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On E-Bochner curvature tensor of contact metric
generalized (κ, µ) space forms

Shruthi Chidananda1 and Venkatesha Venkatesha23

Abstract. Here we derive the necessary and sufficient condition for
the Sasakian structure corresponding to the contact metric generalized
(κ, µ)-space forms. Further, we study the contact metric generalized
(κ, µ)-space forms satisfying Be(ξ,X) · φ = 0, Be(ξ,X) · h = 0, and
Be(ξ,X) · S = 0, where Be is a E-Bochner curvature tensor, h := 1

2
£ξφ

and S is the Ricci tensor.
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1. Introduction

In differential geometry the Riemannian curvature tensor plays a promi-
nent role in the study of Riemannian manifolds. It is well known that sectional
curvatures determine curvature tensor completely, and it is defined that Rie-
mannian manifold with constant sectional curvature c is a real space form, its
curvature tensor is given by

(1.1) R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y },

In 2004 [1], P. Alegra, A. Carriazo, and D. E. Blair introduced the notion of
generalized Sasakian space form as an extension of the real space forms in the
background of an almost contact metric geometry. Generalized Sasakian space
is an almost contact metric manifold whose curvature tensor R satisfies the
following condition:

(1.2) R = f1R1 + f2R2 + f3R3,

where f1, f2, f3 are smooth functions on M and the curvature tensors R1, R2,
and R3 are given by

R1(X,Y )Z = g(Y,Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ.
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In the expression R of generalized Sasakian space forms, if f2 = f3 = 0 then
it reduces to real space forms. Later, in 2012 [10] the notion of generalized
(κ, µ)-space forms was defined as an almost contact metric manifold M whose
curvature tensor satisfies the following condition.

R = f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6,(1.3)

where f1, f2, f3, f4, f5, f6 are smooth functions on M and R1, R2, R3, R4,
R5, R6 are the curvature tensors defined as

R1(X,Y )Z = g(Y, Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ,

R4(X,Y )Z = g(hY, Z)hX − g(hX,Z)hY + g(φhX,Z)φhY − g(φhY,Z)φhX,

R5(X,Y )Z = g(Y, Z)hX − g(X,Z)hY + g(hY, Z)X − g(hX,Z)Y,

R6(X,Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX + g(hX,Z)η(Y )ξ − g(hY, Z)η(X)ξ.

For f4 = f5 = f6 = 0 it reduces to generalized Sasakian space forms.
Generally Sasakian implies K-contact, but the converse is true only in case of

3-dimensional manifolds. But in [2], P. Alegre proved that generalized Sasakian
space form with K-contact structure is Sasakian. In [3], A. Carriazo et.al., stud-
ied the generalized (κ, µ) space forms in the frame of contact metric geometry.
They conclude that being K-contact and being Sasakian are equivalent con-
cepts and obtained some beautiful results. With the support of this result in
[10] A. Carriazo et. al., proved that being Sasakian and K-contact are equiva-
lent concepts in generalized (κ, µ) space forms.

On the other hand, in [8], S. Bochner introduced a Kähler analogue of
the Weyl conformal curvature tensor which is cited as the Bochner curvature
tensor. In [4] D. E. Blair interpreted geometrical meaning of the Bochner cur-
vature tensor. In [17] Matsumoto and G. Chuman constructed the C-Bochner
curvature tensor by using Boothby-Wang’s fibration [9]. As an extension to
C-Bochner curvature tensor H. Endo in [13] defined E-Bochner curvature ten-
sor which is called as an extended C-Bochner curvature tensor. In [15], J. S.
Kim et.al., proved (κ, µ)-contact metric manifold with vanishing E-Bochner
curvature tensor is Sasakian. Further, Bochner curvature has been extensively
studied in [14], [12], [11], [18].

Our paper is organized as follows: after preliminaries, in Section 3, we study
the E-Bochner curvature tensor and obtain a necessary and sufficient condition
for Sasakian structure corresponding to contact metric generalized (κ, µ)-space
forms. In Section 4, we study the contact metric generalized (κ, µ)-space forms
satisfying Be(ξ,X)·φ = 0, and we draw several corollaries. In Section 5 and in 6
we study contact metric generalized (κ, µ)-space forms satisfying Be(ξ,X) ·h =
0 and Be(ξ,X) · S = 0 in a non-Sasakian case.

By assuming κ, µ as smooth functions in [16], Koufogiorgos and Tschlias
defined the notion of generalized (κ, µ) contact metric manifolds and proved
their existence for the 3-dimensional case and non-existence for greater than
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3-dimension. Motivated by this result in this paper and with the help of [7],
we pay attention to the 3-dimensional case.

2. Preliminaries

In this section, we briefly recall some basic definitions and properties of
contact metric manifolds. Further we infer some results which are useful for
our paper.

If an odd dimensional smooth manifold M together with (1, 1) tensor field
φ, a vector field ξ, and a 1-form η satisfies following conditions,

(2.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1,

for all X,Y ∈ TM , then M is said to be an almost contact manifold. In an
almost contact manifold, relation (2.1) implies,

(2.2) φξ = 0, η ◦ φ = 0,

and the rank of φ is 2n. It is well known that the first relation from (2.1)
together with any relation from (2.2) also defines an almost contact manifold.

In an almost contact manifold there is always exits a positive definite metric
g such that

(2.3) g(φX,φY ) = g(X,Y )− η(X)η(Y ),

or equivalently,

(2.4) g(φX, Y ) = −g(X,φY ) and g(X, ξ) = η(X)

for all X,Y ∈ TM, which is called a compatible Riemannian metric and corre-
sponding almost contact manifold is an almost contact metric manifold.

A (2n+1)-dimensional manifold is said to be a contact manifold if it admits
a global 1-form η such that η ∧ (dη)n ̸= 0 everywhere on M2n+1.

If an almost contact metric manifold M2n+1 with almost contact metric
structure (φ, ξ, η, g) holds the property dη(X,Y ) = g(X,φY ), then it said to
be a contact metric manifold.

Let M be a (2n + 1)-dimensional contact metric manifold with contact
metric structure (φ, ξ, η, g). If it has the vanishing torsion tensor [φ,φ]+2dη⊗ξ,
where [φ,φ] is a Nijenhuis tensor of φ then it is said to be a Sasakian manifold.

In a contact metric manifold, the tensor h = 1
2£ξφ of type (1, 1) is a

symmetric operator and satisfies the following relations:

(2.5) hξ = 0, hφ = −φh, trace(h) = trace(φh) = 0, η ◦ h = 0.

For more details we refer to [5].
A (κ, µ)-contact metric manifold is the class of (2n+1)-dimensional contact

metric manifold M in which its curvature tensor R satisfies following relation

(2.6) R(X,Y )ξ = (κI + µh){η(Y )X − η(X)Y },
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where (κ, µ) ∈ R2, for all X,Y ∈ TM, with h2 = (κ − 1)φ2, and κ ≤ 1. For
more information we recommend the reference [6]. We recall some results here,
due to A. Carriazo et. al., [10].

Theorem 2.1. Let M(f1, f2, f3, f4, f5, f6) be a generalized (κ, µ)-space form.
If M is a contact metric manifold with f1 − f3 = 1, then it is Sasakian.

Theorem 2.2. Let M(f1, f2, f3, f4, f5, f6) be a generalized (κ, µ)-space form.
If M is a Sasakian manifold, then f1 − f3 = 1.

Theorem 2.3. If M(f1, f2, f3, f4, f5, f6) is a non-Sasakian contact metric gen-
eralized (κ, µ)-space form of dimension greater than or equal to 5, then M is
a (−f6, 1 − f6)-space with constant φ-sectional curvature c = 2f6 − 1, where
f6 = constant > −1 and f4 = 1.

Theorem 2.4. Let M be a non-Sasakian contact metric generalized (κ, µ)-
space form of dimension greater than or equal to 5, then M is a (κ, µ)-contact
metric manifold, that is, the functions κ = f1 − f3 and µ = f4 − f6 become
constants.

In [19], due to K. Mirji et. al., we recall

Theorem 2.5. If M3(f1, f2, f3, f4, f5, f6) is a contact metric generalized (κ, µ)-
space form, then the following conditions are equivalent to one another:

� M3 is η-Einstein,

� Qφ = φQ, where Q denotes the Ricci operator,

� f4 − f6 = 0,

� M3 is pseudo symmetric,

� M3 is ξ-projectively flat.

3. ξ - E - Bochner flat contact metric generalized (κ, µ)
space forms

In [17], Matsumoto and G. Chuman constructed the C-Bochner curvature
tensor in an almost contact metric manifold as follows:

B(X,Y )Z =R(X,Y )Z − m− 4

2n+ 4
R0(Y,X)Z +

1

2n+ 4
{R0(QY,X)Z

−R0(QX,Y )Z +R0(QφY,φX)Z −R0(QφX,φY )Z

+ 2g(QφX,Y )φZ + 2g(φX, Y )QφZ + η(Y )R0(QX, ξ)Z

+ η(X)R0(ξ,QY )Z} − m+ 2n

2n+ 4
{R0(φY, φX)Z + 2g(φX, Y )φZ}

+
m

2n+ 4
{η(Y )R0(ξ,X)Z + η(X)R0(Y, ξ)Z},(3.1)
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where m = 2n+r
2n+2 , r is a scalar curvature, Q is the Ricci operator. Generally

the term R0(X,Y )Z is defined as

R0(X,Y )Z = g(Y, Z)X − g(X,Z)Y.

In [13], H. Endo constructed E-Bochner curvature tensor by using C-Bochner
curvature tensor like this

Be(X,Y )Z =B(X,Y )Z − η(X)B(ξ, Y )Z

− η(Y )B(X, ξ)Z − η(Z)B(X,Y )ξ.(3.2)

For a contact metric generalized (κ, µ)-space formM2n+1, we have the following
relations:

S(X,Y ) ={2nf1 + 3f2 − f3}g(X,Y ) + {(2n− 1)f4 − f6}g(hX, Y )

− {3f2 + (2n− 1)f3}η(X)η(Y ),(3.3)

(3.4) R(X,Y )ξ = (f1−f3){η(Y )X−η(X)Y }+(f4−f6){η(Y )hX−η(X)hY },

R(ξ, Y )Z =(f1 − f3){g(Y, Z)ξ − η(Z)Y }+ (f4 − f6){g(hY,Z)ξ − η(Z)hY }
=−R(Y, ξ)Z.(3.5)

From (3.1), (3.4) and (3.5) we have the following relations

B(X,Y )ξ =
2(f1 − f3 − 1)

(n+ 2)
{η(Y )X − η(X)Y }

+ (f4 − f6){η(Y )hX − η(X)hY },(3.6)

B(ξ, Y )Z =
2(f1 − f3 − 1)

(n+ 2)
{g(Y, Z)ξ − η(Z)Y }

+ (f4 − f6){g(hY, Z)ξ − η(Z)hY },(3.7)

B(ξ, Y )ξ =
2(f1 − f3 − 1)

(n+ 2)
{η(Y )ξ − Y }

+ (f4 − f6){−hY }.(3.8)

By using (3.2) and (3.8), we get,

Be(X,Y )ξ =
2(f1 − f3 − 1)

(n+ 2)
{η(X)Y − η(Y )X}

+ (f4 − f6){η(X)hY − η(Y )hX}, and(3.9)
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Be(ξ, Y )Z =
2(f1 − f3 − 1)

(n+ 2)
{η(Z)Y − η(Y )η(Z)ξ}

+ (f4 − f6){η(Z)hY }.(3.10)

Clearly from (3.9) and (3.10) we have

(3.11) η(Be(X,Y )ξ) = 0, η(Be(ξ, Y )Z) = 0 and

Be(ξ, Y )ξ =
2(f1 − f3 − 1)

(n+ 2)
{Y − η(Y )ξ}+ (f4 − f6)hY.(3.12)

Now we are going to prove the following theorem;

Theorem 3.1. Let M2n+1 (n ≥ 1) be a contact metric generalized (κ, µ)- space
form then it is Sasakian if and only if it is ξ-E-Bochner flat.

Proof. Let M2n+1 be a contact metric generalized (κ, µ)-space form which is
ξ-E-Bochner flat, then from relation (3.9) we have

2(f1 − f3 − 1)

(n+ 2)
{η(X)Y − η(Y )X}+ (f4 − f6){η(X)hY − η(Y )hX} = 0.

On contracting the above equation over X with respect to an orthonormal basis
we get,

2(f1 − f3 − 1)

(n+ 2)
2nη(Y ) = 0,

this implies

f1 − f3 = 1, for n ≥ 1.

Then by using Theorem 2.1 we can conclude that, for n ≥ 1, ξ-E-Bochner
flat contact metric generalized (κ, µ)-space form M2n+1 is Sasakian.

Conversely, suppose M2n+1 is a Sasakian manifold then by Theorem 2.2 we
have the condition

f1 − f3 = 1.

Substituting this in (3.9), directly we get

Be(X,Y )ξ = 0.

This completes the proof.

Definition 3.2. A contact metric manifold M is said to be η-Einstein if its
Ricci tensor satisfies the following condition

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth functions on M .
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Corollary 3.3. If M2n+1 (n ≥ 1) is a ξ-E-Bochner flat contact metric gener-
alized (κ, µ)-space form then it is always η-Einstein.

Since M2n+1 is a ξ-E-Bochner flat contact metric generalized (κ, µ)-space
form, from Theorem 3.1 it is Sasakian, this implies h = 0, so by relation (3.3)
we have

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (2nf1 + 3f2 − f3)η(X)η(Y ),

where (2nf1+3f2− f3) and (2nf1+3f2− f3) are smooth functions on M2n+1.
Then from Definition (3.2) we can say that M2n+1 is η-Einstein.

Corollary 3.4. Let M2n+1 (n > 1) be a contact metric generalized (κ, µ)-space
form. If it is not ξ-E-Bochner flat then M2n+1 reduces to (−f6, 1− f6)-space,
(f6 = constant > −1) with constant φ-sectional curvature c = 2f6 − 1 > −3.

Let M2n+1 (n > 1) be a contact metric generalized (κ, µ)-space form. If
it is not ξ-E-Bochner flat, then by Theorem 3.1 it is non-Sasakian. Then the
proof of the corollary follows from Theorem 2.3.

Corollary 3.5. Let M3(f1, f2, f3, f4, f5, f6) be a ξ-E-Bochner flat contact met-
ric generalized (κ, µ)-space form. Then it satisfies the following conditions;

� f4 − f6 = 0,

� M3 is pseudo symmetric,

� M3 is ξ-projectively flat.

Let M3(f1, f2, f3, f4, f5, f6) be a ξ-E-Bochner flat contact metric general-
ized (κ, µ)-space form, then the rest of the proof of the corollary follows from
Corollary 3.3 and Theorem 2.5.

Remark 3.6. Theorem 3.1, Corollary 3.3, Corollary 3.4 and Corollary 3.5 are
valid for ξ -C-Bochner flat contact metric generalized (κ, µ) space forms, also.

4. Contact metric generalized (κ, µ)-space forms satisfy-
ing Be(ξ,X) · φ = 0

Let M2n+1 be a contact metric generalized (κ, µ) space form satisfying the
condition

Be(ξ,X) · φ = 0.(4.1)

The condition (4.1) gives

(4.2) Be(ξ,X)φY − φBe(ξ,X)Y = 0

for all X, Y ∈ TM. Using (3.10), we get

2(f1 − f3 − 1)

(n+ 2)
{η(Y )φX}+ (f4 − f6){η(Y )φhX} = 0.(4.3)
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Putting X = φX and then contracting over X with respect to an orthonormal
basis we obtain

2nη(Y )
2(f1 − f3 − 1)

(n+ 2)
= 0,(4.4)

which gives f1 − f3 = 1.
Then by the Theorem 2.1 it is Sasakian, and so we can state the following

theorem;

Theorem 4.1. A contact metric generalized (κ, µ)-space form M2n+1 (n ≥ 1),
satisfying Be(ξ,X) · φ = 0 is Sasakian.

Corollary 4.2. A contact metric generalized (κ, µ)-space form M2n+1 (n ≥ 1)
satisfying Be(ξ,X) · φ = 0 is η-Einstein.

Corollary 4.3. Let M3(f1, f2, f3, f4, f5, f6) be a contact metric generalized
(κ, µ)-space form satisfying Be(ξ,X) · φ = 0, then it satisfies following condi-
tions:

� f4 − f6 = 0,

� M3 is pseudo symmetric,

� M3 is ξ-projectively flat.

Remark 4.4. Theorem 4.1, Corollary 4.2, and Corollary 4.3, are valid for con-
tact metric generalized (κ, µ)-space forms satisfying B(ξ,X) · φ = 0, also.

5. Contact metric generalized (κ, µ)-space forms satisfy-
ing Be(ξ, Y ) · h = 0

Let M2n+1 be a contact metric generalized (κ, µ)-space form satisfying the
condition

(Be(ξ,X) · h)Y = 0,

for all X,Y ∈ M , then we have

Be(ξ,X)hY − hBe(ξ,X)Y = 0.(5.1)

Using (3.10), in the above equation we get

2(f1 − f3 − 1)

(n+ 2)
{η(Z)hY }+ (f4 − f6){η(Z)h2Y } = 0.

On contracting over Y we obtain

2n(f1 − f3 − 1)(f4 − f6) = 0.(5.2)

By Theorem (2.4), we can state the following theorem
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Theorem 5.1. Let M2n+1 (n > 1) be a non-Sasakian contact metric gener-
alized (κ, µ)-space form satisfying Be(ξ,X) · h = 0, then it is a N(κ)-contact
metric manifold.

Corollary 5.2. Let M2n+1 (n > 1) be a non-Sasakian contact metric gener-
alized (κ, µ)-space form satisfying Be(ξ,X) · h = 0, then it is a (−1, 0)-contact
metric manifold with constant φ-sectional curvature equal to 1.

Let M2n+1 (n > 1) be a non-Sasakian contact metric generalized (κ, µ)-
space form, then κ = f1 − f3 ̸= 1 is a constant. If it satisfies the condition
Be(ξ,X) · h = 0, then by the relation (5.2) we obtain,

f4 − f6 = 0.

Then the rest of the proof follows from Theorem 2.3.

6. Contact metric generalized (κ, µ)-space forms satisfy-
ing Be(ξ,X) · S = 0

Suppose

(Be(ξ,X) · S)(U, V ) = 0.(6.1)

Put V = ξ then we get,

S(Be(ξ,X)U, ξ) + S(U,Be(ξ,X)ξ) = 0.(6.2)

By using relations, S(X, ξ) = 2n(f1 − f3)η(X), (3.11) and (3.12), in (6.2)
becomes

2(f1 − f3 − 1)

(n+ 2)
{S(U,X)− η(X)S(U, ξ)}+ (f4 − f6)S(U, hX) = 0.(6.3)

Put U = X = ei and taking the summation from i = 1 to 2n+ 1, we obtain

2(f1 − f3 − 1)

(n+ 2)
{r − 2n(f1 − f3)− n(n+ 2)(f4 − f6){(2n− 1)f4 − f6}} = 0,

(6.4)

where r is the scalar curvature. By using Theorem 2.3 and Theorem 2.4 we
can state the following theorem

Theorem 6.1. Let M2n+1 (n > 1) be a non-Sasakian contact metric general-
ized (κ, µ) space form satisfying Be(ξ,X) · S = 0, then it has a constant scalar
curvature r = 2n(f1 − f3) + n(n+ 2)(1− f6){(2n− 1)− f6}.
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