Fundamental solutions of the generalized axially symmetric Helmholtz equation

Maged G. Bin-Saad¹, Anvar Hasanov² and Jihad A. Younis³⁴

Abstract. This paper deals with the fundamental solutions of twodimensional elliptic equations with two singular coefficients. We construct the fundamental solutions of the generalized axially symmetric Helmholtz equation in terms of a confluent hypergeometric function in two variables.

AMS Mathematics Subject Classification (2010): 35A08

Key words and phrases: fundamental solutions, axially symmetric Helmholtaz equation, confluent hypergeometric Horn function

1. Introduction

Fundamental solutions play an important role in solving many problems in theory of elliptic equations. Dirichlet and Neumann problems for elliptic equation in some part of a ball were solved [21, 22]. Hasanov [10] constructed fundamental solutions of the generalized Helmholtz equation. In the paper [11], fundamental solutions were constructed for the generalized bi-axially symmetric Helmholz equation expressed by confluent hypergeometric functions of Kummer of three variables. Fundamental solutions for various modified Helmholtz equation were investigated by several authors (see, e.g. [1, 6, 7, 12, 14, 15, 18, 19, 20]).

In the domain $\Omega = \{(x, y) : -\infty < x < +\infty, y > 0\}$ consider the generalized axially symmetric Helmholtz equation

(1.1)
$$u_{xx} + u_{yy} + \frac{2\nu}{y}u_y + k^2u = 0, \nu > 0.$$

The equation (1.1) was considered by Gilbert and Howard [9] and Kumar and Singh [17]. In particular the case k = 0 was studied by Erdelyi [4], Henrici [13], Kumar and Arora [16] and Srivastava [23].

In [8, p. 214], the solution for axially symmetric Helmholtaz equation (1.1) was constructed

(1.2)
$$u(x,y) = \Gamma(2\nu)(kr)^{-\nu} \sum_{n=0}^{\infty} \frac{a_n n!}{\Gamma(2\nu+n)} J_{\nu+n}(kr) C_n^{\nu}(\cos\theta),$$

²Institute of Mathematics, Uzbek Academy of Sciences; Department of Mathematics, Analysis, Logic and Discrete Mathematics Ghent University,

¹Department of Mathematics, Aden University, e-mail: majed.math.edu@aden-unv.net

e-mail: anvarhasanov@yahoo.com

³Department of Mathematics, Aden University, e-mail: jihadalsaqqaf@gmail.com

⁴Corresponding author

where $x = r\cos\theta$, $y = r\sin\theta$ and $J_{\nu+n}(kr)$ are Bessel functions of first kind and $C_n^{\nu}(\cos\theta)$ are Gegenbauer polynomials.

In this paper, we aim to construct fundamental solutions of the equation (1.1) which have logarithmic singularities by means of the confluent hypergeometric function of two variables H_3 .

2. The confluent hypergeometric function H_3

For our purpose, we begin by recalling the confluent hypergeometric Horn function H_3 defined by (see [4, p.226, (31)])

(2.1)
$$\mathsf{H}_{3}(a,b;c;x,y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m-n}(b)_{m}}{(c)_{m}} \frac{x^{m}}{m!} \frac{y^{n}}{n!}, (|x| < 1),$$

where $(\alpha)_m = \alpha(\alpha + 1) \cdots (\alpha + m - 1)$ denotes the Pochhammer symbol. Integral representation of the Euler type for the function H₃ is given by (see [20, p.91, (3.19)],

(2.2)

$$\begin{aligned}
\mathsf{H}_{3}(a,b;c;x,y) &= \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \alpha^{b-1} (1-\alpha)^{c-b-1} (1-x\alpha)^{-a} \\
&\times_{0} F_{1} (1-a; -(1-x\alpha)y) \, d\alpha, (Re(c) > 0, Re(c-b) > 0),
\end{aligned}$$

where $_0F_1$ is the confluent hypergeometric function of Kummer defined by (see [24])

(2.3)
$${}_{0}F_{1}\left(-;c;x\right) = \sum_{m=0}^{\infty} \frac{1}{(c)_{m}} \frac{x^{m}}{m!}.$$

Using the formula of derivation

(2.4)
$$\frac{\partial^{i+j}}{\partial x^i \partial y^j} \mathsf{H}_3(a,b;c;x,y) = \frac{(a)_{i-j}(b)_i}{(c)_i} \mathsf{H}_3(a+i-j,b+i;c+i;x,y),$$

it is easy to show that the confluent hypergeometric function in (2.1) satisfies the system of hypergeometric equations

(2.5)
$$\begin{cases} x(1-x)\omega_{xx} + xy\omega_{xy} + [c-(a+b+1)x]\omega_x + by\omega_y - ab\omega = 0, \\ y\omega_{yy} - x\omega_{xy} + (1-a)\omega_y + \omega = 0, \end{cases}$$

where

$$\omega(x,y) = \mathsf{H}_3(a,b;c;x,y).$$

Now, by virtue of the derivation formula (2.4), we have the following expressions:

(2.6)
$$\omega_x = \sum_{m,n=0}^{\infty} \frac{(a)_{m-n}(b)_m}{(c)_m} \frac{(a+m-n)(b+m)}{(c+m)} \frac{x^m}{m!} \frac{y^n}{n!},$$

(2.7)
$$x\omega_x = \sum_{m,n=0}^{\infty} \frac{(a)_{m-n}(b)_m}{(c)_m} \frac{m}{1} \frac{x^m}{m!} \frac{y^n}{n!},$$

(2.8)
$$y\omega_y = \sum_{m,n=0}^{\infty} \frac{(a)_{m-n}(b)_m}{(c)_m} \frac{n}{1} \frac{x^m}{m!} \frac{y^n}{n!},$$

(2.9)
$$xy\omega_{xy} = \sum_{m,n=0}^{\infty} \frac{(a)_{m-n}(b)_m}{(c)_m} \frac{mn}{1} \frac{x^m}{m!} \frac{y^n}{n!},$$

(2.10)
$$x^{2}\omega_{xx} = \sum_{m,n=0}^{\infty} \frac{(a)_{m-n}(b)_{m}}{(c)_{m}} \frac{m(m-1)}{1} \frac{x^{m}}{m!} \frac{y^{n}}{n!}.$$

Substituting equalities (2.6)-(2.10) into the first equation of the system (2.5), we are convinced that the function $\omega(x, y)$ satisfies this equation. Similarly, it is easy to convince oneself that $\omega(x, y)$ satisfies the second equation of the same system.

Having substituted $\omega(x, y) = x^{\mu}y^{\tau}\varphi(x, y)$ in the system of hypergeometric equations (2.5), it is possible to be convinced that for the values $\mu: 0, \quad 1-c, \\ \tau: 0, \quad 0,$

the system has two linearly independent solutions

$$\omega_1(x, y) = \mathsf{H}_3(a, b; c; x, y),$$
$$\omega_2(x, y) = x^{1-c} \mathsf{H}_3(a + 1 - c, b + 1 - c; 2 - c; x, y)$$

On the other hand, we consider certain expansions for the confluent hypergeometric function H_3 as follows:

$$\begin{aligned} \mathsf{H}_{3}(a,b;c;x,y) \\ (2.11) &= (1-x)^{-a} \sum_{i=0}^{\infty} \frac{(-1)^{i}(a)_{i}(c-b)_{i}}{(c)_{i}i!} \left(\frac{x}{1-x}\right)^{i} {}_{0}F_{1}(-;1-a-i;-(1-x)y), \end{aligned}$$

(2.12)
$$\mathsf{H}_{3}(a,b;c;x,y) = \sum_{i=0}^{\infty} \frac{(-1)^{i} y^{i}}{(1-a)_{i} i!} {}_{2}F_{1}(a-i,b;c;x),$$

where $_{2}F_{1}$ is the Gauss hypergeometric function defined by (see [24])

(2.13)
$${}_{2}F_{1}(a,b;c;x) = \sum_{m=0}^{\infty} \frac{(a)_{m}(b)_{m}}{(c)_{m}} \frac{x^{m}}{m!}.$$

In addition, the following transformation formula for $_2F_1$ has been introduced in [4, p.64, (22)]:

(2.14)
$$_{2}F_{1}(a,b;c;x) = (1-x)^{-b} {}_{2}F_{1}\left(c-a,b;c;\frac{x}{x-1}\right).$$

Also, the Gauss hypergeometric function has the analytic continuation formula [5, p.110, (12)],

$$\frac{1}{\Gamma(a+b+i)} {}_{2}F_{1}(a,b;a+b+i;x)
= \frac{\Gamma(i)}{\Gamma(a+i)\Gamma(b+i)} \sum_{j=0}^{i-1} \frac{(a)_{j}(b)_{j}}{(1-i)_{j}j!} (1-x)^{j}
(2.15) + \frac{(-1)^{i}(1-x)^{i}}{\Gamma(a)\Gamma(b)} \sum_{j=0}^{\infty} \frac{(a+i)_{j}(b+i)_{j}}{(i+j)!j!} [\Lambda_{j} - \log(1-x)](1-x)^{j},
-\pi < \arg(1-x) < \pi, \ a, b \neq 0, -1, -2, \dots,$$

where $\Lambda_j = \psi(j+1) + \psi(i+j+1) - \psi(a+i+j) - \psi(b+i+j)$, the function $\psi(x)$ has the form

(2.16)
$$\psi(x) = \ln x - \sum_{n=0}^{\infty} \left[\frac{1}{n+x} - \ln \left(1 + \frac{1}{n+x} \right) \right], \ x > 0,$$

(2.17)
$$\psi(x) = \int_0^\infty e^{-\alpha} \ln \alpha d\alpha + \int_0^1 \frac{1 - \alpha^{x-1}}{1 - \alpha} d\alpha, \ Re(x) > 0.$$

The proofs of formulas (2.11) and (2.12) are based on symbolical method of Burchnall-Chaundy [2, 3]. We need the expansion (2.12) to study certain properties of the fundamental solutions. Further, Hasanov [11] obtained some expansions for the confluent hypergeometric function of three variables A_2 .

3. Fundamental solutions

Let us consider equation (1.1) in the domain \mathbb{R}^2_+ . We seek a solution of the equation (1.1) in the form

(3.1)
$$u = P\omega(\sigma_1, \sigma_2),$$

where

$$P = (r^2)^{-\nu}, \sigma_1 = 1 - \frac{r_1^2}{r^2}, \sigma_2 = \frac{k^2}{4}r^2,$$
$$r^2 = (x - x_0)^2 + (y - y_0)^2, r_1^2 = (x - x_0)^2 + (y + y_0)^2.$$

Substituting (3.1) into equation (1.1), we get

$$(3.2) A_1\omega_{\sigma_1\sigma_1} + A_2\omega_{\sigma_1\sigma_2} + A_3\omega_{\sigma_2\sigma_2} + B_1\omega_{\sigma_1} + B_2\omega_{\sigma_2} + C\omega = 0,$$

where

$$\begin{aligned} A_1 &= P\left[(\sigma_1)_x^2 + (\sigma_1)_y^2\right], \ A_2 &= 2P\left[(\sigma_1)_x(\sigma_2)_x + (\sigma_1)_y(\sigma_2)_y\right], \ A_3 &= P\left[(\sigma_2)_x^2 + (\sigma_2)_y^2\right], \\ B_1 &= P(\sigma_1)_{xx} + P(\sigma_1)_{yy} + 2P_x(\sigma_1)_x + 2P_y(\sigma_1)_y + \frac{2\nu}{y}P(\sigma_1)_y, \\ B_2 &= P(\sigma_2)_{xx} + P(\sigma_2)_{yy} + 2P_x(\sigma_2)_x + 2P_y(\sigma_2)_y + \frac{2\nu}{y}P(\sigma_2)_y, \\ C &= P_{xx} + P_{yy} + \frac{2\nu}{y}P_y + k^2P. \end{aligned}$$

After elementary evaluations, we have

(3.3)
$$A_{1} = -\frac{4Py^{-1}y_{0}}{r^{2}}\sigma_{1}(1-\sigma_{1}),$$
$$A_{2} = -Pk^{2}\sigma_{1} - \frac{4Py^{-1}y_{0}}{r^{2}}\sigma_{1}\sigma_{2},$$
$$A_{3} = Pk^{2}\sigma_{2},$$

(3.4)
$$B_1 = -\frac{4Py^{-1}y_0}{r^2} \left[2\nu - (1+2\nu)\sigma_1 \right], B_2 = Pk^2(1-\nu) - \frac{4Py^{-1}y_0}{r^2}\nu\sigma_2,$$

(3.5)
$$C = \frac{4Py^{-1}y_0}{r^2}\nu^2 + Pk^2.$$

Substituting (3.3)-(3.5) into equation (3.2) we have the following system of hypergeometric equations (3.6)

$$\begin{cases} (3.0) \\ \sigma_1(1-\sigma_1)\omega_{\sigma_1\sigma_1} + \sigma_1\sigma_2\omega_{\sigma_1\sigma_2} + [2\nu - (2\nu+1)\sigma_1]\omega_{\sigma_1} + \nu\sigma_2\omega_{\sigma_2} - \nu^2\omega = 0, \\ \sigma_2\omega_{\sigma_2\sigma_2} - \sigma_1\omega_{\sigma_1\sigma_2} + (1-\nu)\omega_{\sigma_2} + \omega = 0. \end{cases}$$

The system of hypergeometric equations (3.6) has the following solutions

(3.7)
$$\omega_1(\sigma_1, \sigma_2) = \mathsf{H}_3(\nu, \nu; 2\nu; \sigma_1, \sigma_2),$$

(3.8)
$$\omega_2(\sigma_1, \sigma_2) = \sigma_1^{1-2\nu} \mathsf{H}_3(1-\nu, 1-\nu; 2-2\nu; \sigma_1, \sigma_2).$$

Substituting the solutions (3.7) and (3.8) into relation (3.1), we find two solutions for the generalized axially symmetric Helmholtz equation (1.1) in the forms

(3.9)
$$u_1(x,y;x_0,y_0) = k_1 \left(r^2\right)^{-\nu} \mathsf{H}_3\left(\nu,\nu;2\nu;1-\frac{r_1^2}{r^2},\frac{k^2}{4}r^2\right),$$

(3.10)

$$u_2(x,y;x_0,y_0) = k_2 \left(r^2\right)^{-\nu} \sigma_1^{1-2\nu} \mathsf{H}_3\left(1-\nu,1-\nu;2-2\nu;1-\frac{r_1^2}{r^2},\frac{k^2}{4}r^2\right),$$

where k_1, k_2 are constants which are defined by solving the boundary value problems for equation (1.1).

Now, we show that the fundamental solution (3.9) possess a logarithmic singularity at $r \to 0$. For our purpose, we use the expansion (2.12) for the confluent hypergeometric function (2.1) and the formula (2.14). As a result, solution (3.9) can be written as follows:

$$\begin{aligned} u_1(x,y;x_0,y_0) \\ (3.11) &= k_1 \left(r_1^2\right)^{-\nu} {}_2F_1\left(\nu,\nu;2\nu;1-\frac{r^2}{r_1^2}\right) \\ &+ k_1 \left(r_1^2\right)^{-\nu} \sum_{i=1}^{\infty} \frac{(-1)^i}{(1-\nu)i!} \left(\frac{k^2}{4}r^2\right)^i {}_2F_1\left(\nu+i,\nu;2\nu;1-\frac{r^2}{r_1^2}\right). \end{aligned}$$

Based on the formula (2.15), it follows from the expansion (3.11) that the constructed fundamental solution $u_1(x, y; x_0, y_0)$ has a logarithmic singularity at $r \to 0$. Similarly one can prove the fundamental solution $u_2(x, y; x_0, y_0)$ also has a logarithmic singularity at $r \to 0$.

It can be directly checked that constructed functions (3.9) and (3.10) possess the following properties:

(3.12)

$$\frac{\partial}{\partial x}u_1(x,y;x_0,y_0)|_{x=0} = 0, \quad \frac{\partial}{\partial y}u_1(x,y;x_0,y_0)|_{y=0} = 0, u_2(x,y;x_0,y_0)|_{x=0} = 0, \quad \frac{\partial}{\partial y}u_2(x,y;x_0,y_0)|_{y=0} = 0.$$

References

а

- [1] ALTIN, A. Solutions of type r^m for a class of singular equations. Internat. J. Math. Math. Sci. 5, 3 (1982), 613–619.
- [2] BURCHNALL, J. L., AND CHAUNDY, T. W. Expansions of Appell's double hypergeometric functions. Quart. J. Math. Oxford Ser. 11 (1940), 249–270.
- [3] BURCHNALL, J. L., AND CHAUNDY, T. W. Expansions of Appell's double hypergeometric functions. II. Quart. J. Math. Oxford Ser. 12 (1941), 112-128.
- [4] ERDÉLYI, A. Singularities of generalized axially symmetric potentials. Comm. Pure Appl. Math. 9 (1956), 403-414.
- [5] ERDÉLYI, A., MAGNUS, W., OBERHETTINGER, F., AND TRICOMI, F. G. Higher transcendental functions. Vol. I. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, With a preface by Mina Rees, With a foreword by E. C. Watson, Reprint of the 1953 original.
- [6] ERGASHEV, T. G. On fundamental solutions for multidimensional Helmholtz equation with three singular coefficients. Comput. Math. Appl. 77, 1 (2019), 69 - 76.
- [7] FRYANT, A. J. Growth and complete sequences of generalized bi-axially symmetric potentials. J. Differential Equations 31, 2 (1979), 155–164.
- [8] GILBERT, R. P. Function theoretic methods in partial differential equations. Mathematics in Science and Engineering, Vol. 54. Academic Press, New York-London, 1969.

- [9] GILBERT., R. P., AND HOWARD, H. On a class of elliptic partial differential equations. *Fluid Dyn. Inst., Univ. of Maryland* (1963).
- [10] HASANOV, A. Fundamental solutions of generalized Helmholtz equation. Reports of Uzbek Academy of Sciences 1, 8 (2006), 13–15.
- [11] HASANOV, A. Fundamental solutions of generalized bi-axially symmetric Helmholtz equation. *Complex Var. Elliptic Equ. 52*, 8 (2007), 673–683.
- [12] HASANOV, A., AND KARIMOV, E. T. Fundamental solutions for a class of threedimensional elliptic equations with singular coefficients. *Appl. Math. Lett.* 22, 12 (2009), 1828–1832.
- [13] HENRICI, P. On the domain of regularity of generalized axially symmetric potentials. Proc. Amer. Math. Soc. 8 (1957), 29–31.
- [14] ITAGAKI, M. Higher order three-dimensional fundamental solutions to the Helmholtz and the modified Helmholtz equations. *Eng. Anal. Bound. Elem.* 15 (1995), 289–293.
- [15] KUMAR, D. Approximation of growth numbers of generalized bi-axially symmetric potentials. *Fasc. Math.*, 35 (2005), 51–60.
- [16] KUMAR, D., AND ARORA, K. N. Growth and approximation properties of generalized axisymmetric potentials. *Demonstratio Math.* 43, 1 (2010), 107–116.
- [17] KUMAR, D., AND SINGH, R. Measures of growth of entire solutions of generalized axially symmetric Helmholtz equation. J. Complex Anal. (2013), Art. ID 472170, 6.
- [18] MARICEV, O. I. Eine Integraldarstellung der Lösungen einer verallgemeinerten doppelaxialsymmetrischen Helmholtzgleichung und ihre Umkehrformeln. Differ. Uravn. 14 (1978), 1824–1831.
- [19] MCCOY, P. A. Polynomial approximation and growth of generalized axisymmetric potentials. *Canadian J. Math.* 31, 1 (1979), 49–59.
- [20] RASSIAS, J. M., AND HASANOV, A. Fundamental solutions of two degenerated elliptic equations and solutions of boundary value problems in infinite area. *Int. J. Appl. Math. Stat.* 8, M07 (2007), 87–95.
- [21] SALAKHITDINOV, M. S., AND HASANOV, A. A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation. *Complex Var. Elliptic Equ.* 53, 4 (2008), 355–364.
- [22] SALAKHITDINOV, M. S., AND KARIMOV, E. T. Spatial boundary problem with the Dirichlet-Neumann condition for a singular elliptic equation. *Appl. Math. Comput.* 219, 8 (2012), 3469–3476.
- [23] SRIVASTAVA, G. S. Approximation and growth of generalized axisymmetric potentials. Approximation Theory Appl. 12, 4 (1996), 96–104.
- [24] SRIVASTAVA, H. M., AND KARLSSON, P. W. Multiple Gaussian hypergeometric series. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985.

Received by the editors October 6, 2020 First published online March 30, 2021