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On mixed C0−groups of bounded linear operators on
non-Archimedean Banach spaces1
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Abstract

In this paper, we introduce and check some properties of mixed C0−
group of bounded linear operators on non-Archimedean Banach spaces.
Our main result extends theorems for mixed C0−groups of bounded lin-
ear operators on non-Archimedean Banach spaces. In contrast with the
classical setting, the parameter of mixed C0−groups belongs to a clopen
ball Ωr of the ground field K. As an illustration, we will discuss the
solvability of some inhomogeneous p-adic differential equations for mixed
C0−groups when α = −1. Examples are given to support our work.
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1 Introduction and preliminaries

In the classical functional analysis, the Cauchy equations f(x+ y) = f(x)f(y)
and f(x + y) = f(x) + f(y) for x, y ∈ R+ can be generalized as the form
f(x+ y) = H(f(x), f(y)), where H is a scalar-valued function of two variables.
This enabled S. Harsinder to discover and study the mixed semigroup of linear
operators on Archimedean Banach spaces ([8]). The first equation has been
studied on the classical Banach space by Hille-Yosida [1], [7] and [11]. Gen-
eralized semigroups and cosine functions were studied by M. Kostić, for more
details, we refer to [10].

In the non-Archimedean operators theory, T. Diagana [3] introduced the
concept of C0−groups of bounded linear operators on free non-Archimedean
Banach space. Also, A. El amrani, A. Blali, J. Ettayb and M. Babahmed
introduced and studied the notions of C−groups and cosine families of bounded
linear operators on non-Archimedean Banach spaces. For more details, we refer
to [2] and [6].
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Throughout this paper, X is a non-Archimedean (n.a) Banach space over
a (n.a) non trivially complete valued field K with valuation | · |, B(X) denotes
the set of all bounded linear operators from X into X, Qp is the field of p-adic
numbers (p ≥ 2 being a prime) equipped with p-adic valuation |.|p, Zp denotes
the ring of p-adic integers (the ring of p-adic integers Zp is the unit ball of Qp).
For more details and related issues, we refer to [9] and [13]. We denote the
completion of the algebraic closure of Qp under the p-adic absolute value | · |p
by Cp [9]. Let r > 0, Ωr denote the clopen ball of K centred at 0 with radius r,
that is Ωr = {k ∈ K : |k| < r}. The aim of this paper is to introduce and study
the notion of mixed C0−group on non-Archimedean Banach spaces over K. In
contrast with the classical setting, the parameter of a given a mixed C0−groups
belongs to a clopen ball Ωr of the ground field K. As an illustration, we will
discuss the solvability of some inhomogeneous p-adic differential equations for
mixed C0−groups, see Remark 2.16. We begin with some preliminaries.

Definition 1.1 ([4], Definition 2.1). Let X be a vector space over K. A non-
negative real valued function ∥ · ∥ : X → R+ is called a non-Archimedean norm
if:

(1) For all x ∈ X, ∥x∥ = 0 if and only if x = 0,

(2) For any x ∈ X and λ ∈ K, ∥λx∥ = |λ|∥x∥,

(3) For any x , y ∈ X, ∥x+ y∥ ≤ max(∥x∥, ∥y∥).

Property (3) of Definition 1.1 is referred to as the ultrametric or strong
triangle inequality.

Definition 1.2 ([4], Definition 2.2). A non-Archimedean normed space is a
pair (X; ∥ · ∥) where X is a vector space over K and ∥ · ∥ is a non-Archimedean
norm on X.

Definition 1.3 ([3], Definition 2.2). A non-Archimedean Banach space is a
vector space endowed with non-Archimedean norm, which is complete.

For more details on non-Archimedean Banach spaces and related issues, see
for example [4].

Proposition 1.4 ([4], Proposition 2.16). (1) A closed subspace of a
non-Archimedean Banach space is a non-Archimedean Banach space;

(2) The direct sum of two non-Archimedean Banach spaces is a non-
Archimedean Banach space.

Examples 1.5 ([4], Example 2.20). Let c0 (K) denote the set of all sequences
(xi)i∈N in K such that lim

i→∞
xi = 0. Then, c0 (K) is a vector space over K and

∥ (xi)i∈N ∥ = sup
i∈N

|xi|

is a non-Archimedean norm for which (c0 (K) , ∥ · ∥) a non-Archimedean Ba-
nach space.
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In this section, we define and discuss properties of non-Archimedean Banach
spaces which have bases.

Definition 1.6 ([3], Definition 2.5). A non-Archimedean Banach space
(X, ∥ · ∥) over a non-Archimedean valued field (complete) (K, | |) is said to
be a free non-Archimedean Banach space if there exists a family (xi)i∈I of
elements of X indexed by a set I such that each element x ∈ X can be written

uniquely like a pointwise convergent series defined by x =
∑
i∈I

λixi, and ∥x∥ =

sup
i∈I

|λi|∥xi∥.

The family (xi)i∈I is then called a t-orthogonal basis for X. If, for all i ∈ I,
∥xi∥ = 1, then (xi)i∈I is called an orthonormal basis of X. For more details of
orthogonality and the concepts of bases in non-Archimedean case, we refer to
[12] and [14].

However, the treatment of those non-Archimedean Banach spaces in the
general case can be found in [3] and [5]. Moreover, X is a free non-Archimedean
Banach space over K if and only if X is isometrically isomorphic to c0(I, u) for
certain index set I and an application u : I → R∗

+. By [12, Theorem 2.58] c0(I)
is of countable type if and only if I is countable. For more details we refer to
[12] and [14]. In this work the basis of free n.a Banach spaces considered is
countable, and we assume I = N.

Definition 1.7. [4] Let (X, ∥ · ∥) be a non-Archimedean Banach space. The
non-Archimedean Banach space (B(X), ∥ · ∥) is the collection of all bounded
linear operators from X into itself equipped with the operator-norm defined by

(∀A ∈ B(X)) ∥A∥ = sup
x∈X\{0}

∥A (x) ∥
∥x∥

.

For more details on non-Archimedean linear operators theory, we refer to
[4], [5], [12] and [14].

Throughout this paper, X is a (n.a) Banach space over a (n.a) non triv-
ially complete valued field K of characteristic zero with valuation |.|, B(X) is
equipped with the norm of Definition 1.7 and for all r > 0, Ω∗

r = Ωr\{0},
denotes the clopen ball of center 0 with radius r deprived of zero.

Definition 1.8 ([3], Definition 3.1). Let r > 0 be a chosen real number such
that (T (t))t∈Ωr

are well defined. A one-parameter family (T (t))t∈Ωr
of bounded

linear operators from X into X is a group of bounded linear operators on X if

(i) T (0) = I, where I is the unit operator of X;

(ii) For all t, s ∈ Ωr T (t+ s) = T (t)T (s).

The group (T (t))t∈Ωr
will be called of class C0 or strongly continuous if the

following condition holds:

� For each x ∈ X, lim
t→0

∥T (t)x− x∥ = 0.
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A group of bounded linear operators (T (t))t∈Ωr
is uniformly continuous if

and only if lim
t→0

∥T (t)− I∥ = 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

T (t)x− x

t
exists},

and

Ax = lim
t→0

T (t)x− x

t
for each x ∈ D(A),

is called the infinitesimal generator of the group (T (t))t∈Ωr
.

As an application of C0−groups of linear operators, consider the p-adic
abstract Cauchy problem for differential equations on non-Archimedean Banach
space X given by:

ACP (A;x)

{
du(t)
dt = Au(t), t ∈ Ωr,

u(0) = x,

where A : D(A) → X is a linear operator and x ∈ D(A).

2 Main results

Recall that k is the residue class field of K. Througout this paper, we assume
that K is a complete non-Archimedean valued field of characteristic zero with

char(k) = p
(
p is a prime number

)
. We begin with some definitions.

Definition 2.1. Let r > 0 be a real number. A family (T (t))t∈Ωr of bounded
linear operators is said to satisfy a p-adic H−generalized Cauchy equation of
bounded linear operators on X if

for all t, s ∈ Ωr, T (t+ s) = H
(
T (s), T (t)

)
,

where H : B(X)×B(X) → B(X) is a function.

Remark 2.2. If H
(
T (s), T (t)

)
= T (s)T (t), with T (0) = I, (T (t))t∈Ωr is a

group of bounded linear operators on X.

Definition 2.3. Let r > 0 be a real number. A family (S(t))t∈Ωr
of bounded

linear operators is said to be a H − C0−group or a generalized C0−group of
bounded linear operators on X if

(i) S(0) = I, where I is the identity operator of X.

(ii) there is a C0−group (T (t))t∈Ωr
of bounded linear operators and D ∈

B(X) such that for all t, s ∈ Ωr,

S(s+ t) = H
(
S(s), S(t)

)
= S(s)S(t) +D

(
S(s)− T (s)

)(
S(t)− T (t)

)
;
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(iii) for each x ∈ X,S(·)x : Ωr −→ S(t)x is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

S(t)x− x

t
exists}

and

for each x ∈ D(A), Ax = lim
t→0

S(t)x− x

t
,

is called the infinitesimal generator of the H − C0−group (S(t))t∈Ωr
.

2.1 Question

Can we characterize the infinitesimal generator of an H − C−group of linear
operators on infinite dimensional non-Archimedean Banach space?

Remark 2.4. Let (S(t))t∈Ωr be a generalized C0−group on X, if D = 0, then
(S(t))t∈Ωr

is a C0−group of linear operators on X.

From Definition 2.3, when D = αI for α ∈ K, we have the following defini-
tion.

Definition 2.5. Let r > 0 be a real number. A family (S(t))t∈Ωr
is said to be

a mixed C0−group of bounded linear operators on X if

(i) S(0) = I;

(ii) there is a C0−group (T (t))t∈Ωr
of bounded linear operators and α ∈ K

such that for all s, t ∈ Ωr

S(s+ t) = H
(
S(s), S(t)

)
= S(s)S(t) + α

(
S(s)− T (s)

)(
S(t)− T (t)

)
;

(iii) for each x ∈ X, S(·)x : Ωr −→ S(t)x is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

S(t)x− x

t
exists}

and

for each x ∈ D(A), Ax = lim
t→0

S(t)x− x

t
,

is called the infinitesimal generator of the mixed C0−group (S(t))t∈Ωr
.

Remark 2.6. Let (S(t))t∈Ωr
be a mixed C0−group on X. If α = 0, then

(S(t))t∈Ωr
is a C0−group of linear operators on X.
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Example 2.7. Let r = p
−1
p−1 , suppose that X is a non-Archimedean Banach

space over Qp, A ∈ B(X) such that ∥A∥ < r. Set

for all t ∈ Ωr, S(t) = etA + tAetA.

Then one can see that with D = −I, {S(t)}t∈Ωr
is a H − C−group where for

all t ∈ Ωr, T (t) = etA. In this case, for all t, s ∈ Ωr, S(s)S(t) = S(t)S(s).
In fact, D = −I, if D = −I, then for all t, s ∈ Ωr we have S(t + s) =
e(t+s)A + (t+ s)Ae(t+s)A and

S(t)S(s) =
(
etA + tAetA

)(
esA + sAesA

)
= etA+sA + sAetA+sA + tAetA+sA + tsAAetA+sA

= e(t+s)A + (t+ s)Ae(t+s)A + tsAAe(t+s)A,

and (
S(t)− T (t)

)(
S(s)− T (s)

)
= tsAAe(t+s)A.

Hence,

S(t)S(s)−
(
S(t)− T (t)

)(
S(s)− T (s)

)
= e(t+s)A + (t+ s)Ae(t+s)A

= S(s+ t).

(i) and (iii) of Definition 2.3 are easy to verify so {S(t)}t∈Ωr is aH−C0−group.

The following proposition gives a condition for which all operators in an
H − C0−group family commute.

Proposition 2.8. Let {S(t)}t∈Ωr be an H −C0−group family on X. If I +D
is injective and for all t, s ∈ Ωr, T (s)S(t) = S(t)T (s). Then for all t, s ∈
Ωr, S(s)S(t) = S(t)S(s).

Proof. Assume that I + D is injective and for all t, s ∈ Ωr, T (s)S(t) =
S(t)T (s), then for all t, s ∈ Ωr,

S(t)S(s) +D
(
S(t)− T (t)

)(
S(s)− T (s)

)
= S(t+ s)

= S(s+ t)

= S(s)S(t) +D
(
S(s)− T (s)

)
×
(
S(t)− T (t)

)
.

Thus, (I+D)
(
S(t)S(s)−S(s)S(t)

)
= 0, then for all t, s ∈ Ωr, S(s)S(t) =

S(t)S(s).
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We have the following theorem.

Theorem 2.9. Let {S(t)}t∈Ωr
be an H−C0−group family of infinitesimal gen-

erator A on X with {T (t)}t∈Ωr
is C0−group of infinitesimal generator A0 such

that there is a M1, M2 > 0 such that for all t, s ∈ Ωr, ∥S(t)∥ ≤ M1, ∥T (t)∥ ≤
M2, T (s)S(t) = S(t)T (s), and S(t)S(s) = S(s)S(t). If x ∈ D(A), then for
all t ∈ Ωr, S(t)x, T (t)x ∈ D(A), and AS(t)x = S(t)Ax. Furthermore,
S(t)x, T (t)x ∈ D(A0) and A0S(t)x = S(t)A0x, A0T (t)x = T (t)A0x for any
x ∈ D(A0).

Proof. Let x ∈ D(A) and let s ∈ Ω∗
r and t ∈ Ωr. From the boundedness of

{S(t)}t∈Ωr
, it is easy to see that

(2.1)

(
S(s)S(t)x− S(t)x

s

)
= S(t)

(
S(s)x− x

s

)
→ S(t)Ax as s → 0.

Consequently, for all t ∈ Ωr, S(t)Ax ∈ D(A) and AS(t)x = S(t)Ax.
Let x ∈ D(A) and let s ∈ Ω∗

r and t ∈ Ωr. From the boundedness of {T (t)}t∈Ωr

(2.2)

(
S(s)T (t)x− T (t)x

s

)
= T (t)

(
S(s)x− x

s

)
→ T (t)Ax as s → 0.

Consequently, for all t ∈ Ωr, T (t)x ∈ D(A) and AT (t)x = T (t)Ax.
The last part can be proved similarly.

Set A1 = (1 + α)A − αA0, where α ∈ K\{−1} and A0 is the infinitesimal
generator of the C0−group {T (t)}t∈Ωr

and A is the infinitesimal generator of
a mixed C0−group {S(t)}t∈Ωr

. We have the following theorem.

Theorem 2.10. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr be a mixed C0−group family of bounded linear operators on X with
α ∈ K\{−1}. Let for all t ∈ Ωr, T1(t) = (1+α)S(t)−αT (t), then {T1(t)}t∈Ωr

is a C0−group of bounded linear operators whose infinitesimal generator is an
extension of A1. Furthermore, for all x ∈ X, and t ∈ Ωr,

S(t)x =
1

1 + α
T1(t)x+

α

1 + α
T (t)x.

Proof.

(i) Trivially, T1(0) = (1 + α)S(0)− αT (0) = I,

(ii) For all t, s ∈ Ωr, x ∈ X, we have

T1(s+ t)x = (1 + α)S(s+ t)− αT (s+ t)x,
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and

T1(s+ t)x = (1 + α)
(
S(s)S(t) + α(S(s)− T (s))(S(t)− T (t))

)
x

− αT (s)T (t)x

= (1 + α)S(s)S(t)x+ α(1 + α)S(s)S(t)x− α(1 + α)S(s)T (t)x

− α(1 + α)T (s)S(t)x+ α(1 + α)T (s)T (t)x− αT (s)T (t)x

= (1 + α)2S(s)S(t)x− α(1 + α)S(s)T (t)x

− α(1 + α)T (s)S(t)x+ α2T (s)T (t)x

=
(
(1 + α)S(s)− αT (s)

)(
(1 + α)S(t)− αT (t)

)
x

= T1(s)T1(t)x.

(iii) Since (T (t))t∈Ωr
and (S(t))t∈Ωr

are continuous on Ωr, thus (T1(t))t∈Ωr
is

continuous on Ωr. So, (T1(t))t∈Ωr
is a C0−group of bounded linear operators

on X.

Now we show that an extension of A1 = (1+α)A−αA0 where α ∈ K\{−1} is
the infinitesimal generator of {T1(t)}t∈Ωr

. Let B be the infinitesimal generator

of {T1(t)}t∈Ωr
. For x ∈ D(A1)

(
= D(A)∩D(A0)

)
. By definitions of D(A) and

D(A0), lim
t→0

(S(t)x− x

t

)
= Ax and lim

t→0

(T (t)x− x

t

)
= A0x. Then,

lim
t→0

(T1(t)x− x

t

)
= lim

t→0

( (1 + α)S(t)x− αT (t)x− x

t

)
= (1 + α) lim

t→0

(S(t)x− x

t

)
− α lim

t→0

(T (t)x− x

t

)
exists in X. It follows that x ∈ D(B) and A1x = Bx, hence the infinitesimal
generator of (T1(t))t∈Ωr

is an extension of A1.

For α ∈ K\{−1} and D = αI, from Proposition 2.8 and Theorem 2.9, we
conclude:

Proposition 2.11. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr

be a mixed C0−group family of bounded linear operators on X with
α ∈ K\{−1} such that for all t, s ∈ Ωr, T (s)S(t) = S(t)T (s). Then for all
t, s ∈ Ωr, S(s)S(t) = S(t)S(s).

Theorem 2.12. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr

be a mixed C0−group family of infinitesimal generator A on X,
while {T (t)}t∈Ωr

is C0−group of infinitesimal generator A0 and α ∈ K\{−1}
such that there is a M1, M2 > 0 such that for all t, s ∈ Ωr, ∥S(t)∥ ≤
M1, ∥T (t)∥ ≤ M2, T (s)S(t) = S(t)T (s), and S(s)S(t) = S(t)S(s). If x ∈
D(A), then for all t ∈ Ωr, S(t)x, T (t)x ∈ D(A), and AS(t)x = S(t)Ax. Fur-
thermore, S(t)x, T (t)x ∈ D(A0) and A0S(t)x = S(t)A0x, A0T (t)x = T (t)A0x
for any x ∈ D(A0).

For α = −1, we have the following theorem.
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Theorem 2.13. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr

be a mixed C0−group family of infinitesimal generator A on X, such
that there is a M1, M2 > 0 such that for all t, s ∈ Ωr, ∥S(t)∥ ≤ M1, ∥T (t)∥ ≤
M2, T (s)S(t) = S(t)T (s) and S(s)S(t) = S(t)S(s) where (T (t))t∈Ωr

is a
C0−group of infinitesimal generator A0. Then, for all x ∈ D(A) ∩D(A0),

dS(t)

dt
x =

(
A0S(t)x+ (A−A0)T (t)x

)
.

Proof. Let x ∈ D(A) ∩D(A0), using Theorem 2.9, we have

d

dt
S(t)x = lim

h→0

S(h+ t)x− S(t)x

h

= lim
h→0

S(h)S(t)x+ (T (h)− S(h)(S(t)− T (t))x− S(t)x

h

= lim
h→0

T (h)S(t)x− S(t)x

h
+ lim

h→0

S(h)T (t)x− T (t)x

h

− lim
h→0

T (h)T (t)x− T (t)x

h

=

(
A0S(t)x+AT (t)x−A0T (t)x

)
.

We have the following definition.

Proposition 2.14. Let X be a finite dimensional Banach space over Qp, let
{T (t)}t∈Ωr

be a C0−group of infinitesimal generator A0 on X, and let A ∈
B(X) such that for all t ∈ Ωr, T (t)A = AT (t) and A0T (t) = T (t)A0. If, for
all t ∈ Ωr, S(t) = T (t) + t(A−A0)T (t), then {S(t)}t∈Ωr

is a mixed C0−group
of infinitesimal generator A with α = −1.

Proof. Since (T (t))t∈Ωr is C0−group, then T (0) = I, hence S(0) = T (0) = I.
Let s, t ∈ Ωr, then

S(t+ s) = T (t+ s) + (t+ s)(A−A0)T (t+ s),

= T (t)T (s) + tAT (t)T (s)− tA0T (t)T (s) + sAT (t)T (s)

−sA0T (t)T (s),
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and

S(s)S(t) +
(
T (s)− S(s)

)(
S(t)− T (t)

)
=

(
T (s) + s(A−A0)T (s)

)
×(

T (t) + t(A−A0)T (t)
)

−st(A−A0)T (s)(A−A0)T (t)

= T (s)T (t) + tT (s)AT (t)

−tT (s)A0T (t)

+sAT (s)T (t)− sA0T (s)T (t)

+st(A−A0)(A−A0)T (s)T (t)

−st(A−A0)(A−A0)T (s)T (t)

= S(t+ s).

Also, we have for all x ∈ X, t ∈ Ωr → T (t)x is continuous, then x ∈ X, t ∈
Ωr → S(t)x is continuous. Consequently, (S(t))t∈Ωr

is a mixed C0−group of
bounded linear operators on X.

Example 2.15. Assume that K = Qp, let A, A0 ∈ B(X) such that ∥A0∥ <

r = p
1

1−p and AA0 = A0A, we consider the family on X given by

for all t ∈ Ωr, S(t) = etA0 + t(A−A0)e
tA0 .

It is easy to see that for α = −1, (S(t))t∈Ωr is a mixed C0−group of bounded
linear operators of infinitesimal generator A on X.

Remark 2.16. Let X be a non-Archimedean Banach space over K. Theorem
2.13 shows that for α = −1, if (S(t))t∈Ωr is a mixed C0−group of infinitesimal
generator A and (T (t))t∈Ωr is a C0−group of infinitesimal generator A0 such
that for all t, s ∈ Ωr, T (s)S(t) = S(t)T (s), S(s)S(t) = S(t)S(s), then u(t) =
S(t)x is a solution of the following inhomogeneous p-adic differential equation
given by

du(t)

dt
= A0u(t) + (A−A0)f(t), t ∈ Ωr,

and u(0) = x, x ∈ D(A0) ∩D(A) with f(t) = T (t)x.

References

[1] Arendt, W., Batty, C. J. K., Hieber, M., and Neubrander, F.
Vector-valued Laplace transforms and Cauchy problems, second ed., vol. 96
of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel,
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