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Fundamental solutions of the generalized axially
symmetric Helmholtz equation

Maged G. Bin-Saad1, Anvar Hasanov2 and Jihad A. Younis34

Abstract. This paper deals with the fundamental solutions of two-
dimensional elliptic equations with two singular coefficients. We con-
struct the fundamental solutions of the generalized axially symmetric
Helmholtz equation in terms of a confluent hypergeometric function in
two variables.
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1. Introduction

Fundamental solutions play an important role in solving many problems
in theory of elliptic equations. Dirichlet and Neumann problems for elliptic
equation in some part of a ball were solved [21, 22]. Hasanov [10] constructed
fundamental solutions of the generalized Helmholtz equation. In the paper [11],
fundamental solutions were constructed for the generalized bi-axially symmetric
Helmholz equation expressed by confluent hypergeometric functions of Kummer
of three variables. Fundamental solutions for various modified Helmholtz equa-
tion were investigated by several authors (see, e.g.[1, 6, 7, 12, 14, 15, 18, 19, 20]).

In the domain Ω = {(x, y) : −∞ < x < +∞, y > 0} consider the generalized
axially symmetric Helmholtz equation

(1.1) uxx + uyy +
2ν

y
uy + k2u = 0, ν > 0.

The equation (1.1) was considered by Gilbert and Howard [9] and Kumar and
Singh [17]. In particular the case k = 0 was studied by Erdelyi [4], Henrici [13],
Kumar and Arora [16] and Srivastava [23].

In [8, p. 214], the solution for axially symmetric Helmholtaz equation (1.1)
was constructed

(1.2) u(x, y) = Γ(2ν)(kr)−ν
∞∑

n=0

ann!

Γ(2ν + n)
Jν+n(kr)C

ν
n(cosθ),
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where x = rcosθ, y = rsinθ and Jν+n(kr) are Bessel functions of first kind and
Cν

n(cosθ) are Gegenbauer polynomials.
In this paper, we aim to construct fundamental solutions of the equation

(1.1) which have logarithmic singularities by means of the confluent hypergeo-
metric function of two variables H3.

2. The confluent hypergeometric function H3

For our purpose, we begin by recalling the confluent hypergeometric Horn
function H3 defined by (see [4, p.226, (31)])

(2.1) H3(a, b; c;x, y) =

∞∑
m,n=0

(a)m−n(b)m
(c)m

xm

m!

yn

n!
, (|x| < 1),

where (α)m = α(α+ 1) · · · (α+m− 1) denotes the Pochhammer symbol.
Integral representation of the Euler type for the function H3 is given by (see
[20, p.91, (3.19)],

H3(a, b; c;x, y)

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

αb−1 (1− α)
c−b−1

(1− xα)
−a

×0F1 (1− a;− (1− xα) y) dα, (Re(c) > 0, Re(c− b) > 0) ,(2.2)

where 0F1 is the confluent hypergeometric function of Kummer defined by (see
[24])

(2.3) 0F1 (−; c;x) =

∞∑
m=0

1

(c)m

xm

m!
.

Using the formula of derivation

(2.4)
∂i+j

∂xi∂yj
H3(a, b; c;x, y) =

(a)i−j(b)i
(c)i

H3(a+ i− j, b+ i; c+ i;x, y),

it is easy to show that the confluent hypergeometric function in (2.1) satisfies
the system of hypergeometric equations

(2.5)

{
x(1− x)ωxx + xyωxy + [c− (a+ b+ 1)x]ωx + byωy − abω = 0,

yωyy − xωxy + (1− a)ωy + ω = 0,

where
ω(x, y) = H3(a, b; c;x, y).

Now, by virtue of the derivation formula (2.4), we have the following expres-
sions:

(2.6) ωx =

∞∑
m,n=0

(a)m−n(b)m
(c)m

(a+m− n)(b+m)

(c+m)

xm

m!

yn

n!
,
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(2.7) xωx =

∞∑
m,n=0

(a)m−n(b)m
(c)m

m

1

xm

m!

yn

n!
,

(2.8) yωy =

∞∑
m,n=0

(a)m−n(b)m
(c)m

n

1

xm

m!

yn

n!
,

(2.9) xyωxy =

∞∑
m,n=0

(a)m−n(b)m
(c)m

mn

1

xm

m!

yn

n!
,

(2.10) x2ωxx =

∞∑
m,n=0

(a)m−n(b)m
(c)m

m(m− 1)

1

xm

m!

yn

n!
.

Substituting equalities (2.6)-(2.10) into the first equation of the system
(2.5), we are convinced that the function ω(x, y) satisfies this equation. Simi-
larly, it is easy to convince oneself that ω(x, y) satisfies the second equation of
the same system.

Having substituted ω(x, y) = xµyτφ(x, y) in the system of hypergeometric
equations (2.5), it is possible to be convinced that for the values
µ : 0, 1− c,
τ : 0, 0,
the system has two linearly independent solutions

ω1(x, y) = H3(a, b; c;x, y),

ω2(x, y) = x1−cH3(a+ 1− c, b+ 1− c; 2− c;x, y).

On the other hand, we consider certain expansions for the confluent hyper-
geometric function H3 as follows:

H3(a, b; c;x, y)

= (1− x)−a
∞∑
i=0

(−1)i(a)i(c− b)i
(c)ii!

(
x

1− x

)i

0F1(−; 1− a− i;−(1− x)y),(2.11)

(2.12) H3(a, b; c;x, y) =

∞∑
i=0

(−1)iyi

(1− a)ii!
2F1(a− i, b; c;x),

where 2F1 is the Gauss hypergeometric function defined by (see [24])

(2.13) 2F1(a, b; c;x) =

∞∑
m=0

(a)m(b)m
(c)m

xm

m!
.
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In addition, the following transformation formula for 2F1 has been introduced
in [4, p.64, (22)]:

(2.14) 2F1(a, b; c;x) = (1− x)−b
2F1

(
c− a, b; c;

x

x− 1

)
.

Also, the Gauss hypergeometric function has the analytic continuation formula
[5, p.110, (12)],

1

Γ(a+ b+ i)
2F1(a, b; a+ b+ i;x)

=
Γ(i)

Γ(a+ i)Γ(b+ i)

i−1∑
j=0

(a)j(b)j
(1− i)jj!

(1− x)j

+
(−1)i(1− x)i

Γ(a)Γ(b)

∞∑
j=0

(a+ i)j(b+ i)j
(i+ j)!j!

[Λj − log(1− x)](1− x)j ,(2.15)

−π < arg(1− x) < π, a, b ̸= 0,−1,−2, . . . ,

where Λj = ψ(j + 1) + ψ(i+ j + 1)− ψ(a+ i+ j)− ψ(b+ i+ j), the function
ψ(x) has the form

(2.16) ψ(x) = lnx−
∞∑

n=0

[
1

n+ x
− ln

(
1 +

1

n+ x

)]
, x > 0,

(2.17) ψ(x) =

∫ ∞

0

e−α lnαdα+

∫ 1

0

1− αx−1

1− α
dα, Re(x) > 0.

The proofs of formulas (2.11) and (2.12) are based on symbolical method
of Burchnall-Chaundy [2, 3]. We need the expansion (2.12) to study certain
properties of the fundamental solutions. Further, Hasanov [11] obtained some
expansions for the confluent hypergeometric function of three variables A2.

3. Fundamental solutions

Let us consider equation (1.1) in the domain R2
+. We seek a solution of the

equation (1.1) in the form

(3.1) u = Pω(σ1, σ2),

where

P =
(
r2
)−ν

, σ1 = 1− r21
r2
, σ2 =

k2

4
r2,

r2 = (x− x0)
2 + (y − y0)

2, r21 = (x− x0)
2 + (y + y0)

2.

Substituting (3.1) into equation (1.1), we get

(3.2) A1ωσ1σ1
+A2ωσ1σ2

+A3ωσ2σ2
+B1ωσ1

+B2ωσ2
+ Cω = 0,
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where

A1 = P
[
(σ1)

2
x + (σ1)

2
y

]
, A2 = 2P [(σ1)x(σ2)x + (σ1)y(σ2)y] , A3 = P

[
(σ2)

2
x + (σ2)

2
y

]
,

B1 = P (σ1)xx + P (σ1)yy + 2Px(σ1)x + 2Py(σ1)y +
2ν

y
P (σ1)y,

B2 = P (σ2)xx + P (σ2)yy + 2Px(σ2)x + 2Py(σ2)y +
2ν

y
P (σ2)y,

C = Pxx + Pyy +
2ν

y
Py + k2P.

After elementary evaluations, we have

(3.3)

A1 = −4Py−1y0
r2

σ1(1− σ1),

A2 = −Pk2σ1 −
4Py−1y0

r2
σ1σ2,

A3 = Pk2σ2,

(3.4)
B1 = − 4Py−1y0

r2 [2ν − (1 + 2ν)σ1] ,

B2 = Pk2(1− ν)− 4Py−1y0

r2 νσ2,

(3.5) C =
4Py−1y0

r2
ν2 + Pk2.

Substituting (3.3)-(3.5) into equation (3.2) we have the following system of
hypergeometric equations
(3.6){

σ1(1− σ1)ωσ1σ1
+ σ1σ2ωσ1σ2

+ [2ν − (2ν + 1)σ1]ωσ1
+ νσ2ωσ2

− ν2ω = 0,
σ2ωσ2σ2

− σ1ωσ1σ2
+ (1− ν)ωσ2

+ ω = 0.

The system of hypergeometric equations (3.6) has the following solutions

(3.7) ω1(σ1, σ2) = H3(ν, ν; 2ν;σ1, σ2),

(3.8) ω2(σ1, σ2) = σ1−2ν
1 H3(1− ν, 1− ν; 2− 2ν;σ1, σ2).

Substituting the solutions (3.7) and (3.8) into relation (3.1), we find two
solutions for the generalized axially symmetric Helmholtz equation (1.1) in the
forms

(3.9) u1(x, y;x0, y0) = k1
(
r2
)−ν

H3

(
ν, ν; 2ν; 1− r21

r2
,
k2

4
r2
)
,

(3.10)

u2(x, y;x0, y0) = k2
(
r2
)−ν

σ1−2ν
1 H3

(
1− ν, 1− ν; 2− 2ν; 1− r21

r2
,
k2

4
r2
)
,
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where k1, k2 are constants which are defined by solving the boundary value
problems for equation (1.1).

Now, we show that the fundamental solution (3.9) possess a logarithmic
singularity at r → 0. For our purpose, we use the expansion (2.12) for the
confluent hypergeometric function (2.1) and the formula (2.14). As a result,
solution (3.9) can be written as follows:

u1(x, y;x0, y0)

= k1
(
r21
)−ν

2F1

(
ν, ν; 2ν; 1− r2

r21

)
(3.11)

+k1
(
r21
)−ν

∞∑
i=1

(−1)i

(1− ν)i!

(
k2

4
r2
)i

2F1

(
ν + i, ν; 2ν; 1− r2

r21

)
.

Based on the formula (2.15), it follows from the expansion (3.11) that the
constructed fundamental solution u1(x, y;x0, y0) has a logarithmic singularity
at r → 0. Similarly one can prove the fundamental solution u2(x, y;x0, y0) also
has a logarithmic singularity at r → 0.

It can be directly checked that constructed functions (3.9) and (3.10) possess
the following properties:

(3.12)

∂

∂x
u1(x, y;x0, y0)|x=0 = 0,

∂

∂y
u1(x, y;x0, y0)|y=0 = 0,

u2(x, y;x0, y0)|x=0 = 0,
∂

∂y
u2(x, y;x0, y0)|y=0 = 0.
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