (3, 4), (3, 6)},(5.11)

we are in the position to formulate the main result of the present paper.

Theorem 5.1 (Main Theorem). Let X be a lattice variety belonging to BBB23.

(i) If the color of X , with respect to Figure 2 and (5.7), is 3, 4, or 6, then
the atom spectrum AS(X ) of X is {1, 2, 3}, {1, 2, 3, 4}, and {1, 2, 3, 4, 6},
respectively.

(ii) If X belongs to one of the following intervals, then its double spectrum
is given by the table below.

If X belongs to the interval below, then DS(X ) is

[Nmmm

5 ,B] δ(3)

[Vmmm

6 ,V
mmm

6 ∨ B] or [Vmmm

7 ,V
mmm

7 ∨ B] δ(3)

[Lmmm

1 ,L
mmm

1 ∨ B] or [Lmmm

2 ,L
mmm

2 ∨ B] δ(3)

[Lmmm

3 ,L
mmm

3 ∨ B] δ(4)

[Lmmm

4 ,L
mmm

4 ∨ B] δ(6)

[Lmmm

5 ,L
mmm

5 ∨ B] δ(6)−1
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Before the proof, some remarks are appropriate here. Surprisingly, while
6 belongs to the atom spectrum of some X ∈ BBB23, the number 5 does not.
The “coatom spectrum counterpart” of part (i), which we do not formulate
in the present paper, would follow easily by duality. The intervals listed in
part (ii) are pairwise disjoint. However, their union is much smaller than BBB23.
Actually, this union consists of 221 elements, whereby part (ii) takes care only
of a quarter of lattice varieties belonging to BBB23.

Proof of Theorem 5.1. In order to prove part (i), it suffices to prove that

(5.12)

{
the atom spectra of the eight members of the yellow
interval [Nmmm

5 ,H
mmm

6 ] that are indicated by vertices in
Figure 2 are the same as stated in the theorem.

Indeed, if (5.12) held, then (1.9) and (5.4) would yield the validity of part (i)
for all the 32 varieties belonging to the yellow interval [Nmmm

5 ,H
mmm

6 ]. Thus, it would
follow from (5.5) and and Proposition 4.1(iv) that any two varieties belonging
to the same layer have the same atom spectrum, whereby (5.12) would imply
the validity of part (i).

We already know from Proposition 4.1(ii) that part (i) of Theorem 5.1 de-
scribes AS(Nmmm

5 ) correctly. So the job for one of the eight varieties mentioned
in (5.12) is done. For the seven other varieties, both theoretical considerations
and the brutal force of a computer are needed. We give the theoretical con-
sideration only for Hmmm

6 since the rest of the seven varieties can be treated in
an analogous but easier way. (In fact, we do not have to deal with all of them
since (1.9) applies in some cases.) We claim that, up to isomorphism,

(5.13)

{
the set Si3(Hmmm

6 ) of at most three-generated subdirectly ir-
reducible lattices of Hmmm

6 is {C2,M3, N5, L1, L5, V6, L3, L4}.

(Here “up to isomorphism” means that Si3(Hmmm

6 ) is actually the set of isomor-
phism types of the class of the at most three-generated subdirectly irreducible
lattices of Hmmm

6 , but it will be more convenient to work with this eight-element
set than a proper class.) To show the validity of (5.13), let K ∈ Hmmm

6 be a
subdirectly irreducible lattice generated by at most three elements. By (3.1),
(5.3), and Bjarni Jónsson’s result (2.4),

(5.14)
K ∈ Si(M) ∪ Si(HSP{L1}) ∪ Si(HSP{L5})

∪ Si(HSP{V6}) ∪ Si(HSP{L3}) ∪ Si(HSP{L4}).

According to (5.14), the argument splits into three cases. First, if K ∈ Si(M),
thenK ∈ {C2,M3} and (5.13) is clear. Second, assume thatK ∈ Si(HSP{V6}).
Then (2.5) gives that K ∈ HS{V6}. We can assume that K ̸∼= V6 since
otherwise (5.13) is clear. Hence, K ∈ HSP{K ′} for a proper homomor-
phic image or proper sublattice K ′ of V6. The lattice K ′ is nontrivial since
K ∈ HSP{K ′} and K, being subdirectly irreducible, has at least two ele-
ments. Hence, D ≤ HSP{K ′} and so HSP{K ′} ∈ [D,V6]. Using (3.3), the
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semimodularity of ΛΛΛ, and the obvious coverings D ≺ M3 and D ≺ N5, we con-
clude easily that the interval [D,V6] is of length 3. Clearly, V6 /∈ HS{K ′} since
|V6| > |K ′|. Applying (2.5) again, we obtain that V6 /∈ HSP{K ′}. Hence,
HSP{K ′} < HSP{V6} = V6. Using that V6 is a join-irreducible cover of
M3 ∨ N5 by (3.3) and that both HSP{K ′} and M3 ∨ N5 are in the inter-
val [D,V6] of (finite) length 3, we conclude that HSP{K ′} ≤ M3 ∨ N5. So
K ∈ M3 ∨ N5 = HSP{M3} ∨ HSP{N5}, and the validity of (5.13) in this
case follows easily by (2.4) and (2.5). Third, assume that K ∈ Si(HSP{Li})
for some i ∈ {1, 5, 3, 4}. In the same way as in the second case above, but
using (3.2) and [D,Li] (of length 2) instead of (3.3) and [D,V6], we obtain that
K ̸∼= Li implies that K ∈ HSP{N5}, and and the validity of (5.13) in this case
follows immediately from (2.5). This completes the proof of (5.13).

Next, still only focusing onHmmm

6 , we begin to season the theoretical considera-
tion by computational aspects. Let L ∈ Hmmm

6 be a three-generated lattice and fix
a three-element generating set {x, y, z} of L. It follows from Lemma 2.1 that,
in the sense of (2.2) and up to isomorphism, L is an irredundant subdirect
product of a system of subdirectly irreducible lattices taken from Si3(Hmmm

6 ),
which is described by (5.13). Even if we only allow irredundant subdirect
products, a lattice from Si3(Hmmm

6 ) can occur, with different assignments of the
generators, more than once in the product. Let us determine what is the max-
imum number of factors in an irredundant subdirect product if multiplicities
are counted. Since C2 has no nontrivial automorphism and since singleton
factors can be disregarded, there are six ways to pick a triplet in C3

2 with com-
ponents generating C2. Hence, six copies of C2 are needed. We need only
one copy of M3 due to its large automorphism group Aut(M3). Using that
|Aut(N5)| = 1, |Aut(L1)| = 2, |Aut(L5)| = 2, |Aut(V6)| = 2, |Aut(L3)| = 1,
and |Aut(L4)| = 2, we need 3 = 6/2 copies of each of L1, L5, V6, and L4 but
we need 6 copies of N5 and the same number of copies of L3. Hence, unless no
reduction was found,

(5.15)


we would have to work in a direct product of 6 + 1+
4 · 3 + 6 + 6 = 31 factors and the size of this direct
product would be p1 := 26 · 5 · 73 · 63 · 93 · 63 · 76 · 56 =
6862 579 602 459 840 000 000 ≈ 6.86 · 1021.

The number 6.86 · 1021 is too large, and what is also too bad is that we would
have to take nonempty subset of the set of 31 factors in all possible ways, that
is, in 231 − 1 ways. That much computation is not feasible. In (5.15), we
have taken into account only those criticizing homomorphisms of (2.2) that
are isomorphisms. Those that are not isomorphisms give some reduction but
not enough. Typically, only C2 is a homomorphic image of another factor but
even if all the six copies of C2 were excluded, still 25 factors would remain, the
largest direct product would be of size

(5.16) p1 · 2−6 ≈ 1.07 · 1020, and 225 − 1 = 33 554 431

products should be investigated, which would not be feasible. Indeed, it is not
sufficient to decide which subdirect products are needed, those that are needed
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have to be constructed. If we deal with double spectra, then we do not know
further ways of reducing computations; this explains why Theorem 5.1(ii) only
deals with a quarter of BBB23.

If we deal with atomic spectra, then we are lucky enough to disregard several
subdirect factors by (2.17). For example, if N5 is the i-th subdirect factor, then
we can stipulate that z(i) = c, see Figure 1 for the notation of the elements
of N5, because otherwise (2.17) would be violated. Hence, instead of six, only
two copies of N5 are sufficient in the list of subdirect factors, and the same
holds for L3 and V6. (In fact, one copy of V6 is sufficient since the other one
was excluded when calculating (5.15).)

To do the hard computations, we have written a computer program in
Bloodshed Dev-Pascal v1.9.2 (Freepascal) under Windows 10 operating system,
which is available from the author’s website. This program takes its input from
two distinct text files. The first file contains the operation tables of the possible
subdirectly irreducible factors. (We have also written an auxiliary program that
produces this file from the covering graphs of the irreducible factors.) With
reference to the first file, the second file gives the assignments of the variables
and it can also give constraints.

The list of assignments only takes care of a part of irredundancy, see (2.2)
and Lemma 2.1. Namely, criticizing isomorphisms among distinct factors are
excluded by the list of these assignments but non-bijective criticizing homo-
morphisms are permitted. If the atom spectrum is targeted, then (2.17) is also
taken care of by the list of assignments: only those assignments occur in the
list that obey (2.17). The assignments are given in so-called assignment lines.
These lines follow strict syntactical rules but they are self-explanatory to read
by humans. For example, if the third assignment line is
\lattice=N5 \with x=b y=a z=c

then the program assumes that N5 is the third subdirectly irreducible factor
and lets x(3) := b, y(3) := a, and z(3) := c.

The purpose of a constraint is to instruct the program to take a non-bijective
criticizing homomorphism into account. The constraints, if any, are given by so-
called constraint lines. Constraint lines are self-explanatory again; for example,
\if N5 \with x=b y=a z=c \ThenNot C2 \with x=0 y=0 z=1

is one of the constraint lines when dealing with AS(Hmmm

6 ).

The terminological difference between assignments and constraints is ex-
plained by their different roles in the program. The second file for AS(Hmmm

6 )
consists of seventeen assignment lines and nineteen constraint lines. The pro-
gram takes all the 217 − 1 subsets I of the set of assignment lines one by one.
For each I, the program verifies whether all the constraints are satisfied. If
they are, then the program constructs the subdirect product of the subdirectly
irreducible lattices belonging to I and counts its atoms. On a desktop computer
with AMD Ryzen 7 2700X Eight-Core Processor 3.70 GHz, it took hardly more
than 5 minutes to obtain AS(Hmmm

6 ).

The computations for the proper subvarieties of Hmmm

6 that are indicated by
vertices in Figure 2 took less than six seconds. We have outlined the proof of
part (i) of Theorem 5.1, on which the computer spent about six minutes.
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The proof of part (ii) is practically the same; we only give the differences.
The main difference is that we cannot use (2.17). Hence, for example, we
cannot reduce what (5.16) says about Hmmm

6 . This is why we could use our
computer program only for the bottom elements of the intervals in the table
that goes with part (ii) of Theorem 5.1. For comparison, note that while the
program computed AS(Lmmm

3 ) in less than a second, it spent three and a half
hours on computing DS(Lmmm

3 ).
Finally, as the last sentence of the proof we present here, we mention that

the reader can access all details by downloading the computer program together
with its input and output files from the author’s website.

Remark 5.2 (on the program). There is an earlier program developed by
Berman and Wolk [1] that is somehow related to ours. The two programs were
written for different purposes in different programming languages for different
computers in different times. Nevertheless, these two programs share some
ideas. As mentioned already, Lemma 2.1, from which both programs benefit
heavily, has been extracted from Berman and Wolk [1]. This lemma is the
only influence of Berman and Wolk’s program on the present one; first because
the programming language they use is not readable for me, second because the
current program takes lots of ideas and parts from my programs that go with
Czédli [5] and Czédli and Oluoch [7].

Both programs compute a subdirect product by generating the correspond-
ing sublattice in a direct product. The core of both programs is to calculate
the sublattice a given set X0 generates. Even if there is a trivial algorithm, it
has to be accelerated in two ways. First, instead of computing a sequence of
subsets by the rule

Xi+1 := Xi ∪ {x ∨ y : (x, y) ∈ X2
i } ∪ {x ∧ y : (x, y) ∈ X2

i }

as long as Xi ⊃ Xi−1 (proper inclusion), the program lets

Xi+1 := Xi ∪ {x ∨ y : (x, y) ∈ (Xi \Xi−1)×Xi}
∪ {x ∧ y : (x, y) ∈ (Xi \Xi−1)×Xi}.(5.17)

the improvement in speed is essential. Second, even if the direct product of
the subdirectly irreducible factors is very large and it cannot be stored (or is
not intended to be stored) by the program, the subdirect product which X0

generates is much smaller in general and it should be stored. When a new
element, say a new meet according to (5.17), is computed, the program has to
check whether it is already present in Xi or it should really be added. Hence,
according to a trivial algorithm, the program should check all elements of Xi

and compare them to the candidate new element; this needs |Xi| steps for a
new element and |Xi|/2 steps in average if the candidate element is not new.
Even |Xi|/2 is rather large since this activity has to be repeated very many
times. To accelerate this trivial algorithm, Berman and Wolk [1] used some
hash function. Our program follows a different strategy: we store Xi in a
binary tree with the property that all elements of the left subtree of a node are
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lexicographically smaller while those of the right subtree are larger than the
node in question. As a result, the program reduces the above-mentioned |Xi|
or |Xi|/2 steps down to log2(|Xi|) steps.

Remark 5.3 (on the reliability of the program). Generally, a computer pro-
gram is more difficult to check and it is more exposed to hidden errors than a
mathematical proof. While mathematical papers trust themselves, it is quite
typical that a computer program declares itself by the words “is as is”.

Even if the source file of the current program, called atoms3, is only 54
kilobytes while its auxiliary program, called isitlatt, is 26 kilobytes, and
even if I have spent lots of time on testing the program as a whole and also its
parts separately, the most satisfactory way of testing would be to use another
program written by another person. Fortunately, this has mostly been realized
already in the following way. The critical part of the program is to compute
subdirect products. When it is ready, then finding its atoms is easy (but not
fast). Furthermore, the program can print the atoms and then the user can
easily see that (in most cases) they are atoms even in the full direct product, so
they are surely atoms in the subdirect product. So, it is only the generation of
the subdirect product that mostly needs a real verification. When the program
computes the double spectrum, the input file cannot rely on (2.17). Then, as
it is easy to see and it is pointed out in Berman and Wolk [1], the subdirect
product of all assignments is the free lattice on three generators in the variety
we are dealing with. We needed to compute DS(Lmmm

1 ), DS(Lmmm

3 ), and DS(Lmmm

4 ) in
the proof of Theorem 5.1(ii), and only the assignment forM3 has to be removed
from their input files to compute the corresponding free lattices. We did so and
the program reported that the free lattices on three generators in the varieties
Lmmm

1 , L
mmm

3 , and Lmmm

4 consist of 178, 2 811, and 821 elements, respectively. The same
numbers have been given by Berman and Wolk [1, page 274]. Besides that the
above-mentioned coincidence increases our trust in the program, it also verifies
three of the input files. The rest of these files can be checked manually since
they are readable text files and they are available from the author’s website.

6. How far can we go?

We can only give a modest partial answer to the question above. We begin
with an example.

Example 6.1 (stories about the lattice U8). While the largest number of atoms
of a three-generated lattice in the scope of the previous section is at most 6, we
know practically nothing on this number in case of other lattices. This is why
the subdirectly irreducible lattice U8 in the middle of Figure 1 and the variety
U8 := HSP{U8} are of some interest. With the list

\lattice=U8 \with x=a y=b z=c

\lattice=U8 \with x=a y=c z=b

\lattice=U8 \with x=b y=a z=c

\lattice=U8 \with x=b y=c z=a
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\lattice=U8 \with x=c y=a z=b

\lattice=U8 \with x=c y=b z=a

of assignments, quoted from the corresponding input file, the program com-
puted the six-fold subdirect product of U8. This subdirect product consists of
47 092 elements and it has 18 atoms; the computation took 27 minutes. After
observing that L4 ∈ U8 and adding three more assignments,

\lattice=L4 \with x=a y=b z=c

\lattice=L4 \with x=b y=c z=a

\lattice=L4 \with x=c y=b z=a

to the first six, the nine-fold subdirect product consists of 61 608 elements but
the number of atoms is still 18; the computation took 56 minutes. Finally, it
took six hours and fourteen minutes to compute the subdirect product for all
subsets of these nine assignments. The information we obtained in this way is
that

(6.1) {1, 2, 3, 4, 5, 6, 8, 9, 12, 15, 18} ⊆ AS(U8) ⊆ AS(Ummm

8 ),

where Ummm

8 = U8∨Nmmm

5 , as usual. It is straightforward to see that for every lattice
K,

(6.2) if K ∈ HS{U8} and |K| < |U8|, then K ∈ L3 ∨ L4.

Hence, it follows easily from B. Jónsson’s results, see (2.4) and (2.5), that

(6.3) Ummm

8 and U8 cover Lmmm

3 ∨ Lmmm

4 ∈BBB23 and L3 ∨ L4,

respectively, in the lattice ΛΛΛ of all lattice varieties. We do not know if the first
inclusion in (6.1) is proper or not, and we only guess that the second one might
be an equality. Together with the covering Lmmm

3 ∨Lmmm

4 ≺ Ummm

8 , this shows that even
a little step out of BBB23 can bring lots of changes and difficulties.

The subdirectly irreducible lattices C2, N5, and L3 also belong to U8. If
we added the corresponding assignments to the nine mentioned above and the
possible constraints then, by a rough estimation, it would take months, or
rather, years to compute AS(U8). This is why neither AS(U8), nor AS(Ummm

8 ) is
given in this paper.

As opposed to AS(Ummm

8 ), which we do not know, the results proved in this
paper enable us to determine CS(Ummm

8 ) as follows. Applying Lemma 2.3 first
with (M, L3) playing the role of (V,K) and then with (Lmmm

3 , L5) playing the
same role, we obtain that the free lattice on three generators in Lmmm

3 ∨ Lmmm

5 is
finite. By (5.3) and Theorem 5.1(i),

(6.4) AS(Lmmm

3 ) = AS(Lmmm

3 ∨ Lmmm

5 ) = {1, 2, 3, 4}.

(The first equality above is only for a later reference.) Since L3 is a selfdual
lattice and L5 = L4

dual, the dual of (6.2) gives that all proper homomor-
phic images and all proper sublattices of U8

dual belong to Lmmm

3 ∨ Lmmm

5 . Apply-
ing Lemma 2.3(i) to the above-mentioned facts, we obtain that AS(Ummm

8
dual) =

{1, 2, 3, 4}. Therefore,

(6.5) CS(Ummm

8 ) = {1, 2, 3, 4}.
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Remark 6.2. Assume that X is a lattice variety such that Xmmm ∈ BBB23; see
(3.1) for the notation. No systematic study of the relationship between the
spectra of X and those of Xmmm

is targeted in the present paper; we only mention
the following. As opposed to what the results and examples formulated so far
suggest, AS(X ) and AS(Xmmm

) can be distinct. For example, compare (6.4) with

(6.6) AS(L3) = AS(L3 ∨ L5) = {1, 2, 3},

which was computed by our computer program in less than a second.

Remark 6.3. Similarly to the argument showing (6.5), the following counter-
part of (6.5) follows from (6.6), the dual of (6.2), and Lemma 2.3(i):

(6.7) CS(U8) = AS(HSP {U8
dual}) = {1, 2, 3}.

Theorem 5.1 shows that for many nontrivial intervals [V,W] of BBB23, it may
happen that AS(V) = AS(W). The length of such an interval [V,W] is at
most 22 (and it is 22 for [V,W] = [Lmmm

4 , T23]). Using the method of the proof of
Theorem 5.1, one can derive the following consequence of (the Key) Lemma 2.3
in a straightforward way.

Remark 6.4. If V is a lattice variety with FLV(3) finite and k is a positive
integer, then there exists a lattice variety W such that V ≤ W in ΛΛΛ, the interval
[V,W] is of length k, and AS(W) = AS(V).

No survey of the triples (V,W, k) with components taken from Remark 6.4
is targeted in the present paper, and it is not clear whether a satisfactory
survey would be possible. We only mention that (the Key) Lemma 2.3 is not
sufficient to yield all possible triples. For example, if V = Nmmm

5 and V < W ∈
[Nmmm

5 ,H
mmm

3 ], then Lemma 2.3 is not applicable, but we know from Theorem 5.1
that AS(W) = AS(V). In addition to what (the Key) Lemma 2.3 offers, there
is another straightforward way to find an extension W of V, not always a
proper extension, such that AS(W) = AS(V) simply because the class of three-
generated lattices remains unchanged. Namely, we can apply the following
observation for lattices with k = 3.

Observation 6.5. Let V be a variety of algebras and let k be a positive integer.
Then there exists a largest variety W such that V ⊆ W but every algebra of W
that can be generated by at most k elements belongs to V.

To give an example, if V is the lattice variety M3 = HSP{M3} and k = 3,
then a straightforward (but omitted) argument shows that W above is the
variety M of modular lattices; in this case the interval [V,W] is not of finite
length and its cardinality is continuum.

Proof of Observation 6.5. Based on Birkhoff’s classical characterization of equa-
tional classes as varieties, see Birkhoff [2], the proof is almost trivial. For a set
Σ of identities, let Σ(k) denote the set of at most k-variable identities belong-
ing to Σ. For a variety X , let ΣX be the set of all identities that hold in
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X . Let G be the set of all varieties U such that U is of the same signature
as V, V ⊆ U , and ΣU (k) = ΣV(k). Then Γ :=

⋂
{ΣU : U ∈ G} is closed

with respect to the inference rules since so are all the ΣU , U ∈ G. Hence, by
Birkhoff’s theorem, the models of Γ form a variety W and ΣW = Γ. Since
Γ(k) =

⋂
{ΣU (k) : U ∈ G} = {ΣV(k) : U ∈ G} = ΣV(k), we have that

ΣW(k) = Γ(k) = ΣV(k). Hence, W ∈ G. Since Γ = ΣW is the smallest el-
ement of {ΣU : U ∈ G}, we obtain that W is the largest member of G, as
required.

Acknowledgment

The author is grateful to Petar Marković for pointing out that, in the
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