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On the Zariski topology over the primary-like spectrum

Hosein Fazaeli Moghimi12 and Fatemeh Rashedi3

Abstract. Let R be a commutative ring with identity and M be
a unital R-module. The primary-like spectrum PS(M) has a topology
which is a generalization of the Zariski topology on the prime spectrum
Spec(R). We get several topological properties of PS(M), mostly for
the case when the continuous mapping ϕ : PS(M) → Spec(R/Ann(M))
defined by ϕ(Q) =

√
(Q : M)/Ann(M) is surjective or injective. For ex-

ample, if ϕ is surjective, then PS(M) is a connected space if and only if
Spec(R/Ann(M)) is a connected space. It is shown that if ϕ is surjective,
then a subset Y of PS(M) is irreducible if and only if Y is the closure of
a singleton set. It is also proved that if the image of ϕ is a closed subset
of Spec(R/Ann(M)), then PS(M) is a spectral space if and only if ϕ is
injective.
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1. Introduction

Throughout this paper all rings are commutative with identity and all mod-
ules are unital. Let R be a ring andM be an R-module. For a submodule N of
M , we let (N : M) = {r ∈ R | rM ⊆ N}. As usual, we denote the annihilator
ideal ((0) : M) by Ann(M). A proper submodule P of M with p = (P : M)
is called a prime submodule (or a p-prime submodule) of M , if for r ∈ R and
m ∈ M , rm ∈ P implies that either r ∈ p or m ∈ P . The prime spectrum
of M , denoted Spec(M), is the set of all prime submodules of M . Also for a
prime ideal p of R, Specp(M) will denote the set of all p-prime submodules
of M . The intersection of all prime submodules of M containing N , denoted
radN , is called the radical of N . If there is no prime submodule containing
N , radN is defined to be M . In the ideal case, the radical of I is denoted
by

√
I. As a generalization of a primary ideal one hand and a generalization

of the prime submodule on the other hand, a proper submodule Q of M is
called a primary-like submodule, if for r ∈ R and m ∈ M , rm ∈ Q implies
either r ∈ (Q : M) or m ∈ radQ [9]. We say that a submodule N of a non-
zero R-module M satisfies the primeful property if for each prime ideal p of
R with (N : M) ⊆ p, there exists a prime submodule P containing N such
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that (P : M) = p. If the zero submodule of M satisfies the primeful property,
then M is called a primeful module [12]. For example, finitely generated mod-
ules and projective modules over domains are two classes of primeful modules
[12, Propositin 3.8, Corollary 4.3]. The primary-like spectrum of M , denoted
PS(M), is defined to be the set of all primary-like submodules of M satisfy-
ing the primeful property. If N is a submodule of M satisfying the primeful
property, then (radN :M) =

√
(N :M) [12, Proposition 5.3]. It is easily seen

that if Q is a primary-like submodule satisfying the primeful property, then
p =

√
(Q :M) is a prime ideal of R. Therefore by a p-primary-like submodule

Q of M , we mean that Q is a primary-like submodule satisfying the prime-
ful property with p =

√
(Q :M). The set of such submodules is denoted by

PSp(M). It should be noted that if Q ∈ PSp(M) and m is a maximal ideal
of R containing p, then there is a prime submodule P containing Q such that
(P :M) = m. It follows that radQ ̸=M for all Q ∈ PS(M).

In recent years, several generalizations of the Zariski topology from rings to
modules have been introduced and studied from various points of views (see,
for example, [2, 5, 7, 11, 13, 9]).

One of them is the Zariski topology on Spec(M) which is described by taking
the set {V (N) | N is a submodule of M} as the set of closed sets of Spec(M),
where V (N) = {P ∈ Spec(M) | (P :M) ⊇ (N :M)} [11, 7].

Now, we set ν(N) = {Q ∈ PS(M) |
√

(Q :M) ⊇
√
(N :M)} for every

submodule N of M . As in the case of the Zariski topology on Spec(M), the
class of varieties Ω(M) = {ν(N) | N is a submodule of M} satisfies all axioms
of closed sets in a topological space [9, Lemma 1]. Throughout this paper, it is
assumed that PS(M) is equipped with this topology which enjoys analogs of
many of the properties of the Zariski topology on Spec(M). We have already
obtained some of the topological properties of this space in [9]. For instance,
in [9, Lemma 5], it has been shown that the set B = {PS(M) \ ν(rM) | r ∈ R}
forms a basis for this topology on PS(M). Furthermore, every finite intersec-
tion of the elements of B is a quasi-compact subspace of PS(M) [9, Theorem
3].

In this paper, we examine the properties of certain mappings between the
primary-like spectrum PS(M) of M and the spectrums Spec(R/Ann(M)) and
Spec(M), in particular considering when these mappings are continuous or
homeomorphisms (Proposition 2.8, Theorem 2.9 and Corollary 2.10). It is
shown that PS(M) is connected if and only if Spec(R/Ann(M) is a connected
space (Proposition 2.12). Hochster’s characterization of a spectral space in-
volves an irreducibility discussion in PS(M). It is shown that for any finitely
generated module M , every irreducible subspace of PS(M) is the closure of
a singleton set (Theorem 3.8). In particular, if M is a finitely generated R-
module, then PS(M) is a spectral space, i.e., PS(M) is homeomorphic with
Spec(S) for some commutative ring S (Theorem 4.4).
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2. Continuous mappings between spectrums

As shown in [11, Proposition 3.1], ψ : Spec(M) → Spec(R/Ann(M)) defined
by ψ(P ) = (P : M)/Ann(M) is a continuous mapping. In [9, Proposition1],
we have introduced the mappings ϕ : PS(M) → Spec(R/Ann(M)) by ϕ(Q) =√
(Q :M)/Ann(M) which is continuous, and plays a role analogous to that of

ψ. Here, we introduce ρ : PS(M) → Spec(M) defined by ρ(Q) = Sp(Q+ pM),

in which p =
√
(Q :M) and

Sp(Q+ pM) = {m ∈M | ∃c ∈ R \ p, cm ∈ Q+ pM}.

By [12, Proposition 4.4], ρ is well defined. Note that ϕ = ψ◦ρ. It is shown that
ρ is a continuous mapping (Proposition 2.8), and the conditions under which ρ
is injective, surjective, closed and open are examined.

An R-moduleM is called a multiplication module, if every submodule ofM
has the form IM . In this case, we can take I = (N :M) (see, for example, [8]).
It is easy to see that if M is a multiplication R-module, then ψ is injective.

Proposition 2.1. Let M be an R-module. Consider the following statements.

(1) If ν(Q) = ν(Q′) for Q,Q′ ∈ PS(M), then Q = Q′.

(2) |PSp(M)| ≤ 1 for every p ∈ Spec(R).

(3) ϕ is injective.

(4) ρ is injective.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4). Moreover, if M is a multiplication R-module,
then (4) ⇒ (3).

Proof. (1) ⇔ (2) ⇔ (3) Follows from [9, Proposition 2].
(3) ⇒ (4) Clear.
(4) ⇒ (3) SinceM is a multiplication module, ψ is injective. Now since ϕ = ψ◦ρ
and ρ is injective, we conclude that ϕ is injective.

The following example shows that (4) ⇒ (3) in Proposition 2.1 is not true
in general.

Example 2.2. Let V be a vector space over a field F with dimF V > 1. It is
evident that PS(V ) and Spec(V ) are the set of all proper vector subspaces of
V . Now, since ϕ(Q) = ϕ(Q′) = 0 for all distinct subspaces Q,Q′ ∈ PS(V ), ϕ
is not injective. On the other hand ρ is injective, because if ρ(Q) = ρ(Q′) for
Q,Q′ ∈ PS(V ), then S(0)(Q) = S(0)(Q

′) which follows that Q = Q′.

Proposition 2.3. Let M be an R-module. Consider the following statements:

(1) PSp(M) ̸= ∅ for every p ∈ V (Ann(M)).

(2) ϕ is surjective.

(3) ψ is surjective.
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(4) pMp ̸=Mp for every p ∈ V (Ann(M)).

(5) Sp(pM) is a p-prime submodule of M for every p ∈ V (Ann(M)).

(6) Specp(M) ̸= ∅, for every p ∈ V (Ann(M)).

Then (1) ⇔ (2) ⇒ (3) ⇔ (4) ⇔ (5) ⇔ (6). Moreover, all of these conditions
are equivalent in the following cases:

(a) M is a multiplication R-module.

(b) M is a projective R-module.

(c) M is a faithfully flat R-module.

Proof. (1) ⇔ (2) ⇒ (3) Clear.
(3) ⇔ (4) ⇔ (5) ⇔ (6) Follows from [12, Theorem 2.1].
(6) ⇒ (1) (a) Let M be a multiplication R-module. Let p ∈ V (Ann(M)) and
P ∈ Specp(M). SinceM is a multiplication module, we have P = pM . Suppose
p′ ∈ Spec(R) and p ⊆ p′. By [12, Theorem 2.1], there exists a prime submodule
P ′ of M such that (P ′ :M) = p′. It follows that P = pM ⊆ p′M = P ′. Hence
P satisfies the primeful property and so PSp(M) ̸= ∅.
(b) Let M be a projective R-module. Let p ∈ V (Ann(M)) and P ∈ Specp(M).
By [1, Corollary 2.3], pM is a prime submodule of M . Also, pM satisfies the
primeful property and (pM : M) = p by [12, Corollary 4.3 and Proposition
4.5]. Therefore pM ∈ PSp(M).
(c) Let M be a faithfully flat R-module. Let p ∈ V (Ann(M)) and P ∈
Specp(M). By [4, Corollary 2.6 (ii)], pM is a prime submodule of M . Also,
pM satisfies the primeful property and (pM :M) = p by [12, Corollary 4.3 and
Proposition 4.5]. Therefore pM ∈ PSp(M).

The following example shows that (3) ⇒ (2) in Proposition 2.3 is not true
in general.

Example 2.4. Let Ω be the set of all prime integers p and M =
∏

p∈Ω
Z
pZ .

By [12, Example 1] the submodule (0) of M satisfies the primeful property
(i.e., ψ is surjective) and rad(0) = (0). It follows that (0) is not a primary-like
submodule of M , since it is not a prime submodule of M . Thus (0) /∈ PS(M).
Now, we show that ϕ is not surjective. If, on the contrary, ϕ(Q) = (0) for some
Q ∈ PS(M), then (Q : M) = 0. Let (Q : M) ⊆ p for (0) ̸= p ∈ Spec(Z).
Since pM is the only prime submodule with (pM : M) = p and Q satisfies
the primeful property, we have Q ⊆ pM . Thus Q ⊆ ∩p∈ΩpM = (0) and so
Q = (0). This is a contradiction, since (0) /∈ PS(M).

Corollary 2.5. If PSp(M) is a singleton set for every p ∈ Spec(R), then ϕ is
a bijective map and therefore Spec(R/Ann(M)) is a singleton set.

Proof. By Proposition 2.1 and Proposition 2.3.
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Corollary 2.6. Let M be a multiplication R-module. If ρ is injective and ψ is
surjective, then ϕ is bijective. In this case PS(M) and Spec(R/Ann(M)) are
homeomorphic.

Proof. By Proposition 2.1, Proposition 2.3 and [9, Theorem 1].

Proposition 2.7. LetM be a finitely generated multiplication R-module. Then
ϕ and ρ are surjective, and ψ is bijective.

Proof. Since M is a multiplication R-module, it is evident that ψ is injective.
Let p̄ ∈ Spec(R/Ann(M)). Since M is finitely generated, by [8, Theorem 2.5],
pM ̸= M . Thus by [8, Corollary 2.11], pM ∈ Spec(M) and ψ(pM) = p̄.
Hence ψ is surjective and so by Proposition 2.3, ϕ is surjective. Now, let
P ∈ Spec(M). Then there exists a Q ∈ PS(M) such that ϕ(Q) = ψ(P ), i.e.,√

(Q :M) = (P : M). By [12, Proposition 4.4], (Sp(Q+ pM) : M) = (P : M)
where p = (P : M). Since M is a multiplication R-module, we have ρ(Q) =
Sp(Q+ pM) = P . Hence ρ is surjective.

Let M be an R-module. From now on, we will denote R/Ann(M) by R̄
and any ideal I/Ann(M) of R̄ by Ī. By [11, Proposition 3.1], ψ−1(V (Ī)) =
V (IM), for every ideal I ∈ V (Ann(M)). Also, by [9, Proposition 1], we have
ϕ−1(V (Ī)) = ν(IM), for every ideal I ∈ V (Ann(M)). Therefore both ψ and ϕ
are continuous. Now we give a similar result for ρ.

Proposition 2.8. Let M be a R-module. Then ρ−1(V (N)) = ν(N), for every
submodule N of M . Therefore ρ is a continuous mapping.

Proof. Let Q ∈ ρ−1(V (N)). Then ρ(Q) ∈ V (N), and so (Sp(Q+ pM) : M) ⊇
(N :M) in which p =

√
(Q :M). Hence we have√

(Q :M) ⊇
√
(Sp(Q+ pM) :M) ⊇

√
(N :M).

Thus Q ∈ ν(N), so that ρ−1(V (N)) ⊆ ν(N). For the reverse inclusion, let
Q ∈ ν(N). It follows that, p =

√
(Q :M) ⊇

√
(N :M) ⊇ (N :M). Thus

(Sp(Q+ pM) :M) ⊇ (pM :M) ⊇ ((N :M)M :M) = (N :M),

which shows that Sp(Q+ pM) ∈ V (N), i.e., ρ(Q) ∈ V (N). ThusQ ∈ ρ−1(V (N))
so that ν(N) ⊆ ρ−1(V (N)).

In [11, Theorem 3.6], it has been shown that that if ψ is a surjective

map, then ψ(V (N)) = V (
√
(N :M)) and ψ(Spec(M) − V (N)) = Spec(R̄) −

V (
√
(N :M)), for every submoduleN ofM . Also, by [9, Theorem 1], ϕ(ν(N)) =

V (
√
(N :M)) and ϕ(PS(M) − ν(N)) = Spec(R̄) − V (

√
(N :M)), for every

submodule N of M . Now we give a similar result for ρ.
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Theorem 2.9. Let M be an R-module. Then if ρ is surjective, then for every
submodule N of M , ρ(ν(N)) = V (N) and ρ(PS(M) − ν(N)) = Spec(M) −
V (N). Therefore ρ is closed and open.

Proof. LetN be a submodule ofM . Using Proposition 2.8, ρ−1(V (N)) = ν(N).
Then ρ(ν(N)) = ρ(ρ−1(V (N))) = V (N). Also, we have

ρ(PS(M)− ν(N)) = ρ(ρ−1(Spec(M))− ρ−1(V (N)))

= ρ(ρ−1(Spec(M)− (V (N))))

= Spec(M)− V (N).

Corollary 2.10. Let ρ be as before. Then ρ is a bijection if and only if ρ is a
homeomorphism.

Proof. By Theorem 2.9.

Corollary 2.11. Let M be a finitely generated multiplication R-module. Then
ρ is a homeomorphism if and only if ϕ is a homeomorphism.

Proof. ⇒) By Proposition 2.1, Proposition 2.7 and [9, Proposition 1].
⇐) By Proposition 2.1, Proposition 2.7 and Theorem 2.9.

Proposition 2.12. Let ϕ be a surjective map. Then the following statements
are equivalent.

(1) PS(M) is connected;

(2) Spec(R̄) is connected;

(3) The ring R̄ contains no idempotent other than 0̄ and 1̄;

(4) Spec(M) is connected.

Proof. (1)⇒(2) Since ϕ is a continuous map, ϕ preserves connectedness. Hence
Spec(R̄) is connected.
(2)⇒(1) If PS(M) is disconnected, then PS(M) must contain a non-empty
proper subset Y that is both open and closed. Accordingly, ϕ(Y ) is a non-
empty subset of Spec(R̄) that is both open and closed by Theorem 2.9. Since Y
is open, Y = PS(M)− ν(N) for some submodule N of M whence by Theorem

2.9, ϕ(Y ) = Spec(R̄) − ϕ−1(V (
√
(N :M))). Therefore, if ϕ(Y ) = Spec(R̄),

then V (
√

(N :M))) = ∅. Thus
√
(N :M) = R̄, and so N = M . It follows

that Y = PS(M) − ν(N) = PS(M) − ν(M) = PS(M), which is impossible,
since Y is a proper subset of PS(M). Thus ϕ(Y ) is a proper subset of Spec(R̄)
so that Spec(R̄) is disconnected, a contradiction.
(2) ⇔ (3) ⇔ (4) follows from [11, Corollary 3.8].

Lemma 2.13. Let M and M ′ be R-modules and N ′ a submodule of M ′. Let
f :M →M ′ be an epimorphism. Then the following hold.
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(1) If N ′ is a primary-like submodule of M ′, then f−1(N ′) is a primary-like
submodule of M .

(2) If N ′ satisfies the primeful property, then so does f−1(N ′).

Proof. (1) Suppose rm′ ∈ f−1(N ′) and r /∈ (f−1(N ′) :M). Thus rf(m′) ∈ N ′

and r /∈ (N ′ : M ′). Now, since f−1(radN ′) ⊆ rad(f−1(N ′)), we have m′ ∈
rad(f−1(N ′)), as required.
(2) Let p be a prime ideal such that (f−1(N ′) :M) ⊆ p. Suppose r ∈ (N ′ :M ′).
Hence f(rM) = rf(M) = rM ′ ⊆ N ′. Thus rM ⊆ f−1(N ′) and so r ∈ p.
Therefore (N ′ : M ′) ⊆ p. Then there exists a prime submodule P ′ of M ′

containing N ′ such that (P ′ :M ′) = p. It is easily seen that (f−1(P ′) :M) = p.
Thus f−1(N ′) satisfies the primeful property.

Theorem 2.14. Let M and M ′ be R-modules and f : M → M ′ be a epimor-
phism. Then the following hold:

(1) The mapping σf : Spec(M ′) → Spec(M) defined by P ′ 7→ f−1(P ′) is an
injective continuous map.

(2) The mapping µf : PS(M ′) → PS(M) defined by Q′ 7→ f−1(Q′) is an
injective continuous map.

(3) If g : M ′ → M ′′ is an epimorphism, then µg◦f = µf ◦ µg and σg◦f =
σf ◦ σg.

(4) µ(1Spec(M)) = 1PS(M) and σ(1M ) = 1Spec(M) in which 1PS(M) and 1Spec(M)

are identity maps over Spec(M) and PS(M) respectively.

(5) ρM ◦ µf = σf ◦ ρM ′ in which ρM and ρM ′ are the same ρ related to M
and M ′ respectively.

Proof. (1) Follows from [11, Proposition 3.9].
(2) It is clear that µf is well-defined by Lemma 2.13. It is also injective, since f
is surjective. Let Q′ ∈ PS(M ′) and ν(N) be a closed subset of PS(M). Now,
by using the fact that ν(N) = ν(

√
(N :M)M), we have

Q′ ∈ µf
−1(ν(N)) ⇔ Q′ ∈ µf

−1(ν(
√

(N :M)M))

⇔ f−1(Q′) ⊇
√
(N :M)M

⇔ Q′ ⊇ f(
√
(N :M)M)

⇔ Q′ ⊇
√
(N :M)M ′

⇔ Q′ ∈ ν(
√
(N :M)M ′).

Therefore µf
−1(ν(N)) = ν(

√
(N :M)M ′) and so µf is continuous.

(3), (4) Clear.
(5) Let Q′ ∈ PS(M ′). Then we have (ρM ◦ µf )(Q

′) = Sp(f
−1(Q′) + pM)
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and (σf ◦ ρM ′)(Q′) = f−1(Sp′(Q′ + p′M ′)), where p =
√

(f−1(Q′) :M) and

p′ =
√
(Q′ :M ′). It is easily seen that that p = p′, and then we have

x ∈ Sp(f
−1(Q′) + pM) ⇔ cx ∈ f−1(Q′) + pM for some c ∈ R− p

⇔ cf(x) ∈ Q′ + pM for some c ∈ R− p

⇔ f(x) ∈ Sp(Q
′ + pM ′)

⇔ x ∈ f−1(Sp(Q
′ + pM ′))

⇔ x ∈ f−1(Sp′(Q′ + p′M ′)).

Thus ρM ◦ µf = σf ◦ ρM ′ .

Lemma 2.15. Let M and M ′ be R-modules. Let f : M → M ′ be a epimor-
phism and N a submodule of M containing Kerf . Then the following hold.

(1) If N is a primary-like submodule of M , then f(N) is a primary-like
submodule of M ′.

(2) If N satisfies the primeful property, then f(N) satisfies the primeful prop-
erty.

Proof. (1) First note that f(N) is a proper submodule of M ′, since N is a
proper submodule containing Kerf . Assume that rf(m) ∈ f(N) for r ∈ R
and m ∈ M . Thus there exists n ∈ N such that rm − n ∈ Kerf . Hence
rm ∈ N , and thus r ∈ (N : M) or m ∈ radN . Since (N : M) = (f(N) : M ′)
and f(radN) = rad(f(N)), then f(N) is a primary-like submodule of M ′.
(2) Let p be a prime ideal containing (f(N) : M ′). Then p is a prime ideal
containing (N : M) and so there is a prime submodule P containing N such
that (P : M) = p. Since P contains Kerf , the submodule f(P ) of M ′ is a
prime submodule containing f(N) such that (f(P ) :M ′) = p.

Theorem 2.16. Let M and M ′ be R-modules. Let f : M → M ′ be an epi-
morphism. Then PS(M ′) is homeomorphic to the topological subspace W of
PS(M) consists of all primary-like submodules of M containing Kerf .

Proof. Consider δf : W → PS(M ′) defined by δf (Q) = f(Q). By Lemma 2.15,
δf is well-defined. Also δf is continuous. Indeed, since f is surjective and Q is
a primary-like submodule containing Kerf , we have

Q ∈ δf
−1(ν(f(N))) ⇔ f(Q) ∈ ν(f(N))

⇔
√
(f(Q) :M ′) ⊇

√
(f(N) :M ′)

⇔
√
(Q :M) ⊇

√
(N :M)

⇔ Q ∈ ν(N).

It shows that δf
−1(ν(f(N))) = ν(N) ∩ W. Moreover, by letting µf as in

Theorem 2.14, (δf ◦ µf )(Q
′) = f(f−1(Q′)) = Q′ for all Q′ ∈ PS(M ′). Thus

δf ◦µf = 1PS(M ′). Also if Q ∈ W, then (µf ◦δf )(Q) = f−1(f(Q)) ⊇ Q. For the
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reverse inclusion, let x ∈ f−1(f(Q)). Then f(x) = f(q), for some q ∈ Q so that
x− q ∈ Kerf . It follows that x ∈ Q, since Kerf ⊆ Q. Hence (µf ◦ δf )(Q) = Q
for every Q ∈ W, and so µf ◦ δf = 1W . Thus PS(M ′) is homeomorphic to
W.

3. Irreduciblity in PS(M)

A topological space X is called irreducible if X ̸= ∅ and every finite inter-
section of non-empty open sets of X is non-empty. A subset Y of a topological
space X is called irreducible if the subspace Y of X is irreducible. Equivalently,
a subspace Y of X is irreducible if for every pair of closed subsets C1,C2 of X
with Y ⊆ C1 ∪ C2, we have Y ⊆ C1 or Y ⊆ C2 (see, for example, [6, P. 94]).

Let M be an R-module and Y be a subset of PS(M). We will denote the
closure of Y in PS(M) by cl(Y ), and also the intersection of all elements of Y
by γ(Y ) (note that if Y = ∅, then γ(Y ) =M).

Proposition 3.1. Let M be an R module. Then for every Q ∈ PS(M), ν(Q)
is irreducible.

Proof. Since {Q} is an irreducible subset of PS(M), {Q} is an irreducible
subset of PS(M) by [3, page 13, Exercise 20]. Now, by [9, Corollary 2],
cl({Q}) = ν(Q). Therefore ν(Q) is an irreducible subset of PS(M).

Let C be a closed subset of a topological space X . An element x ∈ C is
called a generic point of X if C = cl({x}).

Corollary 3.2. Let M be an R-module and Q,Q′ ∈ PS(M). If
√
(Q :M) =√

(Q′ :M). Then Q is a generic point for the irreducible closed subset ν(Q′).

Proof. First note that, by Proposition 3.1, ν(Q′) is an irreducible closed subset
of PS(M). Also, by [9, Corollary 2], {Q} = ν(Q) = ν(Q′). Thus Q is a generic
point of ν(Q′).

Proposition 3.3. Let M be an R-module and Y ⊆ PS(M). If γ(Y ) is a
primary-like submodule of M , then Y is irreducible in PS(M).

Proof. Suppose that γ(Y ) is a primary-like submodule of M . Then by [9,
Proposition 3], ν(γ(Y )) = cl(Y ). Hence cl(Y ) is irreducible by Proposition 3.1.
Thus Y is irreducible by [3, page 13, Exersise 20].

Corollary 3.4. Let M be an R-module and Y ⊆ PS(M). If Y is linearly
ordered by inclusion, then Y and PSp(M) are irreducible in PS(M) for every
prime ideal p of R.

Proof. Since γ(Y ) and γ(PSp(M)) are primary-like submodules of M , we con-
clude that Y and PSp(M) are irreducible by Proposition 3.3.

Corollary 3.5. Let m be a maximal ideal of R and M an R-module. Then
PSm(M) is an irreducible closed subset of PS(M).
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Proof. Let m is a maximal ideal of R. Then PSm(M) is irreducible by Corol-
lary 3.4. Also, since

ν(mM) = {Q ∈ PS(M) |
√
(Q :M) ⊇

√
(mM :M)}

= {Q ∈ PS(M) |
√
(Q :M) ⊇ m}

= {Q ∈ PS(M) |
√
(Q :M) = m}

= PSm(M),

PSm(M) is a closed subset of PS(M).

Proposition 3.6. LetM be an R-module, Y ⊆ PS(M) and p =
√
(γ(Y ) :M).

If p is a prime ideal of R and PSp(M) ̸= ∅, then Y is irreducible in PS(M).

Proof. Let Q ∈ PSp(M). Since p =
√

(Q :M) =
√
(γ(Y ) :M), we have

ν(Q) = ν(γ(Y )) = cl(Y ) by [9, Proposition3]. Hence, cl(Y ) is irreducible and
so Y is irreducible by [3, page 13, Exersise 20].

Proposition 3.7. LetM be an R-module, Y be an irreducible subset of PS(M)
and A = {

√
(Q :M) : Q ∈ Y }. Then A is an irreducible subset of Spec(R),

and thus γ(A) =
√
(γ(Y ) :M) is a prime ideal of R.

Proof. Suppose that Y is irreducible. Since ϕ is continuous by Proposition 2.8,
ϕ(Y ) = Y ′ is an irreducible subset of Spec(R̄). Therefore, we have γ(Y ′) =√

(γ(Y ) :M), and so γ(Y ′) is a prime ideal of R̄ by [6, page 129, Proposition

14]. Thus γ(A) =
√
(γ(Y ) :M) for some subset A of Spec(R), and hence γ(A)

is a prime ideal of R. Thus by [6, page 129, Proposition 14], A is an irreducible
subset of Spec(R).

Theorem 3.8. Let M be an R-module and ϕ be surjective. If Y ⊆ PS(M),
then Y is an irreducible closed subset of PS(M) if and only if Y = ν(Q) for
some Q ∈ PS(M). In particular, every irreducible closed subset of PS(M) has
a generic point.

Proof. By Proposition 3.1, for any Q ∈ PS(M), ν(Q) is an irreducible closed
subset of PS(M). Conversely, if Y is an irreducible closed subset of PS(M),
then Y = ν(N) for some submodule N of M in which

√
(γ(ν(N)) :M) =√

(γ(Y ) :M) = p, and this ideal is a prime ideal of R by Proposition 3.7.
Since ϕ is surjective, there exists a p-primary-like submodule Q ∈ PS(M) such
that

√
(Q :M) = p. It follows that p =

√
(γ(ν(N)) :M) =

√
(Q :M). Hence

ν(γ(ν(N))) = ν(Q). Thus Y = ν(Q), by [9, Proposition3].

Proposition 3.9. Let M be an R module and ϕ be surjective. Then

(1) The assignment Q 7→ ν(Q) is a surjection from PS(M) to the set of all
irreducible closed subsets of PS(M).

(2) The assignment ν(Q) 7→
√
(Q :M) is a bijection from the set of all irre-

ducible closed subsets of PS(M) to Spec(R̄).
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(3) The assignment ν(Q) 7→ V (ψ−1(
√
(Q :M))) is a bijection from the set of

all irreducible closed subsets of PS(M) to the set of all irreducible closed
subsets of Spec(M).

Proof. (1) By Theorem 3.8.
(2) It is easy to see that the given assignment is well-defined and an injection.

Suppose p̄ ∈ Spec(R̄). Since ϕ is surjective, p̄ =
√

(Q :M) for some Q ∈
PS(M). Thus the assighnment ν(Q) 7→ p̄, and so the given assignment is a
surjection.

(3) First note that, for any Q ∈ PS(M), the closed subset V (ψ−1(
√
(Q :M)))

of Spec(M) is irreducible by [11, Theorem 5.7]. Thus the given assignment is
well defined, since for Q,Q′ ∈ PS(M), ν(Q) = ν(Q′) implies that

√
(Q :M) =√

(Q′ :M). Now, let ψ−1(
√
(Q :M)) = P and ψ−1(

√
(Q′ :M)) = P ′ for

Q,Q′ ∈ PS(M). If V (P ) = V (P ′), then (P : M) = (P ′ : M). Thus, since ψ
is surjective,

√
(Q :M) =

√
(Q′ :M). It follows that ν(Q) = ν(Q′), and then

the given assignment is injective. Next, for the surjectivity, let Q ∈ PS(M)

and V (ψ−1(
√
(Q :M)) = V (P ). Thus ν(P ) is mapped to V (ψ−1(

√
(P :M))

which is V (P ). Thus the given assignment is a bijection.

Theorem 3.10. Let M be a finitely generated R-module. Then the following
statements are equivalent.

(1) Spec(M) is an irreducible space;

(2) PS(M) is an irreducible space;

(3) Supp(M) is an irreducible space;

(4)
√
Ann(M) is a prime ideal of R;

(5) PS(M) = ν(pM) for some p ∈ Supp(M);

(6) Spec(M) = V (pM) for some p ∈ Supp(M).

Proof. (1) ⇒ (2) Since Spec(M) is an irreducible space, by [11, Theorem 5.7],
Spec(M) = V (P ) for some P ∈ Spec(M). Let p̄ = ψ(P ). Since ϕ is surjective,

there is an element Q ∈ PS(M) such that ϕ(Q) =
√
(Q :M) = p̄. We show

that PS(M) = ν(Q). Suppose that Q′ ∈ PS(M) and p′ =
√

(Q′ :M). Now,
since ρ(Q′) ∈ V (P ), we have√

(Q′ :M) = p′ = (Sp′(Q′ + p′M) :M) = (ρ(Q′) :M)

⊇ (P :M) = p̄ =
√

(Q :M),

which follows that
√
(Q′ :M) ⊇

√
(Q :M). Thus Q′ ∈ ν(Q), and therefore

PS(M) = ν(Q′), i.e., PS(M) is an irreducible space by Theorem 3.8.
(2) ⇒ (3) Since ϕ is a surjective continuous map, Spec(R̄) is irreducible by
the assumption. Now since by [3, page 13, Ex. 21], Spec(R̄) and V (Ann(M))
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are homeomorphic and by [12, Proposition 3.4] Supp(M) = V (Ann(M)), we
conclude that Supp(M) is an irreducible space.
(3) ⇒ (4) By [6, page 102, Proposition 14], γ(Supp(M)) is a prime ideal of R.
Now since γ(Supp(M)) = γ(V (Ann(M))) =

√
Ann(M), we are done.

(4) ⇒ (5) First note that
√
Ann(M) ⊆

√
(Q :M), for each Q ∈ PS(M). Since

M is finitely generated, by [12, Proposition 3.8], there exists P ∈ Spec(M) such
that (P :M) =

√
(P :M) =

√
Ann(M). Therefore

PS(M) = {Q ∈ PS(M) |
√
(Q :M) ⊇

√
(P :M)}

= ν(P ) = ν(
√
(P :M)M) = ν(

√
Ann(M)M).

Thus PS(M) = ν(pM) in which p =
√
Ann(M) and p ∈ Supp(M).

(5) ⇒ (6) Let P ∈ Spec(M). Since ϕ is surjective, there is an element Q ∈
PS(M) such that ϕ(Q) = (P :M), and so

√
(Q :M) = (P :M). Now, since

PS(M) = ν(pM) for some p ∈ Supp(M), we have

(pM :M) ⊆
√
(pM :M) ⊆

√
(Q :M) = (P :M).

Thus P ∈ V (pM) so that Spec(M) = V (pM) for some p ∈ Supp(M).
(6) ⇒ (1) Let Spec(M) = V (pM) for some p ∈ Supp(M). Since ψ is surjective,
there exists P ∈ X such that (P : M) = p. Hence by [11, Result 3], we have
Spec(M) = V (pM) = V ((P : M)M) = V (P ). Thus, by [11, Theorem 5.7],
Spec(M) is irreducible.

4. PS(M) as a spectral space

A topological space X is a T0-space if and only if for any two distinct points
in X there exists an open subset of X which contains one of the points but
not the other. It is well-known that, for any ring R, Spec(R) is a T0-space
for the Zariski topology. In [11, page 429], it has been shown that if M is a
vector space, then Spec(M) is not a T0-space. This example can be used again
to show that PS(M) is not also a T0 space. In fact, if M is a vector space,
then ν(N) = PS(M) for every proper subspace N of M so that PS(M) has
the trivial topology.

Proposition 4.1. Let M be a multiplication R-module. If for every Q ∈
PS(M) the ideal (Q :M) is a radical ideal, then PS(M) is a T0-space.

Proof. Let Q ∈ PS(M) and (Q :M) is a radical ideal of R. Then Q is a prime
submodule of M , and so PS(M) is a topological subspace of Spec(M). Thus
PS(M) is a T0-space by [11, Corollary 6.2].

Theorem 4.2. Let M be an R-module. Then the following statements are
equivalent.

(1) PS(M) is a T0-space.

(2) If ν(Q) = ν(Q′) for Q,Q′ ∈ PS(M), then Q = Q′.
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Proof. (1) Let Q ̸= Q′ for some Q,Q′ ∈ PS(M). Since PS(M) is a T0-space,
cl(Q) ̸= clQ′. Thus by [9, Corollary 2], we have ν(Q) ̸= ν(Q′).
(2) Let Q ̸= Q′ for some Q,Q′ ∈ PS(M). Then by the assumption ν(Q) ̸=
ν(Q′). Therefore, by [9, Corollary 2], cl(Q) ̸= cl(Q′). Hence PS(M) is a
T0-space.

Recall that a spectral space is a topological space homeomorphic to the
prime spectrum of a ring equipped with the Zariski topology. By Hochster’s
characterization [10], the topological space X is spectral if and only if the
following statements hold:

(1) X is a T0-space.

(2) X is quasi-compact.

(3) the quasi-compact open subsets of X are closed under finite intersection
and form an open base.

(4) each irreducible closed subset of X has a generic point.

For any ring R, Spec(R) is well-known to satisfy these condition (see [6, P.
401-403]).

Theorem 4.3. Let M be a finitely generated multiplication R-module. Then
PS(M) is a spectral space.

Proof. By [9, Theorem3], Theorem 3.8, [9, Corollary3] and [11, Corollary 6.2].

Theorem 4.4. Let M be an R-module. Consider the following statements:

(1) PS(M) is a spectral space;

(2) PS(M) is a T0-space;

(3) If ν(Q) = ν(Q′) for Q,Q′ ∈ PS(M), then Q = Q′;

(4) |PSp(M)| ≤ 1 for every p ∈ Spec(R);

(5) ϕ is injective.

Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇔ (5).
Moreover if ϕ is surjective , then (5) ⇒ (1).

Proof. (1)⇒(2) Clear.
(2)⇒(3) By Theorem 4.2.
(3) ⇔ (4) ⇔ (5) By Proposition 2.1.
(5) ⇒ (1) By[9, Theorem 1], PS(M) is homeomorphic to the spectral space
Spec(R̄). Thus PS(M) is a spectral space.

Proposition 4.5. Let M be an R-module and |PSp(M)| = 1 for every p ∈
Spec(R). Then PS(M) is a spectral space.



92 Hosein Fazaeli Moghimi, Fatemeh Rashedi

Proof. Since Spec(R̄) is a spectral space, PS(M) is also a spectral space by
Corollary 2.5 and Corollary 2.10.

Theorem 4.6. LetM be a multiplication R-module such that PS(M) is a non-
empty finite set. Then PS(M) is a spectral space if and only if |PSp(M)| ≤ 1
for every p ∈ Spec(R).

Proof. Since PS(M) is a non-empty finite set, then the conditions (2) and (3)
in Hochster’s characterization are clearly true. Suppose Y = {y1, y2, . . . , yn}
is an irreducible closed subset of PS(M). Thus Y = {yi} for some i where
1 ≤ i ≤ n, i.e., Y has a generic point. Hence, by [9, Theorem 4.3], PS(M) is a
spectral space if and only if PS(M) is a T0-space if and only if |PSp(M)| ≤ 1
for every p ∈ Spec(R).

Theorem 4.7. LetM be an R-module and Im(ϕ) be a closed subset of Spec(R̄).
Then PS(M) is a spectral space if and only if ϕ is injective.

Proof. Let Y = Im(ϕ) be a closed subset of Spec(R̄). Then Y is a spec-
tral subspace of Spec(R̄). Assume that ϕ is injective. Then the bijection
ϕ : PS(M) → Y is continuous by Proposition 2.8. We show that ϕ is a closed

map. Let N be a submodule of M , and Y ′ = Y ∩ V (
√
(N :M)). Then Y ′ is a

closed subset of Y , and so by Proposition 2.8 we have

ϕ−1(Y ′) = ϕ−1(Y ) ∩ ϕ−1(V
√

(N :M)) = ν(
√
(N :M)M) = ν(N).

Hence ϕ(ν(N)) = ϕ(ϕ−1(Y ′)) = Y ′ is a closed subset of Y . Thus ϕ : PS(M) →
Y is a homeomorphism and so PS(M) is a spectral space. Conversely, assume
PS(M) is a spectral space. Hence by Theorem 4.4, ϕ is injective.

Example 4.8. (1) Every proper submodule of Z-module Z(p∞) is primary-
like. However SpecL(Z(p∞)) = Spec(Z(p∞)) = ∅.

(2) For Z-module Q, Spec(Q) = {0} and SpecL(Q) = ∅, because Q has no
submodules satisfying the primeful property.

(3) For a vector space V over a field F , SpecL(V ) = Spec(V )= the set of all
proper vector subspaces of V .

(4) LetM = Q⊕Zp, where Zp is the cyclic group of order p. Then Spec(M) =
{Q⊕ 0, 0⊕Zp} [13, Example 2.6]. Although {0⊕ 0,Q⊕ 0, 0⊕Zp}∪ {N :
N ⊈ Q⊕ 0, N ⊈ 0⊕ Zp} is the set of all primary like submodules of M .
However PS(M) = ∅.

(5) Let M = Z(p∞) ⊕ Zp. Then M is not a multiplication Z-module [13,
Example 3.7]. Spec(M) = pM = Z(p∞) ⊕ 0. By an easy verification
{< 1/pi +Z > ⊕0 : i ∈ Z}∪ {Z(p∞)⊕ 0, 0⊕Zp}∪ {N : N ⊈ Z(p∞)⊕ 0}
is the set of all primary-like submodules ofM . But N = 0⊕Zp /∈ PS(M).
Also radN =M and (N :M) = 0. Thus for the primary-like submodule
N ,

√
(N :M) ⊊ (radN :M).
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(6) Let M =
∏

p∈Ω
Z
pZ and M ′ =

⊕
p∈Ω

Z
pZ be Z-modules where Ω is the set

of prime integers. Then M ′ is a 0-prime submodule of M which does not
satisfy the primeful property. In fact Spec(M) = {M ′} ∪ {pM : p ∈ Ω}.
However, (radM ′ :M) =

√
(M ′ :M) = 0 [9, Example 2.12].

It is easy to see that the zero submodule 0 satisfies the primeful property
and rad 0 = 0. But 0 is not a primary-like submodule of M , because 0 is
not a prime submodule of M .
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