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Compactness and Lindelöfness using somewhere dense
and cs-dense sets
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Abstract. In this study, by using somewhere dense sets and cs-dense
sets, we introduce and investigate the notions of almost SD-compact and
almost SD-Lindelöf spaces, nearly SD-compact and nearly SD-Lindelöf
spaces, and mildly SD-compact and mildly SD-Lindelöf spaces. We show
the relationships between them with the help of illustrative examples. In
addition, we characterize them and study their behaviours under some
types of mappings.
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1. Introduction

Generalized open sets is a major area of research in general topology. By
them, many topological concepts such as continuity and compactness were
reformulated. Recently, they have been utilized as a vital technique to reduce
the boundary region in the approximation spaces [2, 3, 8, 12] and to solve some
problems in the information systems [20, 21]. Also, some authors [4, 11, 14]
applied them to study of digital topology.

In 1963, Levine [16] extended the class of open sets by introducing the
concept of semi-open sets. Then, Njastad [19] introduced another type of gen-
eralized open sets lying between open sets and semi-open sets, namely α-open
sets. Mashhour et al. [17] in 1982, and Abd El-Monsef et al. [1] 1983, presented
and studied preopen sets and β-open sets, respectively. In 1996, Andrijević [13]
defined and investigated the concept of b-open sets. These types of generalized
open sets were defined by using interior and closure operators.

The tendency to study these generalizations has been increasing rapidly.
Al-shami [5] introduced and studied the concepts of somewhere dense sets and
ST1-spaces. Then, Al-shami and Noiri [10] have studied further properties of
somewhere dense sets, and have defined the concepts of SD-continuous and
SD-homeomorphism maps. The class of somewhere dense sets contains all
regular open, α-open, preopen, semi-open, β-open and b-open sets with the
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exception of the empty set. Al-shami [6] presented and explored the concepts
of somewhere dense and cs-dense sets in soft topological spaces. Then, the
authors of [9, 15] employed theses concepts to introduce and discuss some
notions such as soft continuity and soft connectedness. Recently, Al-shami [7]
has studied the sum of topological spaces in ordered setting.

We recall that any β-open cover of a topological space does not have a finite
subcover. Therefore, we cannot define compactness using β-open sets. Since
every β-open set is somewhere dense, then we cannot define compactness using
somewhere dense sets. However, we apply somewhere dense sets to define weak
types of compactness, namely almost SD-compact and almost SD-Lindelöf
spaces, nearly SD-compact and nearly SD-Lindelöf spaces, and mildly SD-
compact and mildly SD-Lindelöf spaces.

2. Preliminaries

In this section, we recall some definitions and results which help us to
investigate and discuss our new concepts.

Definition 2.1. A subset E of a topological space (X, ζ) is said to be:

(i) semi-open [16] if E ⊆ cl(int(E)).

(ii) α-open [19] if E ⊆ int(cl(int(E))).

(iii) preopen [17] if E ⊆ int(cl(E)).

(iv) β-open [1] if E ⊆ cl(int(cl(E))).

(v) b-open [13] if E ⊆ int(cl(E))
⋃
cl(int(E)).

(vi) somewhere dense [5] if int(cl(E)) ̸= ∅. The complement of a somewhere
dense set is said to be cs-dense. A somewhere dense and cs-dense set is
called an SC-set. The collection of all somewhere dense sets of (X, ζ) is
denoted by S(ζ).

The complement of a ξ-open set is said to be ξ-closed for ξ ∈ {regular, semi,
α, pre, β, b}.

Theorem 2.2. [18] If M is an open subset of (X, ζ), then M
⋂

cl(B) ⊆
cl(M

⋂
B) at each B ⊆ X.

Definition 2.3. A topological space (X, ζ) with no mutually disjoint non-
empty open sets is said to be hyperconnected [18]. (X, ζ) is called strongly
hyperconnected [5] if a subset of X is dense if and only if it is non-empty and
open.

Theorem 2.4. [5] A subset B of (X, ζ) is cs-dense if and only if there is a
proper closed subset F of X such that int(B) ⊆ F .

Theorem 2.5. [5]
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1. Every subset of a topological space is somewhere dense or cs-dense.

2. Every superset of a somewhere dense set is somewhere dense.

Theorem 2.6. [5] The intersection of open and somewhere dense sets in a
hyperconnected space is somewhere dense.

Theorem 2.7. [5] The intersection of cs-dense (resp. somewhere dense) sub-
sets of a strongly hyperconnected space is cs-dense (resp. somewhere dense).

Definition 2.8. [5] Let M be a subset of (X, ζ). Then:

(i) The S-interior of M (Sint(M), in short) is the union of all somewhere
dense sets contained in M .

(ii) The S-closure of M (Scl(M), in short) is the intersection of all cs-dense
sets containing M .

Proposition 2.9. [5] Consider a subset M of (X, ζ). Then:

(i) M ⊆ Scl(M); and a set M ̸= X is cs-dense if and only if M = Scl(M).

(ii) Sint(M) ⊆ M ; and a non-empty set M is somewhere dense if and only if
M = Sint(M).

(iii) (Sint(M))c = Scl(M c) and (Scl(M))c = Sint(M c).

Definition 2.10. [5] (X, ζ) is called an ST1-space if for any pair of distinct
points a, b ∈ X, there are two somewhere dense sets such that one of them
contains a but not b and the other contains b but not a.

Theorem 2.11. [5] The following statements are equivalent.

(i) (X, ζ) is an ST1-space;

(ii) For each a ̸= b ∈ X, there are two disjoint somewhere dense sets such that
one contains a and the other contains b.

(iii) For each a ̸= b ∈ X, there are two disjoint sets containing a and b,
respectively, such that they are both SC-sets.

Definition 2.12. [10] A map g : (X, τ) → (Y, θ) is said to be:

(i) SD-continuous at a ∈ X if for any open set U containing g(a), there is a
somewhere dense set E containing a such that g(E) ⊆ U .

(ii) SD-continuous on X if it is SD-continuous for each a ∈ X.

(iii) SD-irresolute provided that the inverse image of each somewhere dense
subset of Y is empty or a somewhere dense subset of X.

Theorem 2.13. [10] For a map g : (X, τ) → (Y, θ), the following statements
are equivalent:



4 T. M. Al-shami, T. Noiri

(i) g is SD-continuous;

(ii) The inverse image of each closed set is X or cs-dense;

(iii) Scl(g−1(F )) ⊆ g−1(cl(F )) for each F ⊆ Y ;

(iv) g(Scl(H)) ⊆ cl(g(H)) for each H ⊆ X;

(v) g−1(int(F )) ⊆ Sint(g−1(F )) for each F ⊆ Y .

Definition 2.14. (X, ζ) is said to be almost compact (resp. almost Lindelöf)
if every open cover of X has a finite (resp. countable) subfamily such that the
closures of the members cover X.

3. Almost SD-compact and SD-Lindelöf spaces

In this section, we introduce the concepts of almost SD-compact spaces and
almost SD-Lindelöf spaces and explore their essential properties. To illustrate
the relationship between them, we give some examples.

Definition 3.1. A family of somewhere dense subsets of (X, ζ) is called a
somewhere dense cover (briefly, SD-cover) of X if the family is a cover of X.

Definition 3.2. (X, ζ) is said to be almost SD-compact (resp. almost SD-
Lindelöf) if every SD-cover of X has a finite (resp. countable) subfamily such
that the union of S-closures of the members cover X.

We give the following two examples which we need to illustrate some results.

Example 3.3. Let the set of real numbers R be the universal set and let ζ =
{∅, X, {1}} be a topology on R. Note that every superset of {1} is somewhere
dense, but not cs-dense. Therefore, every member of any SD-cover of (R, ζ) is
a superset of {1}. Thus, the S-closure of every member of the SD-cover is R.
Hence, (R, ζ) is almost SD-compact.

Example 3.4. Let ζ = {∅,N, {1},N \ {1}} be a topology on the set of natural
numbers N. Note that every subset of (N, ζ) (except for the empty and universal
sets) is both somewhere dense and cs-dense. Therefore, the collection of all
singleton subsets of N forms an SD-cover of (N, ζ). Thus, the S-closure of
every member of the SD-cover is itself; therefore, this cover does not have a
finite subcover satisfying a condition of almost SD-compactness. Hence, (N, ζ)
is not almost SD-compact.

Proposition 3.5. Every almost SD-compact space is almost SD-Lindelöf.

Proof. It directly follows from Definition 3.2.

Example 3.4 shows that the converse of Proposition 3.5 fails.

Proposition 3.6. Every almost SD-compact (resp. almost SD-Lindelöf) space
is almost compact (resp. almost Lindelöf).
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Proof. Let {Gi : i ∈ I} be an open cover of (X, ζ). Then it is an SD-
cover. Since (X, ζ) is almost SD-compact, then there is a finite subfamily
G1, G2, ..., Gn such that X =

⋃n
i=1 Scl(Gi). Since Scl(Gi) ⊆ cl(Gi), then

X =
⋃n

i=1 cl(Gi), as required.
Similarly, the proof is given in the case of almost SD-Lindelöf

By replacing the natural numbers set N in Example 3.4 by the real numbers
set R, we note that (R, ζ) is Lindelöf, but not almost SD-compact. This clarifies
that the converse of Proposition 3.6 fails.

Definition 3.7. A subset G of (X, ζ) is said to be almost SD-compact (resp.
almost SD-Lindelöf) if for any cover {Vα : α ∈ ∆} of G by somewhere dense
sets Vα of X, there exists a finite (resp. countable) subset ∆0 of ∆ such that
G ⊆ ∪{Scl(Vα) : α ∈ ∆0}.

Proposition 3.8. A finite (resp. countable) union of almost SD-compact
(resp. almost SD-Lindelöf) subsets of (X, ζ) is almost SD-compact (resp. al-
most SD-Lindelöf).

Proof. We prove the proposition in the case of almost SD-Lindelöfness. One
can prove the other case similarly.

Let {Gn : n ∈ N} be a countable family of almost SD-Lindelöf subsets
of (X, ζ) and let Λ = {Hi : i ∈ I} be an SD-cover of

⋃
n∈N Gn. By the

hypothesis, for each n ∈ N there exists a countable set Sn of Λ such that
Gn ⊆ ∪i∈Sn

Scl(Hi). It is clear that ∪n∈NSn is a countable set. Therefore,⋃
n∈N Gn ⊆

⋃
i∈

⋃
n∈N Sn

Scl(Hi). Hence, the desired result is proved.

Proposition 3.9. If A is almost SD-compact (resp. almost SD-Lindelöf) and
B is an SC-set, then A∩B is almost SD-compact (resp. almost SD-Lindelöf).

Proof. Let us prove the proposition in the case of almost SD-compactness. The
case between parentheses can be achieved similarly.
Let {Hα : α ∈ ∆} be any cover of A∩B by SD-open sets of X. Then {Hα : α ∈
∆}∪ (X \B) is an SD-cover of A. Since A is almost SD-compact, there exists
a finite subset ∆0 of ∆ such that A ⊂ [∪{Scl(Hα) : α ∈ ∆0}] ∪ Scl(X \ B).
Since B is an SC-set, we have A∩B ⊆ ∪{Scl(Hα) : α ∈ ∆0}. Therefore, A∩B
is almost SD-compact.

Corollary 3.10. Every SC-subset of an almost SD-compact (resp. almost
SD-Lindelöf) space is almost SD-compact (resp. almost SD-Lindelöf).

In Example 3.3, a subset {1, 2} of (R, ζ) is almost SD-compact; however, it
is not cs-dense. This shows that the converse of the above corollary is false.

Definition 3.11. A family Λ = {Fi : i ∈ I} of sets is said to have the first
type of finite (resp. countable) SD-intersection property if

⋂
i∈S Sint(Fi) ̸= ∅

for any finite (resp. countable) subset S of I.

Theorem 3.12. (X, ζ) is almost SD-compact (resp. almost SD-Lindelöf) if
and only if every family of cs-dense sets satisfying the first type of finite (resp.
countable) SD-intersection property, has, itself, a nonempty intersection.
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Proof. We will start with the proof for almost SD-compactness, because the
proof for almost SD-Lindelöfness is analogous.
Suppose that Λ = {Fi : i ∈ I} is a family of cs-dense subsets of X such
that

⋂
i∈I Fi = ∅. Then X =

⋃
i∈I F

c
i . Since (X, ζ) is almost SD-compact,

then there exist finite subsets F1, F2, ..., Fn of Λ such that X =
⋃n

i=1 Scl(F
c
i ).

Therefore ∅ = (
⋃n

i=1 Scl(F
c
i ))

c =
⋂n

i=1 Sint(Fi), as required.
Conversely, let Λ = {Gi : i ∈ I} be an SD-cover of X. Then ∅ =

⋂
i∈I G

c
i .

By the hypothesis of the first type of finite SD-intersection property, we have
∅ =

⋂n
i=1 Sint(G

c
i ) for some finite subsets G1, G2, ..., Gn of Λ. Therefore, X =⋃n

i=1 Scl(Gi). Hence, (X, ζ) is almost SD-compact.

Proposition 3.13. The SD-continuous image of an almost SD-compact (resp.
almost SD-Lindelöf) set is almost compact (resp. almost Lindelöf).

Proof. Let g : X → Y be an SD-continuous map and F be an almost SD-
Lindelöf subset of X. Suppose that {Hi : i ∈ I} is an open cover of g(F ).
Then g(F ) ⊆

⋃
i∈I Hi. Now, F ⊆

⋃
i∈I g

−1(Hi) and g−1(Hi) is the empty
set or somewhere dense for each i ∈ I. By the hypotheses, since F is almost
SD-Lindelöf, then F ⊆

⋃
i∈S Scl(g−1(Hi)), where S is a countable subset of

I, therefore g(F ) ⊆
⋃

i∈S g(Scl(g−1(Hi))). It follows from Theorem 2.13 that
g(Scl(g−1(Hi))) ⊆ cl(g(g−1(Hi))) ⊆ cl(Hi). Thus g(F ) ⊆

⋃
i∈S cl(Hi). Hence,

g(F ) is almost Lindelöf.
A similar proof is given in the case of almost SD-compactness.

In a similar way, one can prove the following result.

Proposition 3.14. The SD-irresolute image of an almost SD-compact (resp.
almost SD-Lindelöf) set is almost SD-compact (resp. almost SD-Lindelöf).

Proposition 3.15. Let (X, ζ) be strongly hyperconnected and ST1-space. Then
every almost SD-compact subset of (X, ζ) is cs-dense.

Proof. Let F be an almost SD-compact subset of (X, ζ) and let x ∈ F c. Since
(X, ζ) is ST1, then for each yi ∈ F there are two disjoint sets Ui and Vi

containing x and yi, respectively, such that Ui and Vi are both somewhere dense
and cs-dense. Now, {Vi : i ∈ I} is an SD-cover of F . By the hypothesis, there
exists a finite subset {1, 2, ..., n} of I such that F ⊆

⋃n
i=1 Scl(Vi) =

⋃n
i=1 Vi.

Since (X, ζ) is strongly hyperconnected, then
⋂n

i=1 Ui is a somewhere dense
set. It is clear that (

⋂n
i=1 Ui)

⋂
(
⋃n

i=1 Vi) = ∅. Therefore, (
⋂n

i=1 Ui) ⊆ F c

which means that F c is a somewhere dense set. Hence, F is cs-dense, as
required.

4. Nearly SD-compact and nearly SD-Lindelöf spaces

In this section, we formulate the concepts of nearly SD-compact spaces and
nearly SD-Lindelöf spaces. We demonstrate their main properties and explain
the relationship between them with the help of examples.
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Definition 4.1. (X, ζ) is said to be nearly SD-compact (resp. nearly SD-
Lindelöf) if every SD-cover of X has a finite (resp. countable) subfamily whose
S-closure covers X.

Proposition 4.2. (i) Every nearly SD-compact space is nearly SD-Lindelöf.

(ii) Every almost SD-compact (resp. almost SD-Lindelöf) space is nearly SD-
compact (resp. nearly SD-Lindelöf).

Proof. Straightforward.

The following examples show that the converse of the above proposition is
not true.

Example 4.3. Assume that (N , ζ) is the same as in Example 3.4. One can
easily check that (N , ζ) is nearly SD-Lindelöf, but not nearly SD-compact.

Example 4.4. Let the set of real numbers R be the universal set and let
ζ = {∅, X, {1}, {2}, {1, 2}} be a topology on R. Note that every superset of
{1, 2} is somewhere dense, but not cs-dense. The collection {{2}, {1, x} : x ̸= 2}
forms an SD-cover of (R, ζ). It is clear that the S-closure of every member
of this SD-cover is itself; therefore, (R, ζ) is not almost SD-compact. On the
other hand, every SD-cover of (R, ζ) contains at least two subsets such that
{1, 2} is contained in them. It is clear that Scl({1, 2}) = R. Hence, (R, ζ) is
nearly SD-compact.

Definition 4.5. A family Λ = {Fi : i ∈ I} of sets is said to have the second
type of finite (resp. countable) SD-intersection property if Sint[

⋂
i∈S Fi] ̸= ∅

for any finite (resp. countable) subset S of I.

It is clear that if a collection satisfies the second type of finite (resp. count-
able) SD-intersection property, then it satisfies the first type of finite (resp.
countable) SD-intersection property.

Theorem 4.6. (X, ζ) is nearly SD-compact (resp. nearly SD-Lindelöf) if
and only if every family of cs-dense subsets of (X, ζ), satisfying the second type
of finite (resp. countable) SD-intersection property, has, itself, a nonempty
intersection.

Proof. We only prove the theorem when (X, ζ) is nearly SD-compact. The
case between parentheses can be made similarly.

Let Λ = {Fi : i ∈ I} be a family of cs-dense subsets of X. Suppose
that

⋂
i∈I Fi = ∅. Then X =

⋃
i∈I F

c
i . Since (X, ζ) is nearly SD-compact,

then there exist finite subsets F1, F2, ..., Fn of Λ such that X = Scl(
⋃n

i=1 F
c
i ).

Therefore ∅ = (Scl(
⋃n

i=1 F
c
i ))

c = Sint(
⋂n

i=1 Fi). Hence, the necessary condi-
tion holds.
Conversely, Let Λ be a family of cs-dense subsets of X which satisfies the sec-
ond type of finite SD-intersection property. Then it also satisfies the first type
of finite SD-intersection property. Since Λ has a nonempty intersection, then
(X, ζ) is an almost SD-compact space. It follows from Proposition 4.2 that
(X, ζ) is nearly SD-compact.
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Definition 4.7. A subset G of (X, ζ) is said to be nearly SD-compact (resp.
nearly SD-Lindelöf) if for every cover {Vα : α ∈ ∆} of G by somewhere dense
sets Vα of X, there exists a finite (resp. countable) subset ∆0 of ∆ such that
G ⊂ Scl(∪{Vα : α ∈ ∆0}).

Proposition 4.8. A finite (resp. countable) union of nearly SD-compact
(resp. nearly SD-Lindelöf) subsets of (X, ζ) is nearly SD-compact (resp. nearly
SD-Lindelöf).

Proof. We prove the proposition in the case of nearly SD-Lindelöfness. One
can prove the other case similarly.

Let {Gn : n ∈ N} be a countable family of nearly SD-Lindelöf subsets
of (X, ζ) and let Λ = {Hi : i ∈ I} be an SD-cover of

⋃
n∈N Gn. By the

hypothesis, for each n ∈ N we obtain a countable subset Sn of I such that
Gn ⊆ Scl[

⋃
i∈Sn

(Hi)]. It is clear that
⋃

n∈N Sn is a countable set. There-
fore, G1 ⊆ Scl(

⋃
i∈S1

Hi), . . . , Gn ⊆ Scl(
⋃

i∈Sn
Hi), . . . . Thus,

⋃
n∈N Gn ⊆

Scl[
⋃

i∈
⋃

n∈N Sn
(Hi)]. Hence, the desired result is proved.

Proposition 4.9. The SD-continuous image of a nearly SD-compact (resp.
nearly SD-Lindelöf) set is nearly compact (resp. nearly Lindelöf).

Proof. Let g : X → Y be an SD-continuous map and F be a nearly SD-
Lindelöf subset of X. Suppose that {Hi : i ∈ I} is an open cover of g(F ).
Then g(F ) ⊆

⋃
i∈I Hi. Now, F ⊆

⋃
i∈I g

−1(Hi) and g−1(Hi) is the empty
set or somewhere dense for each i ∈ I. By the hypotheses, since F is nearly
SD-Lindelöf, then F ⊆ Scl(

⋃
i∈S g−1(Hi)), where S is a countable subset of

I; hence, g(F ) ⊆ g(Scl(
⋃

i∈S g−1(Hi))). It follows from Theorem 2.13 that
g(Scl(

⋃
i∈S g−1(Hi))) ⊆ g(g−1(cl(

⋃
i∈S Hi))) ⊆ cl(

⋃
i∈S Hi). Thus g(F ) ⊆

cl(
⋃

i∈S Hi). Hence, g(F ) is nearly Lindelöf.
A similar proof is given in the case of nearly SD-compactness.

In a similar way, one can prove the following result.

Proposition 4.10. The SD-irresolute image of a nearly SD-compact (resp.
nearly SD-Lindelöf) set is nearly SD-compact (resp. nearly SD-Lindelöf).

Proposition 4.11. Let (X, ζ) be strongly hyperconnected and ST1-space. Then
every nearly SD-compact subset of (X, ζ) is cs-dense.

Proof. The proof is similar to that of Proposition 3.15.

5. Mildly SD-compact and mildly SD-Lindelöf spaces

In this section, we define the concepts of mildly SD-compact spaces and
mildly SD-Lindelöf spaces. We reveal main properties and relationships with
the help of examples.
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Definition 5.1. A family of subsets of (X, ζ) is called an SC-cover of X if
the family is a cover of X and every member of this family is an SC-subset of
(X, ζ).

Definition 5.2. (X, ζ) is said to be mildly SD-compact (resp. mildly SD-
Lindelöf) if every SC-cover of X has a finite (resp. countable) subcover.

Proposition 5.3. (i) Every mildly SD-compact (resp. mildly SD-Lindelöf)
space is mildly compact (resp. mildly Lindelöf).

(ii) Every mildly SD-compact space is mildly SD-Lindelöf.

(iii) Every almost SD-compact (resp. almost SD-Lindelöf) space is mildly
SD-compact (resp. mildly SD-Lindelöf).

Proof. The proofs of (i) and (ii) are obvious.
We prove (iii) in the case of almost SD-Lindelöfness.

Let Λ = {Hi : i ∈ I} be an SC-cover of (X, ζ). Then there exists a countable
subset S of I such that X = ∪i∈SScl(Hi). Now, Scl(Hi) = Hi for each i ∈ I.
Therefore, (X, ζ) is mildly SD-Lindelöf.
A similar proof is given when (X, ζ) is almost SD-compact.

Definition 5.4. A subset G of (X, ζ) is said to be mildly SD-compact (resp.
mildly SD-Lindelöf) if every cover of G by SC-subsets of X has a finite (resp.
countable) subcover.

Proposition 5.5. A finite (resp. countable) union of mildly SD-compact
(resp. mildly SD-Lindelöf) subsets of (X, ζ) is mildly SD-compact (resp.
mildly SD-Lindelöf).

Proof. We prove the proposition in the case of mildly SD-Lindelöfness. One
can prove the other case similarly.

Let {Gn : n ∈ N} be a countable family of mildly SD-Lindelöf subsets of
(X, ζ) and let Λ = {Hi : i ∈ I} be a cover of ∪n∈NGn by SC-subsets of X.
By the hypothesis, for each n ∈ N we obtain a countable subset Sn of I such
that Gn ⊆

⋃
i∈Sn

Hi. It is clear that
⋃

n∈N Sn is a countable set. Therefore,
G1 ⊆

⋃
i∈S1

Hi, . . . , Gn ⊆
⋃

i∈Sn
Hi, . . . . Thus,

⋃
n∈N Gn ⊆

⋃
i∈

⋃
n∈N Sn

Hi.

Hence, the desired result is proved.

Proposition 5.6. The SD-continuous image of a mildly SD-compact (resp.
mildly SD-Lindelöf) set is mildly compact (resp. mildly Lindelöf).

Proof. Let g : X → Y be an SD-continuous map and F be a mildly SD-
Lindelöf subset of X. Suppose that {Hi : i ∈ I} is a clopen cover of g(F ).
Then g(F ) ⊆

⋃
i∈I Hi. Now, F ⊆

⋃
i∈I g

−1(Hi) and g−1(Hi) is an SC-
subset in X for each i ∈ I. By the hypotheses, since F is mildly SD-
Lindelöf, then F ⊆ ∪i∈Sg

−1(Hi), where S is a countable subfamily of I;
therefore, g(F ) ⊆ g(

⋃
i∈S g−1(Hi)) ⊆ g(g−1(

⋃
i∈S Hi)) ⊆

⋃
i∈S Hi. Thus

g(F ) ⊆
⋃

i∈S Hi. Hence, g(F ) is mildly Lindelöf.
A similar proof is given in the case of mildly SD-compactness.
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In a similar way, one can prove the following result.

Proposition 5.7. The SD-irresolute image of a mildly SD-compact (resp.
mildly SD-Lindelöf) set is mildly SD-compact (resp. mildly SD-Lindelöf).

Theorem 5.8. (X, ζ) is mildly SD-compact (resp. mildly SD-Lindelöf) if
and only if every collection of SC-subsets of (X, ζ), satisfying the finite (resp.
countable) intersection property, has, itself, a nonempty intersection.

Proof. We only prove the theorem when (X, ζ) is mildly SD-compact. The
other case can be made similarly.

Let Λ = {Fi : i ∈ I} be a collection of SC-subsets of X. Suppose that⋂
i∈I Fi = ∅. Then X = ∪i∈IF

c
i . Since (X, ζ) is mildly SD-compact, then

there exists a finite subset I0 of I such that ∪i∈I0F
c
i = X. Hence, the necessary

condition holds.
Conversely, let {Hi : I ∈ I} be an SC-cover of X. Then X = ∪i∈IHi and
∩i∈I(X \Hi) = ∅. By the hypothesis, there exists a finite subset I0 of I such
that ∩i∈I0(X \Hi) = ∅; hence, ∪i∈I0Hi = X.

For the sake of economy, the proofs of the following two propositions will
be omitted.

Proposition 5.9. The intersection of a mildly SD-compact (resp. mildly SD-
Lindelöf) set and an SC-subset of X is mildly SD-compact (resp. mildly SD-
Lindelöf).

Proposition 5.10. Every SC-subset of a mildly SD-compact (resp. mildly
SD-Lindelöf) space (X, ζ) is mildly SD-compact (resp. mildly SD-Lindelöf).

Definition 5.11. (X, ζ) is called a clopen topological space if every open set
is closed.

Proposition 5.12. If (X, ζ) is a clopen topological space, then S(ζ) is the
discrete topology.

Proof. Let F be any nonemty subset of (X, ζ). Then cl(F ) is closed. Since
(X, ζ) is a clopen topological space, then cl(F ) is also nonempty open; therefore,
F is somewhere dense. As a result of choosing F randomly, S(ζ) is the discrete
topology.

Corollary 5.13. If (X, ζ) is a clopen topological space, then (X, ζ) is almost
SD-compact (nearly SD-compact, mildly SD-compact).

Proposition 5.14. Let (X, ζ) be strongly hyperconnected and ST1-space. Then
every mildly SD-compact subset of (X, ζ) is cs-dense.

Proof. The proof is similar to that of Proposition 3.15.
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Conclusion

Recently, many researchers have been interested in generalizations of open
subsets of a topological space. To contribute to this area, we have introduced
and studied almost SD-compact and almost SD-Lindelöf spaces, nearly SD-
compact and nearly SD-Lindelöf spaces, and mildly SD-compact and mildly
SD-Lindelöf spaces. We have supplied several examples to elucidate the re-
lationships between them. Also, we have characterized them using different
types of finite (resp. countable) SD-intersection property.

In an upcoming paper, we will apply somewhere dense sets to initiate new
types of approximation spaces. As a matter of fact, we reduce the boundary
region by increasing the lower approximation (which represents the interior
points from the topological viewpoint) and decreasing the upper approxima-
tion (which represents the closure points from the topological viewpoint) using
somewhere dense sets.
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