On the Zariski topology over the primary-like spectrum Hosein Fazaeli Moghimi¹² and Fatemeh Rashedi³

Abstract. Let R be a commutative ring with identity and M be a unital R-module. The primary-like spectrum $\mathcal{PS}(M)$ has a topology which is a generalization of the Zariski topology on the prime spectrum $\operatorname{Spec}(R)$. We get several topological properties of $\mathcal{PS}(M)$, mostly for the case when the continuous mapping $\phi: \mathcal{PS}(M) \to \operatorname{Spec}(R/\operatorname{Ann}(M))$ defined by $\phi(Q) = \sqrt{(Q:M)}/\operatorname{Ann}(M)$ is surjective or injective. For example, if ϕ is surjective, then $\mathcal{PS}(M)$ is a connected space if and only if $\operatorname{Spec}(R/\operatorname{Ann}(M))$ is a connected space. It is shown that if ϕ is surjective, then a subset Y of $\mathcal{PS}(M)$ is irreducible if and only if Y is the closure of a singleton set. It is also proved that if the image of ϕ is a closed subset of $\operatorname{Spec}(R/\operatorname{Ann}(M))$, then $\mathcal{PS}(M)$ is a spectral space if and only if ϕ is injective.

AMS Mathematics Subject Classification (2010): 13C13; 13C99; 54B99 Key words and phrases: sprimary-like submodule; primeful property; continuous map; irreducible space; spectral space

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unital. Let R be a ring and M be an R-module. For a submodule N of M, we let $(N:M) = \{r \in R \mid rM \subseteq N\}$. As usual, we denote the annihilator ideal ((0):M) by Ann(M). A proper submodule P of M with p=(P:M)is called a prime submodule (or a p-prime submodule) of M, if for $r \in R$ and $m \in M$, $rm \in P$ implies that either $r \in p$ or $m \in P$. The prime spectrum of M, denoted Spec(M), is the set of all prime submodules of M. Also for a prime ideal p of R, $\operatorname{Spec}_p(M)$ will denote the set of all p-prime submodules of M. The intersection of all prime submodules of M containing N, denoted rad N, is called the radical of N. If there is no prime submodule containing N, rad N is defined to be M. In the ideal case, the radical of I is denoted by \sqrt{I} . As a generalization of a primary ideal one hand and a generalization of the prime submodule on the other hand, a proper submodule Q of M is called a primary-like submodule, if for $r \in R$ and $m \in M$, $rm \in Q$ implies either $r \in (Q:M)$ or $m \in \operatorname{rad} Q$ [9]. We say that a submodule N of a nonzero R-module M satisfies the primeful property if for each prime ideal p of R with $(N:M) \subseteq p$, there exists a prime submodule P containing N such

¹Department of Mathematics, University of Birjand, Birjand, Iran, e-mail: hfazaeli@birjand.ac.ir

²Corresponding author

³Department of Mathematics, Velayat University, Iranshahr, Iran, e-mail: f.rashedi@velayat.ac.ir

that (P:M)=p. If the zero submodule of M satisfies the primeful property, then M is called a primeful module [12]. For example, finitely generated modules and projective modules over domains are two classes of primeful modules [12, Propositin 3.8, Corollary 4.3]. The primary-like spectrum of M, denoted $\mathcal{PS}(M)$, is defined to be the set of all primary-like submodules of M satisfying the primeful property. If N is a submodule of M satisfying the primeful property, then $(\operatorname{rad} N:M)=\sqrt{(N:M)}$ [12, Proposition 5.3]. It is easily seen that if Q is a primary-like submodule satisfying the primeful property, then $p=\sqrt{(Q:M)}$ is a prime ideal of R. Therefore by a p-primary-like submodule Q of M, we mean that Q is a primary-like submodule satisfying the primeful property with $p=\sqrt{(Q:M)}$. The set of such submodules is denoted by $\mathcal{PS}_p(M)$. It should be noted that if $Q\in\mathcal{PS}_p(M)$ and m is a maximal ideal of R containing p, then there is a prime submodule P containing Q such that P(M)=m. It follows that P(M)=m and P(M)=m. It follows that P(M)=m and P(M)=m.

In recent years, several generalizations of the Zariski topology from rings to modules have been introduced and studied from various points of views (see, for example, [2, 5, 7, 11, 13, 9]).

One of them is the *Zariski topology* on $\operatorname{Spec}(M)$ which is described by taking the set $\{V(N) \mid N \text{ is a submodule of } M\}$ as the set of closed sets of $\operatorname{Spec}(M)$, where $V(N) = \{P \in \operatorname{Spec}(M) \mid (P : M) \supseteq (N : M)\}$ [11, 7].

Now, we set $\nu(N) = \{Q \in \mathcal{PS}(M) \mid \sqrt{(Q:M)} \supseteq \sqrt{(N:M)}\}$ for every submodule N of M. As in the case of the Zariski topology on $\operatorname{Spec}(M)$, the class of varieties $\Omega(M) = \{\nu(N) \mid N \text{ is a submodule of } M\}$ satisfies all axioms of closed sets in a topological space [9, Lemma 1]. Throughout this paper, it is assumed that $\mathcal{PS}(M)$ is equipped with this topology which enjoys analogs of many of the properties of the Zariski topology on $\operatorname{Spec}(M)$. We have already obtained some of the topological properties of this space in [9]. For instance, in [9, Lemma 5], it has been shown that the set $\mathcal{B} = \{\mathcal{PS}(M) \setminus \nu(rM) \mid r \in R\}$ forms a basis for this topology on $\mathcal{PS}(M)$. Furthermore, every finite intersection of the elements of \mathcal{B} is a quasi-compact subspace of $\mathcal{PS}(M)$ [9, Theorem 3].

In this paper, we examine the properties of certain mappings between the primary-like spectrum $\mathcal{PS}(M)$ of M and the spectrums $\operatorname{Spec}(R/Ann(M))$ and $\operatorname{Spec}(M)$, in particular considering when these mappings are continuous or homeomorphisms (Proposition 2.8, Theorem 2.9 and Corollary 2.10). It is shown that $\mathcal{PS}(M)$ is connected if and only if $\operatorname{Spec}(R/Ann(M))$ is a connected space (Proposition 2.12). Hochster's characterization of a spectral space involves an irreducibility discussion in $\mathcal{PS}(M)$. It is shown that for any finitely generated module M, every irreducible subspace of $\mathcal{PS}(M)$ is the closure of a singleton set (Theorem 3.8). In particular, if M is a finitely generated R-module, then $\mathcal{PS}(M)$ is a spectral space, i.e., $\mathcal{PS}(M)$ is homeomorphic with $\operatorname{Spec}(S)$ for some commutative ring S (Theorem 4.4).

2. Continuous mappings between spectrums

As shown in [11, Proposition 3.1], $\psi : \operatorname{Spec}(M) \to \operatorname{Spec}(R/\operatorname{Ann}(M))$ defined by $\psi(P) = (P:M)/\operatorname{Ann}(M)$ is a continuous mapping. In [9, Proposition1], we have introduced the mappings $\phi : \mathcal{PS}(M) \to \operatorname{Spec}(R/\operatorname{Ann}(M))$ by $\phi(Q) = \sqrt{(Q:M)}/\operatorname{Ann}(M)$ which is continuous, and plays a role analogous to that of ψ . Here, we introduce $\rho : \mathcal{PS}(M) \to \operatorname{Spec}(M)$ defined by $\rho(Q) = S_p(Q+pM)$, in which $p = \sqrt{(Q:M)}$ and

$$S_p(Q+pM) = \{ m \in M \mid \exists c \in R \setminus p, \ cm \in Q + pM \}.$$

By [12, Proposition 4.4], ρ is well defined. Note that $\phi = \psi \circ \rho$. It is shown that ρ is a continuous mapping (Proposition 2.8), and the conditions under which ρ is injective, surjective, closed and open are examined.

An R-module M is called a multiplication module, if every submodule of M has the form IM. In this case, we can take I = (N : M) (see, for example, [8]). It is easy to see that if M is a multiplication R-module, then ψ is injective.

Proposition 2.1. Let M be an R-module. Consider the following statements.

- (1) If $\nu(Q) = \nu(Q')$ for $Q, Q' \in \mathcal{PS}(M)$, then Q = Q'.
- (2) $|\mathcal{PS}_p(M)| \leq 1$ for every $p \in Spec(R)$.
- (3) ϕ is injective.
- (4) ρ is injective.

Then $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Rightarrow (4)$. Moreover, if M is a multiplication R-module, then $(4) \Rightarrow (3)$.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ Follows from [9, Proposition 2].

- $(3) \Rightarrow (4)$ Clear.
- (4) \Rightarrow (3) Since M is a multiplication module, ψ is injective. Now since $\phi = \psi \circ \rho$ and ρ is injective, we conclude that ϕ is injective.

The following example shows that $(4) \Rightarrow (3)$ in Proposition 2.1 is not true in general.

Example 2.2. Let V be a vector space over a field F with $\dim_F V > 1$. It is evident that $\mathcal{PS}(V)$ and $\operatorname{Spec}(V)$ are the set of all proper vector subspaces of V. Now, since $\phi(Q) = \phi(Q') = 0$ for all distinct subspaces $Q, Q' \in \mathcal{PS}(V), \phi$ is not injective. On the other hand ρ is injective, because if $\rho(Q) = \rho(Q')$ for $Q, Q' \in \mathcal{PS}(V)$, then $S_{(0)}(Q) = S_{(0)}(Q')$ which follows that Q = Q'.

Proposition 2.3. Let M be an R-module. Consider the following statements:

- (1) $\mathcal{PS}_p(M) \neq \emptyset$ for every $p \in V(Ann(M))$.
- (2) ϕ is surjective.
- (3) ψ is surjective.

- (4) $pMp \neq Mp$ for every $p \in V(Ann(M))$.
- (5) $S_p(pM)$ is a p-prime submodule of M for every $p \in V(Ann(M))$.
- (6) $\operatorname{Spec}_n(M) \neq \emptyset$, for every $p \in V(Ann(M))$.

Then $(1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$. Moreover, all of these conditions are equivalent in the following cases:

- (a) M is a multiplication R-module.
- (b) M is a projective R-module.
- (c) M is a faithfully flat R-module.

Proof. (1) \Leftrightarrow (2) \Rightarrow (3) Clear.

- $(3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$ Follows from [12, Theorem 2.1].
- $(6) \Rightarrow (1)$ (a) Let M be a multiplication R-module. Let $p \in V(Ann(M))$ and $P \in \operatorname{Spec}_p(M)$. Since M is a multiplication module, we have P = pM. Suppose $p' \in \operatorname{Spec}(R)$ and $p \subseteq p'$. By [12, Theorem 2.1], there exists a prime submodule P' of M such that (P' : M) = p'. It follows that $P = pM \subseteq p'M = P'$. Hence P satisfies the primeful property and so $\mathcal{PS}_p(M) \neq \emptyset$.
- (b) Let M be a projective R-module. Let $p \in V(Ann(M))$ and $P \in \operatorname{Spec}_p(M)$. By [1, Corollary 2.3], pM is a prime submodule of M. Also, pM satisfies the primeful property and (pM:M)=p by [12, Corollary 4.3 and Proposition 4.5]. Therefore $pM \in \mathcal{PS}_p(M)$.
- (c) Let M be a faithfully flat R-module. Let $p \in V(Ann(M))$ and $P \in \operatorname{Spec}_p(M)$. By [4, Corollary 2.6 (ii)], pM is a prime submodule of M. Also, pM satisfies the primeful property and (pM:M)=p by [12, Corollary 4.3 and Proposition 4.5]. Therefore $pM \in \mathcal{PS}_p(M)$.

The following example shows that $(3) \Rightarrow (2)$ in Proposition 2.3 is not true in general.

Example 2.4. Let Ω be the set of all prime integers p and $M = \prod_{p \in \Omega} \frac{\mathbb{Z}}{p\mathbb{Z}}$. By [12, Example 1] the submodule (0) of M satisfies the primeful property (i.e., ψ is surjective) and $\operatorname{rad}(0) = (0)$. It follows that (0) is not a primary-like submodule of M, since it is not a prime submodule of M. Thus $(0) \notin \mathcal{PS}(M)$. Now, we show that ϕ is not surjective. If, on the contrary, $\phi(Q) = (0)$ for some $Q \in \mathcal{PS}(M)$, then (Q : M) = 0. Let $(Q : M) \subseteq p$ for $(0) \neq p \in \operatorname{Spec}(\mathbb{Z})$. Since pM is the only prime submodule with (pM : M) = p and Q satisfies the primeful property, we have $Q \subseteq pM$. Thus $Q \subseteq \cap_{p \in \Omega} pM = (0)$ and so Q = (0). This is a contradiction, since $(0) \notin \mathcal{PS}(M)$.

Corollary 2.5. If $\mathcal{PS}_p(M)$ is a singleton set for every $p \in Spec(R)$, then ϕ is a bijective map and therefore Spec(R/Ann(M)) is a singleton set.

Proof. By Proposition 2.1 and Proposition 2.3.

Corollary 2.6. Let M be a multiplication R-module. If ρ is injective and ψ is surjective, then ϕ is bijective. In this case $\mathcal{PS}(M)$ and $\operatorname{Spec}(R/\operatorname{Ann}(M))$ are homeomorphic.

Proof. By Proposition 2.1, Proposition 2.3 and [9, Theorem 1]. \Box

Proposition 2.7. Let M be a finitely generated multiplication R-module. Then ϕ and ρ are surjective, and ψ is bijective.

Proof. Since M is a multiplication R-module, it is evident that ψ is injective. Let $\bar{p} \in \operatorname{Spec}(R/\operatorname{Ann}(M))$. Since M is finitely generated, by [8, Theorem 2.5], $pM \neq M$. Thus by [8, Corollary 2.11], $pM \in \operatorname{Spec}(M)$ and $\psi(pM) = \bar{p}$. Hence ψ is surjective and so by Proposition 2.3, ϕ is surjective. Now, let $P \in \operatorname{Spec}(M)$. Then there exists a $Q \in \mathcal{PS}(M)$ such that $\phi(Q) = \psi(P)$, i.e., $\sqrt{(Q:M)} = (P:M)$. By [12, Proposition 4.4], $(S_p(Q+pM):M) = (P:M)$ where p = (P:M). Since M is a multiplication R-module, we have $\rho(Q) = S_p(Q+pM) = P$. Hence ρ is surjective.

Let M be an R-module. From now on, we will denote $R/\operatorname{Ann}(M)$ by \bar{R} and any ideal $I/\operatorname{Ann}(M)$ of \bar{R} by \bar{I} . By [11, Proposition 3.1], $\psi^{-1}(V(\bar{I})) = V(IM)$, for every ideal $I \in V(Ann(M))$. Also, by [9, Proposition 1], we have $\phi^{-1}(V(\bar{I})) = \nu(IM)$, for every ideal $I \in V(Ann(M))$. Therefore both ψ and ϕ are continuous. Now we give a similar result for ρ .

Proposition 2.8. Let M be a R-module. Then $\rho^{-1}(V(N)) = \nu(N)$, for every submodule N of M. Therefore ρ is a continuous mapping.

Proof. Let $Q \in \rho^{-1}(V(N))$. Then $\rho(Q) \in V(N)$, and so $(S_p(Q+pM):M) \supseteq (N:M)$ in which $p = \sqrt{(Q:M)}$. Hence we have

$$\sqrt{(Q:M)} \supseteq \sqrt{(S_p(Q+pM):M)} \supseteq \sqrt{(N:M)}.$$

Thus $Q \in \nu(N)$, so that $\rho^{-1}(V(N)) \subseteq \nu(N)$. For the reverse inclusion, let $Q \in \nu(N)$. It follows that, $p = \sqrt{(Q:M)} \supseteq \sqrt{(N:M)} \supseteq (N:M)$. Thus

$$(S_p(Q+pM):M)\supseteq (pM:M)\supseteq ((N:M)M:M)=(N:M),$$

which shows that $S_p(Q+pM) \in V(N)$, i.e., $\rho(Q) \in V(N)$. Thus $Q \in \rho^{-1}(V(N))$ so that $\nu(N) \subseteq \rho^{-1}(V(N))$.

In [11, Theorem 3.6], it has been shown that that if ψ is a surjective map, then $\psi(V(N)) = V(\sqrt{(N:M)})$ and $\psi(\operatorname{Spec}(M) - V(N)) = \operatorname{Spec}(\bar{R}) - V(\sqrt{(N:M)})$, for every submodule N of M. Also, by [9, Theorem 1], $\phi(\nu(N)) = V(\sqrt{(N:M)})$ and $\phi(\mathcal{PS}(M) - \nu(N)) = \operatorname{Spec}(\bar{R}) - V(\sqrt{(N:M)})$, for every submodule N of M. Now we give a similar result for ρ .

Theorem 2.9. Let M be an R-module. Then if ρ is surjective, then for every submodule N of M, $\rho(\nu(N)) = V(N)$ and $\rho(\mathcal{PS}(M) - \nu(N)) = \operatorname{Spec}(M) - V(N)$. Therefore ρ is closed and open.

Proof. Let N be a submodule of M. Using Proposition 2.8, $\rho^{-1}(V(N)) = \nu(N)$. Then $\rho(\nu(N)) = \rho(\rho^{-1}(V(N))) = V(N)$. Also, we have

$$\begin{split} \rho(\mathcal{PS}(M) - \nu(N)) &= \rho(\rho^{-1}(\operatorname{Spec}(M)) - \rho^{-1}(V(N))) \\ &= \rho(\rho^{-1}(\operatorname{Spec}(M) - (V(N)))) \\ &= \operatorname{Spec}(M) - V(N). \end{split}$$

Corollary 2.10. Let ρ be as before. Then ρ is a bijection if and only if ρ is a homeomorphism.

Proof. By Theorem 2.9. \Box

Corollary 2.11. Let M be a finitely generated multiplication R-module. Then ρ is a homeomorphism if and only if ϕ is a homeomorphism.

Proof. \Rightarrow) By Proposition 2.1, Proposition 2.7 and [9, Proposition 1]. \Leftarrow) By Proposition 2.1, Proposition 2.7 and Theorem 2.9. □

Proposition 2.12. Let ϕ be a surjective map. Then the following statements are equivalent.

- (1) $\mathcal{PS}(M)$ is connected:
- (2) Spec(\bar{R}) is connected;
- (3) The ring \bar{R} contains no idempotent other than $\bar{0}$ and $\bar{1}$;
- (4) $\operatorname{Spec}(M)$ is connected.

Proof. (1) \Rightarrow (2) Since ϕ is a continuous map, ϕ preserves connectedness. Hence Spec(\bar{R}) is connected.

 $(2)\Rightarrow (1)$ If $\mathcal{PS}(M)$ is disconnected, then $\mathcal{PS}(M)$ must contain a non-empty proper subset Y that is both open and closed. Accordingly, $\phi(Y)$ is a non-empty subset of $\operatorname{Spec}(\bar{R})$ that is both open and closed by Theorem 2.9. Since Y is open, $Y=\mathcal{PS}(M)-\nu(N)$ for some submodule N of M whence by Theorem 2.9, $\phi(Y)=\operatorname{Spec}(\bar{R})-\phi^{-1}(V(\sqrt{(N:M)}))$. Therefore, if $\phi(Y)=\operatorname{Spec}(\bar{R})$, then $V(\sqrt{(N:M)}))=\emptyset$. Thus $\sqrt{(N:M)}=\bar{R}$, and so N=M. It follows that $Y=\mathcal{PS}(M)-\nu(N)=\mathcal{PS}(M)-\nu(M)=\mathcal{PS}(M)$, which is impossible, since Y is a proper subset of $\mathcal{PS}(M)$. Thus $\phi(Y)$ is a proper subset of $\operatorname{Spec}(\bar{R})$ so that $\operatorname{Spec}(\bar{R})$ is disconnected, a contradiction.

 $(2) \Leftrightarrow (3) \Leftrightarrow (4)$ follows from [11, Corollary 3.8].

Lemma 2.13. Let M and M' be R-modules and N' a submodule of M'. Let $f: M \to M'$ be an epimorphism. Then the following hold.

- (1) If N' is a primary-like submodule of M', then $f^{-1}(N')$ is a primary-like submodule of M.
- (2) If N' satisfies the primeful property, then so does $f^{-1}(N')$.

Proof. (1) Suppose $rm' \in f^{-1}(N')$ and $r \notin (f^{-1}(N') : M)$. Thus $rf(m') \in N'$ and $r \notin (N' : M')$. Now, since $f^{-1}(\operatorname{rad} N') \subseteq \operatorname{rad}(f^{-1}(N'))$, we have $m' \in \operatorname{rad}(f^{-1}(N'))$, as required.

(2) Let p be a prime ideal such that $(f^{-1}(N'):M) \subseteq p$. Suppose $r \in (N':M')$. Hence $f(rM) = rf(M) = rM' \subseteq N'$. Thus $rM \subseteq f^{-1}(N')$ and so $r \in p$. Therefore $(N':M') \subseteq p$. Then there exists a prime submodule P' of M' containing N' such that (P':M') = p. It is easily seen that $(f^{-1}(P'):M) = p$. Thus $f^{-1}(N')$ satisfies the primeful property.

Theorem 2.14. Let M and M' be R-modules and $f: M \to M'$ be a epimorphism. Then the following hold:

- (1) The mapping $\sigma_f : \operatorname{Spec}(M') \to \operatorname{Spec}(M)$ defined by $P' \mapsto f^{-1}(P')$ is an injective continuous map.
- (2) The mapping $\mu_f: \mathcal{PS}(M') \to \mathcal{PS}(M)$ defined by $Q' \mapsto f^{-1}(Q')$ is an injective continuous map.
- (3) If $g: M' \to M''$ is an epimorphism, then $\mu_{g \circ f} = \mu_f \circ \mu_g$ and $\sigma_{g \circ f} = \sigma_f \circ \sigma_g$.
- (4) $\mu(1_{\operatorname{Spec}(M)}) = 1_{\mathcal{PS}(M)}$ and $\sigma(1_M) = 1_{\operatorname{Spec}(M)}$ in which $1_{\mathcal{PS}(M)}$ and $1_{\operatorname{Spec}(M)}$ are identity maps over $\operatorname{Spec}(M)$ and $\mathcal{PS}(M)$ respectively.
- (5) $\rho_M \circ \mu_f = \sigma_f \circ \rho_{M'}$ in which ρ_M and $\rho_{M'}$ are the same ρ related to M and M' respectively.

Proof. (1) Follows from [11, Proposition 3.9].

(2) It is clear that μ_f is well-defined by Lemma 2.13. It is also injective, since f is surjective. Let $Q' \in \mathcal{PS}(M')$ and $\nu(N)$ be a closed subset of $\mathcal{PS}(M)$. Now, by using the fact that $\nu(N) = \nu(\sqrt{(N:M)}M)$, we have

$$\begin{split} Q' \in \mu_f^{-1}(\nu(N)) & \Leftrightarrow & Q' \in \mu_f^{-1}(\nu(\sqrt{(N:M)}M)) \\ \Leftrightarrow & f^{-1}(Q') \supseteq \sqrt{(N:M)}M \\ \Leftrightarrow & Q' \supseteq f(\sqrt{(N:M)}M) \\ \Leftrightarrow & Q' \supseteq \sqrt{(N:M)}M' \\ \Leftrightarrow & Q' \in \nu(\sqrt{(N:M)}M'). \end{split}$$

Therefore $\mu_f^{-1}(\nu(N)) = \nu(\sqrt{(N:M)}M')$ and so μ_f is continuous. (3), (4) Clear.

(5) Let $Q' \in \mathcal{PS}(M')$. Then we have $(\rho_M \circ \mu_f)(Q') = S_p(f^{-1}(Q') + pM)$

and $(\sigma_f \circ \rho_{M'})(Q') = f^{-1}(S_{p'}(Q' + p'M'))$, where $p = \sqrt{(f^{-1}(Q') : M)}$ and $p' = \sqrt{(Q' : M')}$. It is easily seen that that p = p', and then we have

$$x \in S_p(f^{-1}(Q') + pM) \Leftrightarrow cx \in f^{-1}(Q') + pM \text{ for some } c \in R - p$$

 $\Leftrightarrow cf(x) \in Q' + pM \text{ for some } c \in R - p$
 $\Leftrightarrow f(x) \in S_p(Q' + pM')$
 $\Leftrightarrow x \in f^{-1}(S_p(Q' + pM'))$
 $\Leftrightarrow x \in f^{-1}(S_{p'}(Q' + p'M')).$

Thus $\rho_M \circ \mu_f = \sigma_f \circ \rho_{M'}$.

Lemma 2.15. Let M and M' be R-modules. Let $f: M \to M'$ be a epimorphism and N a submodule of M containing Kerf. Then the following hold.

- (1) If N is a primary-like submodule of M, then f(N) is a primary-like submodule of M'.
- (2) If N satisfies the primeful property, then f(N) satisfies the primeful property.

Proof. (1) First note that f(N) is a proper submodule of M', since N is a proper submodule containing Kerf. Assume that $rf(m) \in f(N)$ for $r \in R$ and $m \in M$. Thus there exists $n \in N$ such that $rm - n \in Kerf$. Hence $rm \in N$, and thus $r \in (N : M)$ or $m \in rad N$. Since (N : M) = (f(N) : M') and f(rad N) = rad(f(N)), then f(N) is a primary-like submodule of M'. (2) Let p be a prime ideal containing (f(N) : M'). Then p is a prime ideal containing (N : M) and so there is a prime submodule P containing P such that P is a prime submodule containing P is a prime submodule P is a prime submodule containing P is a prime submodule containing P is a prime submodule P is a prime submodule containing P is a prime submodule P is a prime submodule P is a prime submodule containing P is a prime submodule P i

Theorem 2.16. Let M and M' be R-modules. Let $f: M \to M'$ be an epimorphism. Then $\mathcal{PS}(M')$ is homeomorphic to the topological subspace W of $\mathcal{PS}(M)$ consists of all primary-like submodules of M containing Kerf.

Proof. Consider $\delta_f : \mathcal{W} \to \mathcal{PS}(M')$ defined by $\delta_f(Q) = f(Q)$. By Lemma 2.15, δ_f is well-defined. Also δ_f is continuous. Indeed, since f is surjective and Q is a primary-like submodule containing Kerf, we have

$$Q \in \delta_f^{-1}(\nu(f(N))) \Leftrightarrow f(Q) \in \nu(f(N))$$

$$\Leftrightarrow \sqrt{(f(Q):M')} \supseteq \sqrt{(f(N):M')}$$

$$\Leftrightarrow \sqrt{(Q:M)} \supseteq \sqrt{(N:M)}$$

$$\Leftrightarrow Q \in \nu(N).$$

It shows that $\delta_f^{-1}(\nu(f(N))) = \nu(N) \cap \mathcal{W}$. Moreover, by letting μ_f as in Theorem 2.14, $(\delta_f \circ \mu_f)(Q') = f(f^{-1}(Q')) = Q'$ for all $Q' \in \mathcal{PS}(M')$. Thus $\delta_f \circ \mu_f = 1_{\mathcal{PS}(M')}$. Also if $Q \in \mathcal{W}$, then $(\mu_f \circ \delta_f)(Q) = f^{-1}(f(Q)) \supseteq Q$. For the

reverse inclusion, let $x \in f^{-1}(f(Q))$. Then f(x) = f(q), for some $q \in Q$ so that $x - q \in Kerf$. It follows that $x \in Q$, since $Kerf \subseteq Q$. Hence $(\mu_f \circ \delta_f)(Q) = Q$ for every $Q \in \mathcal{W}$, and so $\mu_f \circ \delta_f = 1_{\mathcal{W}}$. Thus $\mathcal{PS}(M')$ is homeomorphic to \mathcal{W} .

3. Irreduciblity in $\mathcal{PS}(M)$

A topological space X is called *irreducible* if $X \neq \emptyset$ and every finite intersection of non-empty open sets of X is non-empty. A subset Y of a topological space X is called *irreducible* if the subspace Y of X is irreducible. Equivalently, a subspace Y of X is irreducible if for every pair of closed subsets C_1 , C_2 of X with $Y \subseteq C_1 \cup C_2$, we have $Y \subseteq C_1$ or $Y \subseteq C_2$ (see, for example, [6, P. 94]).

Let M be an R-module and Y be a subset of $\mathcal{PS}(M)$. We will denote the closure of Y in $\mathcal{PS}(M)$ by cl(Y), and also the intersection of all elements of Y by $\gamma(Y)$ (note that if $Y = \emptyset$, then $\gamma(Y) = M$).

Proposition 3.1. Let M be an R module. Then for every $Q \in \mathcal{PS}(M)$, $\nu(Q)$ is irreducible.

Proof. Since $\{Q\}$ is an irreducible subset of $\mathcal{PS}(M)$, $\overline{\{Q\}}$ is an irreducible subset of $\mathcal{PS}(M)$ by [3, page 13, Exercise 20]. Now, by [9, Corollary 2], $cl(\{Q\}) = \nu(Q)$. Therefore $\nu(Q)$ is an irreducible subset of $\mathcal{PS}(M)$.

Let C be a closed subset of a topological space X. An element $x \in C$ is called a *generic point* of X if $C = cl(\{x\})$.

Corollary 3.2. Let M be an R-module and $Q, Q' \in \mathcal{PS}(M)$. If $\sqrt{(Q:M)} = \sqrt{(Q':M)}$. Then Q is a generic point for the irreducible closed subset $\nu(Q')$.

Proof. First note that, by Proposition 3.1, $\nu(Q')$ is an irreducible closed subset of $\mathcal{PS}(M)$. Also, by [9, Corollary 2], $\{\overline{Q}\} = \nu(Q) = \nu(Q')$. Thus Q is a generic point of $\nu(Q')$.

Proposition 3.3. Let M be an R-module and $Y \subseteq \mathcal{PS}(M)$. If $\gamma(Y)$ is a primary-like submodule of M, then Y is irreducible in $\mathcal{PS}(M)$.

Proof. Suppose that $\gamma(Y)$ is a primary-like submodule of M. Then by [9, Proposition 3], $\nu(\gamma(Y)) = cl(Y)$. Hence cl(Y) is irreducible by Proposition 3.1. Thus Y is irreducible by [3, page 13, Exersise 20].

Corollary 3.4. Let M be an R-module and $Y \subseteq \mathcal{PS}(M)$. If Y is linearly ordered by inclusion, then Y and $\mathcal{PS}_p(M)$ are irreducible in $\mathcal{PS}(M)$ for every prime ideal p of R.

Proof. Since $\gamma(Y)$ and $\gamma(\mathcal{PS}_p(M))$ are primary-like submodules of M, we conclude that Y and $\mathcal{PS}_p(M)$ are irreducible by Proposition 3.3.

Corollary 3.5. Let m be a maximal ideal of R and M an R-module. Then $\mathcal{PS}_m(M)$ is an irreducible closed subset of $\mathcal{PS}(M)$.

Proof. Let m is a maximal ideal of R. Then $\mathcal{PS}_m(M)$ is irreducible by Corollary 3.4. Also, since

$$\begin{split} \nu(mM) &= \{Q \in \mathcal{PS}(M) \mid \sqrt{(Q:M)} \supseteq \sqrt{(mM:M)} \} \\ &= \{Q \in \mathcal{PS}(M) \mid \sqrt{(Q:M)} \supseteq m \} \\ &= \{Q \in \mathcal{PS}(M) \mid \sqrt{(Q:M)} = m \} \\ &= \mathcal{PS}_m(M), \end{split}$$

 $\mathcal{PS}_m(M)$ is a closed subset of $\mathcal{PS}(M)$.

Proposition 3.6. Let M be an R-module, $Y \subseteq \mathcal{PS}(M)$ and $p = \sqrt{(\gamma(Y) : M)}$. If p is a prime ideal of R and $\mathcal{PS}_p(M) \neq \emptyset$, then Y is irreducible in $\mathcal{PS}(M)$.

Proof. Let $Q \in \mathcal{PS}_p(M)$. Since $p = \sqrt{(Q:M)} = \sqrt{(\gamma(Y):M)}$, we have $\nu(Q) = \nu(\gamma(Y)) = cl(Y)$ by [9, Proposition3]. Hence, cl(Y) is irreducible and so Y is irreducible by [3, page 13, Exersise 20].

Proposition 3.7. Let M be an R-module, Y be an irreducible subset of $\mathcal{PS}(M)$ and $A = \{\sqrt{(Q:M):Q \in Y}\}$. Then A is an irreducible subset of Spec(R), and thus $\gamma(A) = \sqrt{(\gamma(Y):M)}$ is a prime ideal of R.

Proof. Suppose that Y is irreducible. Since ϕ is continuous by Proposition 2.8, $\phi(Y) = Y'$ is an irreducible subset of $\operatorname{Spec}(\bar{R})$. Therefore, we have $\gamma(Y') = \overline{\sqrt{(\gamma(Y):M)}}$, and so $\gamma(Y')$ is a prime ideal of \bar{R} by [6, page 129, Proposition 14]. Thus $\gamma(A) = \sqrt{(\gamma(Y):M)}$ for some subset A of $\operatorname{Spec}(R)$, and hence $\gamma(A)$ is a prime ideal of R. Thus by [6, page 129, Proposition 14], A is an irreducible subset of $\operatorname{Spec}(R)$.

Theorem 3.8. Let M be an R-module and ϕ be surjective. If $Y \subseteq \mathcal{PS}(M)$, then Y is an irreducible closed subset of $\mathcal{PS}(M)$ if and only if $Y = \nu(Q)$ for some $Q \in \mathcal{PS}(M)$. In particular, every irreducible closed subset of $\mathcal{PS}(M)$ has a generic point.

Proof. By Proposition 3.1, for any $Q \in \mathcal{PS}(M)$, $\nu(Q)$ is an irreducible closed subset of $\mathcal{PS}(M)$. Conversely, if Y is an irreducible closed subset of $\mathcal{PS}(M)$, then $Y = \nu(N)$ for some submodule N of M in which $\sqrt{(\gamma(\nu(N)):M)} = \sqrt{(\gamma(Y):M)} = p$, and this ideal is a prime ideal of R by Proposition 3.7. Since ϕ is surjective, there exists a p-primary-like submodule $Q \in \mathcal{PS}(M)$ such that $\sqrt{(Q:M)} = p$. It follows that $p = \sqrt{(\gamma(\nu(N)):M)} = \sqrt{(Q:M)}$. Hence $\nu(\gamma(\nu(N))) = \nu(Q)$. Thus $Y = \nu(Q)$, by [9, Proposition3].

Proposition 3.9. Let M be an R module and ϕ be surjective. Then

- (1) The assignment $Q \mapsto \nu(Q)$ is a surjection from $\mathcal{PS}(M)$ to the set of all irreducible closed subsets of $\mathcal{PS}(M)$.
- (2) The assignment $\nu(Q) \mapsto \sqrt{(Q:M)}$ is a bijection from the set of all irreducible closed subsets of $\mathcal{PS}(M)$ to $\operatorname{Spec}(\bar{R})$.

(3) The assignment $\nu(Q) \mapsto V(\psi^{-1}(\sqrt{(Q:M)}))$ is a bijection from the set of all irreducible closed subsets of $\mathcal{PS}(M)$ to the set of all irreducible closed subsets of $\operatorname{Spec}(M)$.

Proof. (1) By Theorem 3.8.

(2) It is easy to see that the given assignment is well-defined and an injection. Suppose $\bar{p} \in \operatorname{Spec}(\bar{R})$. Since ϕ is surjective, $\bar{p} = \sqrt{(Q:M)}$ for some $Q \in \mathcal{PS}(M)$. Thus the assignment $\nu(Q) \mapsto \bar{p}$, and so the given assignment is a surjection.

(3) First note that, for any $Q \in \mathcal{PS}(M)$, the closed subset $V(\psi^{-1}(\sqrt{(Q:M)}))$ of $\operatorname{Spec}(M)$ is irreducible by [11, Theorem 5.7]. Thus the given assignment is well defined, since for $Q, Q' \in \mathcal{PS}(M), \nu(Q) = \nu(Q')$ implies that $\sqrt{(Q:M)} = \sqrt{(Q':M)}$. Now, let $\psi^{-1}(\sqrt{(Q:M)}) = P$ and $\psi^{-1}(\sqrt{(Q':M)}) = P'$ for $Q, Q' \in \mathcal{PS}(M)$. If V(P) = V(P'), then (P:M) = (P':M). Thus, since ψ is surjective, $\sqrt{(Q:M)} = \sqrt{(Q':M)}$. It follows that $\nu(Q) = \nu(Q')$, and then the given assignment is injective. Next, for the surjectivity, let $Q \in \mathcal{PS}(M)$ and $V(\psi^{-1}(\sqrt{(Q:M)}) = V(P)$. Thus $\nu(P)$ is mapped to $V(\psi^{-1}(\sqrt{(P:M)}))$ which is V(P). Thus the given assignment is a bijection.

Theorem 3.10. Let M be a finitely generated R-module. Then the following statements are equivalent.

- (1) Spec(M) is an irreducible space;
- (2) PS(M) is an irreducible space;
- (3) Supp(M) is an irreducible space;
- (4) $\sqrt{Ann(M)}$ is a prime ideal of R;
- (5) $\mathcal{PS}(M) = \nu(pM)$ for some $p \in \text{Supp}(M)$;
- (6) $\operatorname{Spec}(M) = V(pM)$ for some $p \in \operatorname{Supp}(M)$.

Proof. (1) \Rightarrow (2) Since Spec(M) is an irreducible space, by [11, Theorem 5.7], Spec(M) = V(P) for some $P \in \text{Spec}(M)$. Let $\bar{p} = \psi(P)$. Since ϕ is surjective, there is an element $Q \in \mathcal{PS}(M)$ such that $\phi(Q) = \sqrt{\overline{(Q:M)}} = \bar{p}$. We show that $\mathcal{PS}(M) = \nu(Q)$. Suppose that $Q' \in \mathcal{PS}(M)$ and $p' = \sqrt{\overline{(Q':M)}}$. Now, since $\rho(Q') \in V(P)$, we have

$$\overline{\sqrt{(Q':M)}} = \overline{p'} = \overline{(S_{p'}(Q'+p'M):M)} = \overline{(\rho(Q'):M)}$$

$$\supseteq \overline{(P:M)} = \overline{p} = \overline{\sqrt{(Q:M)}},$$

which follows that $\sqrt{(Q':M)} \supseteq \sqrt{(Q:M)}$. Thus $Q' \in \nu(Q)$, and therefore $\mathcal{PS}(M) = \nu(Q')$, i.e., $\mathcal{PS}(M)$ is an irreducible space by Theorem 3.8. (2) \Rightarrow (3) Since ϕ is a surjective continuous map, $\operatorname{Spec}(\bar{R})$ is irreducible by the assumption. Now since by [3, page 13, Ex. 21], $\operatorname{Spec}(\bar{R})$ and V(Ann(M))

are homeomorphic and by [12, Proposition 3.4] $\operatorname{Supp}(M) = V(\operatorname{Ann}(M))$, we conclude that $\operatorname{Supp}(M)$ is an irreducible space.

(3) \Rightarrow (4) By [6, page 102, Proposition 14], $\gamma(\operatorname{Supp}(M))$ is a prime ideal of R. Now since $\gamma(\operatorname{Supp}(M)) = \gamma(V(Ann(M))) = \sqrt{Ann(M)}$, we are done.

 $(4) \Rightarrow (5)$ First note that $\sqrt{Ann(M)} \subseteq \sqrt{(Q:M)}$, for each $Q \in \mathcal{PS}(M)$. Since M is finitely generated, by [12, Proposition 3.8], there exists $P \in \operatorname{Spec}(M)$ such that $(P:M) = \sqrt{(P:M)} = \sqrt{Ann(M)}$. Therefore

$$\mathcal{PS}(M) = \{ Q \in \mathcal{PS}(M) \mid \sqrt{(Q:M)} \supseteq \sqrt{(P:M)} \}$$
$$= \nu(P) = \nu(\sqrt{(P:M)}M) = \nu(\sqrt{Ann(M)}M).$$

Thus $\mathcal{PS}(M) = \nu(pM)$ in which $p = \sqrt{Ann(M)}$ and $p \in \operatorname{Supp}(M)$. (5) \Rightarrow (6) Let $P \in \operatorname{Spec}(M)$. Since ϕ is surjective, there is an element $Q \in \mathcal{PS}(M)$ such that $\phi(Q) = \overline{(P:M)}$, and so $\overline{\sqrt{(Q:M)}} = \overline{(P:M)}$. Now, since $\mathcal{PS}(M) = \nu(pM)$ for some $p \in \operatorname{Supp}(M)$, we have

$$(pM:M)\subseteq \sqrt{(pM:M)}\subseteq \sqrt{(Q:M)}=(P:M).$$

Thus $P \in V(pM)$ so that $\operatorname{Spec}(M) = V(pM)$ for some $p \in \operatorname{Supp}(M)$. $(6) \Rightarrow (1)$ Let $\operatorname{Spec}(M) = V(pM)$ for some $p \in \operatorname{Supp}(M)$. Since ψ is surjective, there exists $P \in X$ such that (P : M) = p. Hence by [11, Result 3], we have $\operatorname{Spec}(M) = V(pM) = V((P : M)M) = V(P)$. Thus, by [11, Theorem 5.7], $\operatorname{Spec}(M)$ is irreducible.

4. $\mathcal{PS}(M)$ as a spectral space

A topological space X is a T_0 -space if and only if for any two distinct points in X there exists an open subset of X which contains one of the points but not the other. It is well-known that, for any ring R, Spec(R) is a T_0 -space for the Zariski topology. In [11, page 429], it has been shown that if M is a vector space, then Spec(M) is not a T_0 -space. This example can be used again to show that $\mathcal{PS}(M)$ is not also a T_0 space. In fact, if M is a vector space, then $\nu(N) = \mathcal{PS}(M)$ for every proper subspace N of M so that $\mathcal{PS}(M)$ has the trivial topology.

Proposition 4.1. Let M be a multiplication R-module. If for every $Q \in \mathcal{PS}(M)$ the ideal (Q:M) is a radical ideal, then $\mathcal{PS}(M)$ is a T_0 -space.

Proof. Let $Q \in \mathcal{PS}(M)$ and (Q : M) is a radical ideal of R. Then Q is a prime submodule of M, and so $\mathcal{PS}(M)$ is a topological subspace of $\operatorname{Spec}(M)$. Thus $\mathcal{PS}(M)$ is a T_0 -space by [11, Corollary 6.2].

Theorem 4.2. Let M be an R-module. Then the following statements are equivalent.

- (1) $\mathcal{PS}(M)$ is a T_0 -space.
- (2) If $\nu(Q) = \nu(Q')$ for $Q, Q' \in \mathcal{PS}(M)$, then Q = Q'.

Proof. (1) Let $Q \neq Q'$ for some $Q, Q' \in \mathcal{PS}(M)$. Since $\mathcal{PS}(M)$ is a T_0 -space, $cl(Q) \neq clQ'$. Thus by [9, Corollary 2], we have $\nu(Q) \neq \nu(Q')$.

(2) Let $Q \neq Q'$ for some $Q, Q' \in \mathcal{PS}(M)$. Then by the assumption $\nu(Q) \neq \nu(Q')$. Therefore, by [9, Corollary 2], $cl(Q) \neq cl(Q')$. Hence $\mathcal{PS}(M)$ is a T_0 -space.

Recall that a *spectral space* is a topological space homeomorphic to the prime spectrum of a ring equipped with the Zariski topology. By Hochster's characterization [10], the topological space X is spectral if and only if the following statements hold:

- (1) X is a T_0 -space.
- (2) X is quasi-compact.
- (3) the quasi-compact open subsets of X are closed under finite intersection and form an open base.
- (4) each irreducible closed subset of X has a generic point.

For any ring R, Spec(R) is well-known to satisfy these condition (see [6, P. 401-403]).

Theorem 4.3. Let M be a finitely generated multiplication R-module. Then $\mathcal{PS}(M)$ is a spectral space.

Proof. By [9, Theorem3], Theorem 3.8, [9, Corollary3] and [11, Corollary 6.2].

Theorem 4.4. Let M be an R-module. Consider the following statements:

- (1) PS(M) is a spectral space;
- (2) $\mathcal{PS}(M)$ is a T_0 -space;
- (3) If $\nu(Q) = \nu(Q')$ for $Q, Q' \in \mathcal{PS}(M)$, then Q = Q';
- (4) $|\mathcal{PS}_p(M)| \leq 1$ for every $p \in Spec(R)$;
- (5) ϕ is injective.

Then $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$. Moreover if ϕ is surjective, then $(5) \Rightarrow (1)$.

Proof. $(1) \Rightarrow (2)$ Clear.

- $(2) \Rightarrow (3)$ By Theorem 4.2.
- $(3) \Leftrightarrow (4) \Leftrightarrow (5)$ By Proposition 2.1.
- $(5) \Rightarrow (1)$ By[9, Theorem 1], $\mathcal{PS}(M)$ is homeomorphic to the spectral space Spec(\bar{R}). Thus $\mathcal{PS}(M)$ is a spectral space.

Proposition 4.5. Let M be an R-module and $|\mathcal{PS}_p(M)| = 1$ for every $p \in Spec(R)$. Then $\mathcal{PS}(M)$ is a spectral space.

Proof. Since Spec(\bar{R}) is a spectral space, $\mathcal{PS}(M)$ is also a spectral space by Corollary 2.5 and Corollary 2.10.

Theorem 4.6. Let M be a multiplication R-module such that $\mathcal{PS}(M)$ is a non-empty finite set. Then $\mathcal{PS}(M)$ is a spectral space if and only if $|\mathcal{PS}_p(M)| \leq 1$ for every $p \in Spec(R)$.

Proof. Since $\mathcal{PS}(M)$ is a non-empty finite set, then the conditions (2) and (3) in Hochster's characterization are clearly true. Suppose $Y = \{y_1, y_2, \dots, y_n\}$ is an irreducible closed subset of $\mathcal{PS}(M)$. Thus $Y = \overline{\{y_i\}}$ for some i where $1 \leq i \leq n$, i.e., Y has a generic point. Hence, by [9, Theorem 4.3], $\mathcal{PS}(M)$ is a spectral space if and only if $\mathcal{PS}(M)$ is a T_0 -space if and only if $|\mathcal{PS}_p(M)| \leq 1$ for every $p \in Spec(R)$.

Theorem 4.7. Let M be an R-module and $Im(\phi)$ be a closed subset of $Spec(\bar{R})$. Then $\mathcal{PS}(M)$ is a spectral space if and only if ϕ is injective.

Proof. Let $Y = Im(\phi)$ be a closed subset of $\operatorname{Spec}(\bar{R})$. Then Y is a spectral subspace of $\operatorname{Spec}(\bar{R})$. Assume that ϕ is injective. Then the bijection $\phi: \mathcal{PS}(M) \to Y$ is continuous by Proposition 2.8. We show that ϕ is a closed map. Let N be a submodule of M, and $Y' = Y \cap V(\sqrt{(N:M)})$. Then Y' is a closed subset of Y, and so by Proposition 2.8 we have

$$\phi^{-1}(Y') = \phi^{-1}(Y) \cap \phi^{-1}(V\overline{\sqrt{(N:M)}}) = \nu(\sqrt{(N:M)}M) = \nu(N).$$

Hence $\phi(\nu(N)) = \phi(\phi^{-1}(Y')) = Y'$ is a closed subset of Y. Thus $\phi : \mathcal{PS}(M) \to Y$ is a homeomorphism and so $\mathcal{PS}(M)$ is a spectral space. Conversely, assume $\mathcal{PS}(M)$ is a spectral space. Hence by Theorem 4.4, ϕ is injective.

Example 4.8. (1) Every proper submodule of \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is primary-like. However $Spec_L(\mathbb{Z}(p^{\infty})) = Spec(\mathbb{Z}(p^{\infty})) = \emptyset$.

- (2) For \mathbb{Z} -module \mathbb{Q} , $Spec(\mathbb{Q}) = \{0\}$ and $Spec_L(\mathbb{Q}) = \emptyset$, because \mathbb{Q} has no submodules satisfying the primeful property.
- (3) For a vector space V over a field F, $Spec_L(V) = Spec(V) =$ the set of all proper vector subspaces of V.
- (4) Let $M = \mathbb{Q} \oplus \mathbb{Z}_p$, where \mathbb{Z}_p is the cyclic group of order p. Then $\operatorname{Spec}(M) = \{\mathbb{Q} \oplus 0, 0 \oplus \mathbb{Z}_p\}$ [13, Example 2.6]. Although $\{0 \oplus 0, \mathbb{Q} \oplus 0, 0 \oplus \mathbb{Z}_p\} \cup \{N : N \nsubseteq \mathbb{Q} \oplus 0, N \nsubseteq 0 \oplus \mathbb{Z}_p\}$ is the set of all primary like submodules of M. However $\mathcal{PS}(M) = \emptyset$.
- (5) Let $M = \mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}_p$. Then M is not a multiplication \mathbb{Z} -module [13, Example 3.7]. Spec $(M) = pM = \mathbb{Z}(p^{\infty}) \oplus 0$. By an easy verification $\{ < 1/p^i + \mathbb{Z} > \oplus 0 : i \in \mathbb{Z} \} \cup \{ \mathbb{Z}(p^{\infty}) \oplus 0, 0 \oplus \mathbb{Z}_p \} \cup \{ N : N \not\subseteq \mathbb{Z}(p^{\infty}) \oplus 0 \}$ is the set of all primary-like submodules of M. But $N = 0 \oplus \mathbb{Z}_p \notin \mathcal{PS}(M)$. Also rad N = M and (N : M) = 0. Thus for the primary-like submodule $N, \sqrt{(N : M)} \subsetneq (\text{rad } N : M)$.

(6) Let $M=\prod_{p\in\Omega}\frac{\mathbb{Z}}{p\mathbb{Z}}$ and $M'=\bigoplus_{p\in\Omega}\frac{\mathbb{Z}}{p\mathbb{Z}}$ be \mathbb{Z} -modules where Ω is the set of prime integers. Then M' is a 0-prime submodule of M which does not satisfy the primeful property. In fact $\operatorname{Spec}(M)=\{M'\}\cup\{pM:p\in\Omega\}$. However, $(\operatorname{rad} M':M)=\sqrt{(M':M)}=0$ [9, Example 2.12]. It is easy to see that the zero submodule 0 satisfies the primeful property and $\operatorname{rad} 0=0$. But 0 is not a primary-like submodule of M, because 0 is not a prime submodule of M.

Acknowledgement

The authors would like to thank the referee for his/her helpful comments.

References

- [1] Alkan, M., and Tiraş, Y. Projective modules and prime submodules. *Czechoslovak Math. J.* 56(131), 2 (2006), 601–611.
- [2] ANSARI-TOROGHY, H., AND OVLYAEE-SARMAZDEH, R. On the prime spectrum of a module and Zariski topologies. Comm. Algebra 38, 12 (2010), 4461–4475.
- [3] Atiyah, M. Introduction to commutative algebra. Addison-Wesley, 1969.
- [4] AZIZI, A. Prime submodules and flat modules. Acta Math. Sin. (Engl. Ser.) 23, 1 (2007), 147–152.
- [5] BEHBOODI, M., AND HADDADI, M. R. Classical Zariski topology of modules and spectral spaces. I. Int. Electron. J. Algebra 4 (2008), 104–130.
- [6] BOURBAKI, N. Commutative algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.
- [7] Duraivel, T. Topology on spectrum of modules. J. Ramanujan Math. Soc. 9, 1 (1994), 25–34.
- [8] EL-BAST, Z. A., AND SMITH, P. F. Multiplication modules. Comm. Algebra 16, 4 (1988), 755–779.
- [9] FAZAELI MOGHIMI, H., AND RASHEDI, F. Primary-like submodules and a scheme over the primary-like spectrum of modules. *Miskolc Math. Notes* 18, 2 (2017), 961–974.
- [10] HOCHSTER, M. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. 142 (1969), 43–60.
- [11] Lu, C.-P. The Zariski topology on the prime spectrum of a module. Houston J. Math. 25, 3 (1999), 417–432.
- [12] Lu, C.-P. A module whose prime spectrum has the surjective natural map. Houston Journal of Mathematics 33, 1 (2007), 125.
- [13] MCCASLAND, R. L., MOORE, M. E., AND SMITH, P. F. On the spectrum of a module over a commutative ring. Comm. Algebra 25, 1 (1997), 79–103.

Received by the editors August 8, 2019 First published online May 17, 2021