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Differential chain of algebras of generalized functions

Dennis Ferdinand Agbebaku123 and Jan Harm van der Walt4

Abstract. In this paper, it is shown how the spaces of generalized
functions associated with the construction of the generalized solution
for nonlinear partial differential equations through the order completion
method using convergence spaces, may be interpreted as a chain of alge-
bras of generalized functions. In particular, we showed that the spaces
of normal lower semi-continuous functions that contain the generalized
solution of the nonlinear partial differential equation under consideration
is a differential chain of algebras of generalized functions. Consequently,
this generalized solution is shown to be a chain generalized solution. The
relationships between the chain of normal lower semi-continuous func-
tions and the chain of nowhere dense algebras, as well as the chain of al-
most everywhere algebras of generalized functions are shown. We further
show that the chain generalized solutions of nonlinear partial differential
equations obtained in the chain of normal lower semi-continuous func-
tions corresponds to the chain generalized solution for nonlinear partial
differential equation obtained in the chain of nowhere dense algebras of
generalized functions as well as the chain of almost everywhere algebra
of generalized functions.
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1. Introduction

In the late 1960s, differential algebras of generalized functions were intro-
duced as an alternative approach to dealing with the difficulties associated
with the application of distributions to nonlinear partial differential equations
(PDEs). One of the most notable of these difficulties is the Schwartz impossi-
bility problem [16] which is summarized as the inability to extend the multi-
plication of C∞-smooth function with distribution to all of the distributions in
such a way that the class of distributions, together with the usual vector space
operations, is an algebra.
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This alternative approach, known as the ‘algebra first’ approach, is to
construct suitable algebras of generalized functions that contain the D′(Ω)-
distributions as a linear subspace. In this way, multiplication of distributions
can be done consistently and in a meaningful way, although the result of mul-
tiplying two distributions will, in general, not be a distribution. The ‘algebra
first’ approach has been developed extensively and has been useful in the study
of generalized solutions to linear and nonlinear PDEs in mathematical physics
and related fields, see for instance [7, 8, 9, 12, 13, 14, 15].

Let Ω be a nonempty open subset of Rn. An algebra A(Ω) is called a
differential algebra of generalized functions if it is equipped with the generalized
partial derivative operators

Dp : A(Ω) −→ A(Ω), p ∈ Nn

that satisfy the Leibnitz rule for derivative of product of functions, given as

Dp(uv) =
∑
q≤p

(
p
q

)
Dp−quDqv(1.1)

for all u, v ∈ A(Ω). Here Dp = Dp1

1 · · ·Dpn
n , Dj =

∂
∂xj

with |p| = p1 + · · ·+ pn.

In [14], Rosinger gave sufficient conditions for the construction of an alge-
bra of generalized functions A(Ω) that guaranteeis the commutativity of the
following diagram

C∞(Ω) -⊂ D′(Ω)

�
��	

E@
@@R

E∞
A(Ω)

(1.2)

where E : D′(Ω) → A(Ω) is a linear injection, and E∞ : C∞(Ω) −→ A(Ω) is
the canonical injective algebra homomorphism. However, there is an essential
limitation on the way in which distributions are embedded into a differential
algebra. Indeed, an embedding of D′(Ω) into a differential algebra cannot, at
the same time, preserve both the algebraic structure of C(Ω) and the differential
structure of D′(Ω), see [12, 13, 15]. Furthermore, different embeddings of D′(Ω)
into an algebra A(Ω) may not determine the same differential structure on
D′(Ω). This limitation is due to a basic conflict between the trio of insufficient
smoothness, multiplication and differentiability, see [15].

In order to overcome the above mentioned limitation of the embedding of
D′(Ω) into a differential algebra A(Ω), the concept of the chain of algebras
of generalized functions was introduced, see [13, 14, 15]. In [15, Chapter 7],
chains of algebras of generalized functions were applied to resolve the closed,
nowhere dense singularities occurring in the solutions of certain polynomial
partial differential equations. In particular, weak solutions of the nonlinear
hyperbolic conservation laws

ut(t, x) + cu(t, x)ux(t, x) = 0 t > 0, x ∈ R
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with the initial condition

u(0, x) = u0(x), x ∈ R,

where c is an arbitrary polynomial, were interpreted within the framework of
chains of algebras of generalized solutions, as chain weak solution.

In this paper, the space of generalized functions underlying the recent devel-
opment of Order Completion Method [10], presented in [21, 22], are interpreted
as a differential chain of algebras of generalized functions. Any generalized solu-
tion in the underlying space is interpreted as a chain generalized solution. The
mentioned chain of algebras of generalized functions are shown to be related to
the chain of closed nowhere dense algebras of generalized functions introduced
by Rosinger [13, 14, 15], and the chain of almost everywhere algebras of gen-
eralized functions introduced and studied in [1] which was constructed based
on techniques introduced by Vernaeve for constructing the almost everywhere
algebra of generalized functions [26]. The existence results for chain generalized
solutions for nonlinear PDEs lead to the corresponding existence results in the
chain of closed nowhere dense algebras of generalized functions and the chain
of almost everywhere algebras of generalized functions, respectively.

The following notation are used throughout this paper. Ω denotes an open
subset of Rn. For x ∈ Ω, Vx is the set of open neighbourhoods of x. The
extended real line is denoted by R, and N = N ∪ {∞}, with the natural order.

2. Spaces of generalized functions

In this section we recall the main points in the construction of the space
{NLl(Ω) : l ∈ N}, see [19, 22]. We denote by NL(Ω) the set of all nearly finite
normal lower semi continuous functions u : Ω −→ R. A function u : Ω −→ R is
normal lower semi-continuous if and only if

I(S(u)) = u

where I and S are the Lower and Upper Baire operators, [3, 5], defined by

I(u)(x) = sup{inf{u(y) : y ∈ V } : V ∈ Vx}(2.1)

and

S(u)(x) = inf{sup{u(y) : y ∈ V } : V ∈ V(x)},(2.2)

respectively. A normal lower semi-continuous function is nearly finite whenever
the set {x ∈ Ω : u(x) ∈ R} is finite. We define the following algebraic operations
on NL(X). For u, v ∈ NL(X) and α ∈ R we set

u+ v = I(S(u⊕ v)), αu = I(S(α⊙ u)), uv = I(S(u⊗ v))(2.3)

where the algebraic operations ⊕, ⊙ and ⊗ are taken as the usual point-
wise operations on real functions, with understanding that the result of any
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operation involving ±∞ is again ±∞, with the appropriate sign determined as
usual [23]. We note that, for u, v ∈ NL(X), the function u⊕ v may fail to be
normal lower semi-continuous. Indeed, if

u(x) =

{
1 ifx > 0
0 ifx ≤ 0

and

v(x) =

{
−1 ifx ≥ 0
0 ifx < 0

then

(u⊕ v)(x) =

{
−1 ifx = 0
0 ifx ̸= 0

so that u⊕ v /∈ NL(R).
Let

MLl(Ω) :=

{
u ∈ NL :

∣∣∣∣ ∃ Γu ⊂ Ω closed, nowhere dense :

u ∈ Cl(Ω\Γu)

}
.(2.4)

and

ML0(Ω) :=

{
u ∈ NL :

∣∣∣∣ ∃ Γu ⊂ Ω closed, nowhere dense :
u ∈ C0(Ω\Γu)

}
.(2.5)

The space ML0(Ω) is a σ-order dense subalgebra of NL(Ω), see [20]. On
ML0(Ω) we introduced the following uniform convergence structure [20]. Let
Λ consists of all nonempty order intervals in ML0(Ω). Let J0 denote the family
of filters on ML0(Ω)×ML0(Ω).

Definition 2.1. A filter U belongs to J0 if there exists k ∈ N such that

∀ j = 1, · · · , k :
∃ Λj = {Ijn} ⊆ Λ :
∃ uj ∈ NL(Ω) :

(i) Ijn+1 ⊆ Ijn, n ∈ N
(ii) sup

n
{inf{Ijn}} = uj = inf

n
{sup{Ijn}}

(iii) ([Λ1]× [Λ1]) ∩ · · · ∩ ([Λk]× [Λk]) ⊆ U .

(2.6)

where, for Λ′ ⊂ Λ, [Λ′] denotes the filter generated by Λ′ if this filter exists.

The uniform convergence structure J0 is Hausdorff, first countable and
induces the order convergence structure, see [4, 24, 20]. A filter F on ML0(Ω)
order convergence to u ∈ ML0(Ω) if and only if

∃ (λn), (µn) ⊂ ML0(Ω) :
(i) λn ≤ λn+1 ≤ u ≤ µn+1 ≤ µn n ∈ N,
(ii) sup{λn : n ∈ N} = u = inf{µn : n ∈ N}
(iii) [{[λn, µn] : n ∈ N}] ⊆ F .

(2.7)

In particular, a sequence {un} converges to u ∈ ML0(Ω) if it order converges
to u. Cauchy sequences on ML0(Ω) are characterized in the following way, see
[23]
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Proposition 2.2. A sequence in ML0(Ω) is Cauchy with respect to J0 if and
only if there exists a set B ⊂ Ω of first Baire category such that (un(x)) is
convergent in R for all x ∈ Ω\B.

The space NL(Ω) equipped with a suitable uniform convergence structure,
see [20] is the (Wyler) completion [11, 28] of ML0(Ω).

The partial derivatives

Dp : Cl(Ω) −→ C0(Ω), p ∈ Nn, |p| ≤ l

extends to the mappings

Dp : MLl(Ω) ∋ u 7→ (I ◦ S)(Dpu) ∈ ML0(Ω), p ∈ Nn, |p| ≤ l.

On the spaceMLl(Ω) we consider the initial uniform convergence structure,
denoted by Jl, with respect to the mappings

Dp : MLl(Ω) −→ ML0(Ω), |p| ≤ l(2.8)

Definition 2.3. A filter on MLl(Ω) belongs to Jl if and only if

∀ p ∈ Nn, |p| ≤ l :
(Dp ×Dp)(U) ∈ J0.

Proposition 2.4. A filter F on MLl(Ω) converges to u ∈ MLl(Ω) with respect
to the induced convergence structure λl if and only if Dp(F) converges to Dpu
in ML0(Ω) for every p ∈ N, |p| ≤ l. In particular, a sequence (un) converges
to u ∈ MLl(Ω) if and only if

∀ p ∈ Nn, |p| ≤ l :
Dp(un) order converges to Dp(u) ∈ ML0(Ω).

From Definition 2.3, it is clear that each of the mappings in (2.8) is uniformly
continuous with respect to the uniform convergence structure, Jl and J0 of
MLl(Ω) and ML0(Ω), respectively. In fact, see [21, 22], the mapping

D : MLl(Ω) −→ ML0(Ω)M

defined through
D(u) = (Dpu)|p|≤l.

is a uniformly continuous embedding. Therefore, see [22], the mapping D
extends uniquely to an injective, uniformly continuous mapping

D♯ : NLl(Ω) −→ NL0(Ω)M .(2.9)

where NLl(Ω) denotes the completion of MLl(Ω). This gives a first and basic
regularity result: The generalized functions in NL0(Ω) may be represented,
through their generalized partial derivatives, as normal lower semi-continuous
functions. Indeed, the mapping (2.9) may be represented as

D♯(u) = (Dp♯

u♯)|p|≤l
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where, for |p| ≤ l, (Dp♯

) denotes the unique uniformly continuous extension of
Dp to NLl(Ω).

We now discuss,briefly, the concept of generalized solutions of nonlinear
PDEs in the space NLl(Ω). Consider a nonlinear PDE

T (x,D)u(x) = h(x), x ∈ Ω(2.10)

of order l, where h : Ω → R is continuous, and the differential operator T (x,D)
is defined through a jointly continuous function

F : Ω× RM → R

by the expression

T (x,D)u(x) = F (x, u(x), ..., Dpu(x), ...), |p| ≤ l,(2.11)

where M is the cardinality of the set {p ∈ Nn : |p| ≤ l}. In [18, 22], it was shown
that the partial differential operator (2.11) induces a uniformly continuous
mapping

T : MLl(Ω) −→ ML0(Ω)(2.12)

defined as follows

Tu = (I ◦ S)(F (·, u, · · · Dpu · · · )).(2.13)

Therefore, the mapping (2.13) extends uniquely to a uniformly continuous map-
ping

T ♯ : NLl(Ω) −→ NL(Ω)

whereNLl(Ω) andNL(Ω) are the completion ofMLl(Ω) andML0(Ω), respec-
tively. The main existence result for generalized solutions of (2.10) in NLl(Ω)
is the following.

Theorem 2.5. [22, Theorem 7] If for each x ∈ Ω there is some ζ ∈ RM and
neighborhoods V and W of x and ζ so that

F (x, ζ) = h(x)

and
F : V ×W :−→ R

is open, then there exists u♯ ∈ NLl(Ω) such that

T ♯u♯ = h.

We also discuss in brief the existence of C∞-smooth generalized solution
of nonlinear PDEs in the space NL∞(Ω), detailed exposition of the result is
found in [25]. In this regard, consider the PDE

T (x,D)u(x) = h(x), x ∈ Ω,(2.14)
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where the differential operator T (x,D) is defined by a C∞-smooth mapping

F : Ω× RM −→ R(2.15)

through

T (x,D)u(x) = F (x, u(x), · · · , Dpu(x), · · · ), x ∈ Ω, |p| ≤ l(2.16)

for sufficiently smooth u : Ω −→ R. The right-hand term h ∈ C∞(Ω). Assume
that the PDE (2.14) satisfies

∀ x ∈ Ω :
∃ ξ(x) ∈ RNn

:
∃ V ∈ Vx, W ∈ Vξ(x) :

1) F∞ : V ×W −→ RNn

open,
2) F∞(x, ξ(x)) = (Dβf(x))β∈Nn

(2.17)

where RNn

is equipped with the product topology τ, the mapping

F∞ : Ω× RNn

−→ RNn

is defined by setting

F∞(x, (ξα)α∈Nn) = (F β(x, · · · , ξα, · · · , ))β∈Nn ,(2.18)

where, for each β ∈ Nn, the mapping

F β : Ω× RNn

−→ R

is defined by setting

Dβ(T (x,D)u(x)) = F β(x, · · · , Dαu(x), · · · ), |α| ≤ l + |β|(2.19)

for all u ∈ C∞(Ω).
The nonlinear operator T (x,D), which is a mapping

T : C∞(Ω) −→ C∞(Ω)(2.20)

may be extended to the mapping

T : ML∞(Ω) −→ ML∞(Ω)

defined by setting

Tu = (I ◦ S)(F (., u, · · · ,Dpu, · · · )), |p| ≤ l.(2.21)

Theorem 2.6. The mapping T : ML∞(Ω) −→ ML∞(Ω) defined through
(2.21) is uniformly continuous.
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As a consequence of Theorem 2.6, there exists a unique uniformly continuous
extension

T ♯ : NL∞(Ω) −→ NL∞(Ω)

of T. This give rise to the concept of generalized solution of (2.14) as a solution
u♯ ∈ NL∞(Ω) of the extended equation

T ♯u♯ = h.(2.22)

The main existence result for the C∞-smooth PDE (2.14) is the following, see
[25].

Theorem 2.7. Consider the nonlinear PDE of the form (2.14). If the non-
linear operator T satisfies (2.17), then there exists some u♯ ∈ NL∞(Ω) that
satisfies (2.22).

3. Differential algebra of generalized functions

In this section we briefly outline the main points in showing that the space
NLl(Ω), for each l ∈ N, is an algebra of generalized functions referred to as
order convergence algebra of generalized functions, admitting an embedding of
Cl(Ω) as a subalgebra, details of the results presented here can be found in [1],
see also [2].

Proposition 3.1. The space MLl(Ω) is a subalgebra of NL(Ω). Furthermore,
the differential operators

Dp : MLl(Ω) −→ NL, |p| ≤ l

are linear and satisfy the Leibnitz rule

Dp(uv) =
∑
q≤p

(
p
q

)
Dp−quDqv

Proposition 3.2. The induced convergence structure λl on MLl(Ω) is a Haus-
dorff and first countable algebra convergence structure.

We remark that the uniform convergence structure Jl on MLl(Ω) is the
uniform convergence structure induced by the convergence structure λl, see [6].
Based on the abstract construction of the completion of a uniform convergence
space, see [20], the set NLl(Ω) may be represented as

NLl(Ω) = C[MLl(Ω)]/ ∼C ,(3.1)

where,

F ∼C G ⇔ F − G ∈ λl(0).
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The representation of NLl(Ω) can be further particularised. By Propostition
3.2, λl is first countable. Hence for F ∈ C[MLl(Ω)] there exists G = [{Gn|n ∈
N}] −→ 0 in MLl(Ω) so that G ⊆ F − F . Thus

∀ n ∈ N :
∃ Fn ∈ F :

Fn − Fn ⊆ Gn.
(3.2)

For each n ∈ N, select u ∈ F1 ∩ · · · ∩ Fn. Then ⟨un⟩ − ⟨un⟩ ⊇ G so that
(un) is a Cauchy sequence in MLl(Ω). Furthermore, ⟨un⟩ ∼C F so that each
∼C-equivalence class contains a Cauchy sequence. Therefore we may represent
NLl(Ω) as

NLl(Ω) = Cs[MLl(Ω)]/ ∼Cs

where Cs[MLl(Ω)] denotes the set of Cauchy sequences in MLl(Ω), and for
(un), (vn) ∈ Cs[MLl(Ω)],

(un) ∼Cs
(vn) ⇐⇒ ⟨un − vn⟩ ∈ λl(0).

In view of (3.1), the structure of NLl(Ω) depends only on the properties of
the Cauchy sequences in MLl(Ω). Thus we have the following

Proposition 3.3. A sequence (un) in MLl(Ω) is Cauchy sequence with respect
to the uniform convergence structure on Jl if and only if there exists a residual
set R ⊂ Ω such that (Dpun(x)) is a convergent sequence in R for each x ∈ R
and p ∈ Nn with |p| ≤ l.

By Proposition 3.3, we have that

(un) ∼Cs
(vn) ⇐⇒

 ∃ R ⊆ Ω, a residual set :
∀ p ∈ Nn, |p| ≤ l, x ∈ R :

Dpun(x)−Dpvn(x) → 0 in R.

(3.3)

In order to represent the space NLl(Ω) as an algebra of generalized func-
tions, we show that each ∼Cs

-equivalence class contains a sequence of Cl-
smooth functions. To do this, we make use of the Principle of Partition of
Unity, see [17].

Theorem 3.4. Let O be a locally finite open cover of an open subset Ω of Rn.
Then there is a collection

{ϕU : Ω −→ [0, 1] : U ∈ O}

of Cl-smooth functions ϕU such that the following hold:

(i) For each U ∈ O, the support of ϕU is contained in U.

(ii)
∑

U∈O

ϕU (x) = 1, for each x ∈ M.
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A consequence of Theorem 3.4 is that disjoint, closed sets in Ω are separated
by Cl-smooth, real valued functions. In this regard, let A and B be disjoint,
nonempty, closed subsets of Ω. Then it follows from Theorem 3.4 that

∃ ϕ ∈ Cl(Ω, [0, 1]) :
(1) x ∈ A =⇒ ϕ(x) = 1
(2) x ∈ B =⇒ ϕ(x) = 0

(3.4)

Lemma 3.5. Let (un) be a Cauchy sequence in MLl(Ω) with respect to Jl.
Then Cl(Ω)N ∩ [(un)]Cs

̸= ∅, where [(un)]Cs
denotes the ∼Cs

-equivalence class
generated by (un).

The main result of this section is the following.

Theorem 3.6. Let Sl
cs = Cs[MLl(Ω)] ∩ Cl(Ω)N and Il

cs = λl(0) ∩ Cl(Ω)N.
Then

(i) Sl
cs is a subalgebra of Cl(Ω)N and Il

cs is an ideal in Sl
cs.

(ii) ∆(Cl(Ω)) ⊆ Sl
cs and ∆(Cl(Ω)) ∩ Il

cs = {0}.

(iii) There exists a bijective mapping El
cs : NLl(Ω) −→ Sl

cs/Il
cs such that the

diagram

Sl
cs

-L NLl(Ω)

?

El
cs

Sl
cs/Il

cs

@
@
@
@
@
@
@
@R

qSl
cs

(3.5)

commutes. Here, qSl
cs

is the canonical mapping associated with the quo-

tient algebra Sl
cs/Il

cs, and the mapping L is defined as

L : Sl
cs ∋ u = (un) 7→ u♯ ∈ NLl(Ω),(3.6)

where u♯ is the limit of (un) in NLl(Ω).

4. The chain of order convergence algebras of generalized
functions

In this section we study the chain structure

NL∞(Ω) → · · · → NLl(Ω) → NLl−1(Ω) → · · · → NL0(Ω).

we show how the spaces of generalized functions NLl(Ω), l ∈ N, may be rep-
resented as a chain of algebras of generalized functions, referred to as chain
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of order convergence algebras of generalized functions. We further show how
the existence result for generalized solutions of C∞-smooth PDEs may be in-
terpreted in the differential-algebraic frame work. This chain is denoted with

Aoc = {(NLl(Ω),NLk(Ω), γl
k) | k, l ∈ N, k ≤ l}.

Our method for constructing the chain Aoc is based on Rosinger’s technique for
constructing an abstract chain of algebras of generalized functions, see [13, 14].

Definition 4.1. Let A = {(Al(Ω),Ak(Ω), γl
k) | k, l ∈ N, k ≤ l}, where Al(Ω)

is a unital, commutative algebra for each l ∈ N and
γl
k : Al(Ω) → Ak(Ω)

is an algebra homomorphism for k ≤ l. A is a chain of algebras of generalized
functions if the following hold.

(i) The diagram
Al(Ω) -

γl
h Ah(Ω)

Ak(Ω)

@
@
@R �

�
��

γl
k γk

h(4.1)

commutes for all h, k, l ∈ N with h ≤ k ≤ l.

(ii) For l ≥ k > 0 and p ∈ Nn, with |p|+k ≤ l, there exists a linear differential
operator Dp : Al(Ω) → Ak(Ω) that satisfies the Leibnitz rule.

(iii) If, in addition, the diagram

Ak(Ω) Ak−|p|(Ω)
Dp

Dp

γl
k γ

l−|p|
k−|p|

6 6

-

-Al(Ω) Al−|p|(Ω)

(4.2)

commutes for all l ≥ k and p ∈ Nn, |p| ≤ k ≤ l, we call the chain A
differential.

We outline, briefly, how such chain of algebras of generalized functions may
be constructed, see [14]. Let l ∈ N = N ∪ {∞} be given. Let Λ be an infinite
index set, and define

Cl(Ω)Λ =

{
u = (uλ)λ∈Λ

∣∣∣∣ ∀ λ ∈ Λ :
uλ ∈ Cl(Ω)

}
.(4.3)

It is easy to see that the set Cl(Ω)Λ is a commutative algebra with unit element,
when considered with the termwise operations on sequences of functions. For
a subalgebra Sl of Cl(Ω)Λ, and a proper ideal Il in Sl, the quotient algebra

Al(Ω) = Sl/Il(4.4)

is a unital and commutative algebra of generalized functions on Ω.
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If for k ≤ l, the inclusions

Sl ⊆ Sk, Il ⊆ Ik(4.5)

hold, then

γl
k : Al(Ω) ∋ u+ Il 7→ u+ Ik ∈ Ak(Ω)(4.6)

defines an algebra homomorphism. Clearly, in this case the diagram (4.1)
commutes for h ≤ k ≤ l.

Suppose further that, for l > 0 and p ∈ Nn with |p| ≤ l and k ≤ |p| ≤ l we
have

Dp(Sl) ⊆ Sk, Dp(Il) ⊆ Ik.(4.7)

Then
Dp : Al(Ω) ∋ u+ Il 7→ Dp(u) + Ik ∈ Ak(Ω)

defines a linear differential operator that satisfies the Leibnitz rule (1.1). For
k ≤ l and p ∈ Nn such that |p| ≤ k, the diagram (4.2) commutes. Hence we
have the following.

Theorem 4.2. For each l ∈ N, let Sl be a subalgebra of Cl(Ω)Λ and Il an ideal
in Sl. If (4.5) and (4.7) are satisfied, then A = {(Al(Ω),Ak(Ω), γl

k) : k, l ∈
N, k ≤ l}, with Al(Ω) = Sl/Il and γl

k defined by (4.6), is a differential chain
of algebras of generalized functions.

The embedding of Cl - smooth function into the chain A follows directly
from the embedding of Cl(Ω) into Al(Ω), for each l ∈ N. The existence of an
algebra embedding

Cl(Ω) ↪→ Al(Ω), l ∈ N(4.8)

is determined by the neutrix condition

U l
Λ(Ω) ⊆ Sl, U l

Λ(Ω) ∩ Il = {0}(4.9)

where

U l
Λ(Ω) =

u = (uλ)λ∈Λ

∣∣∣∣∣∣
∃ v ∈ Cl(Ω) :
∀ λ ∈ Λ :

uλ = v

 .

Theorem 4.3. Suppose that (4.9) is satisfied for each l ∈ N. Then

Cl(Ω) ∋ u 7→ ∆(u) + Il ∈ Al(Ω)(4.10)

defines an injective algebra homomorphism for each l ∈ N. Furthermore, the
diagrams

Al(Ω)
-γl

k Ak(Ω)

↪→ ↪→
6 6

Cl(Ω) -⊆ Ck(Ω)
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and

Al(Ω)
-Dp

Al−|p|(Ω)

6 6

Cl(Ω) -Dp

Cl−|p|(Ω)

commute for all l, k ∈ N and p ∈ Nn, |p| ≤ l.

We now show how the spaces NLl(Ω), l ∈ N, form a chain of algebras of
generalized functions. By virtue of the definition of the uniform convergence
structure on MLl(Ω), the partial derivative operators

Dp : MLl(Ω) −→ MLk(Ω), k + |p| ≤ l(4.11)

are uniformly continuous. Hence there exist unique uniformly continuous ex-
tensions

Dp♯ : NLl(Ω) −→ NLk(Ω), k + |p| ≤ l(4.12)

of the mappings in (4.11). On the other hand, since Sl
cs ⊂ Cs[MLl(Ω)] and

Il
cs consists of null sequences in MLl(Ω), it follows by uniform continuity of

the mapping in (4.11) that

Dp(Il
cs) ⊆ Ik

cs, and Dp(Sl
cs) ⊆ Sk

cs, p ∈ Nn, |p| ≤ l − k,(4.13)

so that

Dp : Sl
cs/Il

cs ∋ (u) + Il
cs 7→ Dp(u) + Ik

cs ∈ Sk
cs/Ik

cs(4.14)

define linear mappings that satisfy the Leibnitz rule.

Proposition 4.4. The diagram

NLl(Ω) NLk(Ω)

-

-

El
csEl

cs

??

Dp♯

Dp

Sl
cs/Il

cs Sk
cs/Ik

cs

(4.15)

commutes for all p ∈ Nn, l, k ∈ N, so that k + |p| ≤ l with

Dp♯ : NLl(Ω) −→ NLk(Ω), k + |p| ≤ l.

given by (4.12) and

Dp : Sl
cs/Il

cs −→ Sk
cs/Ik

cs(4.16)

given by (4.14).
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Proof. Fix u♯ ∈ NLl(Ω). According to Theorem 3.6, u♯ ∈ L(u) for some u ∈
Sl
cs, and El

cs(u
♯) = u+Il

cs. So Dp(El
cs(u

♯)) = Dp(u)+Ik
cs. But Dp♯u♯ = L(Dpu)

so that, by Theorem 3.6, Ek
cs(Dp♯u♯) = Dpu + Ik

cs = Dp(El
cs(u

♯). Thus the
diagram (4.15) commutes.

Observe that

Sl
cs ⊆ Sk

cs and Il
cs ⊆ Ik

cs(4.17)

for all l, k ∈ N such that k ≤ l. Indeed, it follows directly from the definition
of the uniform convergence structure on MLl(Ω) and MLk(Ω), respectively,
that the inclusion map

MLl(Ω) ∋ u 7→ u ∈ MLk(Ω)

is uniformly continuous. Thus (4.17) follows immediately from the definition
of Il

cs and Sl
cs. Thus

γl
k : Sl

cs/Il
cs ∋ (u) + Il

cs 7→ u+ Ik
cs ∈ Sk

cs)/Ik
cs(4.18)

defines an algebra homomorphism, see (4.5) and (4.6).
In view of Theorem 3.6 and Proposition 4.4, the spaces NLl(Ω), and the

differential operators

Dp♯ : NLl(Ω) −→ NLk(Ω)

with |p|+ k ≤ l, may be identified with the algebras Sl
cs/Il

cs, with differential
operators Dp : Sl

cs/Il
cs −→ Sk/Ik

cs defined in (4.14). Therefore we denote the
algebras Sl

cs/Il
cs by NLl(Ω).

As a direct application of Theorem 4.2 we now have the following

Theorem 4.5. With the algebra homomorphism

γl
k : NLl(Ω) −→ NLk(Ω)

define as in (4.18) and the differential operator

Dp : NLl(Ω) −→ NLk(Ω),

with k + |p| ≤ l define as in (4.16),

Aoc = {(NLl(Ω),NLk(Ω), γl
k) | k, l ∈ N, k ≤ l}

is a differential chain of algebras of generalized functions.

Proof. The result follows from (4.13), (4.17) and Theorem 4.2.

Next we address the issue of embedding smooth functions into the chain
Aoc of algebras of generalized functions.
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Theorem 4.6. For each l ∈ N, there exists an injective algebra homomorphism

E l
cs : C

l(Ω) −→ NLl(Ω)

so that the diagram

NLl(Ω)
-

γl
k

?

γl
h

NLk(Ω) -
γk
h

NLh

6

E l
cs Eh

csEk
cs

6

Cl(Ω) -⊆
Ck(Ω) -⊆

6

Ch(Ω)

(4.19)

commutes. Here γl
k, γk

h, γl
h, are injective algebra homomorphisms defined by

(4.18), while E l
cs, Eh

cs, Ek
cs are linear injective algebra homomorphisms defined

as in (4.10).

Proof. Since Sl
cs is contained in the set Cs[MLl(Ω)] of Jl - Cauchy sequences

in MLl(Ω), it follows that U l
N(Ω) ⊆ Sl

cs. Furthermore, Il
cs ⊂ λl(0), so that,

since λl is Hausdorff Il
cs ∩ U l

N(Ω) = {0}. The result now follows from Theorem
4.3.

5. Embedding spaces of normal lower semi-continuous
functions

The embedding Cl(Ω) −→ NLl(Ω) extends in a natural way to an embed-
ding

H l
oc : MLl(Ω) −→ NLl(Ω).(5.1)

Theorem 5.1. For each l ∈ N there exists an injective homomorphism

H l
oc : MLl(Ω) −→ NLl(Ω).

so that the following hold.

(i) The diagram

NLl(Ω)
-

γl
k

NLk(Ω)

6

Hk
oc

6

MLl(Ω) -

H l
oc

⊂ MLk

(5.2)

commutes whenever k ≤ l.
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ii The diagram

NLl(Ω)
-

Dp

NLk(Ω)

6

Hk
oc

6

MLl(Ω) -

H l
oc

Dp

MLk

(5.3)

commutes whenever k + |p| ≤ l.

(iii) The diagram

MLl(Ω)
-

H l
oc

NLl(Ω)

�
�
�
�

�
���

E l
cs

@
@

@
@

@
@@I

Cl(Ω)

⊂(5.4)

commutes for all l ∈ N.

Proof. Consider the map

H l
oc : MLl(Ω) ∋ u 7→ (un) + Il

cs ∈ NLl(Ω)(5.5)

where (un) ∈ Sl
cs converges to u with respect to λl. The existence of such a

sequence follows from Lemma 3.5. To see that H1
oc is well defined, let (un), (vn)

be two sequences in Sl
cs converging to u with respect to λl. Based on Proposition

3.2 we conclude that (un − vn) converges to 0 with respect to λl, so that
(un− vn) ∈ Il

cs. It follows from Proposition 3.2 that H l
oc is an injective algebra

homomorphism. Indeed, if H l
oc(u) = H l

oc(v) for some u, v ∈ ML(Ω), then
there exists (un) ∈ Sl

cs that converges to u and v with respect to λl. Since λl is
Hausdorff, it follows that u = v. If (un), (vn) ∈ Sl

cs converge to u, v ∈ MLl(Ω)
with respect to λl, respectively, then (unvn) converges to uv with respect to
λl. Hence

H l
oc(u)H

l
oc(v) = ((un) + Il

cs)((vn) + Il
cs)

= (unvn) + Il
cs

= H l
oc(uv).

Linearity of H l
oc follows the same way.

(i) The commutativity of the diagram (5.2), follows immediately from th
definitions of the homomorphisms H l

oc, H
k
oc and γl

k.
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(ii) Recall that, for k + |p| ≤ l, the partial differential operator

Dp : MLl(Ω) −→ MLk(Ω)

is uniformly continuous, thus continuous with respect to the convergence
structure λl and λk. Thus if

H l
oc(u) = (un) + Il

oc

for some u ∈ MLl(Ω), then Dp(un) = (Dpun) converges to Dpu in
MLk(Ω) with respect to λk. Hence

Hk
oc(Dpu) = Dp(un) + Ik

cs.

By definition,
Dp(H l

ocu) = Dp(un) + Ik
cs.

Thus (5.3) is commutative.

(iii) The embedding E l
cs : Cl(Ω) −→ NLl(Ω) is given by

E l
cs(u) = ∆(u) + Il

cs

where ∆ : Cl(Ω) −→ Sl
cs maps each u ∈ Cl(Ω) to the constant sequence

with all terms equal to u. Since this sequence converges to u with respect
to λl, the result follows immediately from the definition of the map H l

oc.

6. Existence of chain generalized solutions

In this section, we give an interpretation of the existence result for smooth
PDEs, Theorem 2.7, in the context of the chain

Aoc = {(NLl,NLk, γl
k) : k, l ∈ N, k ≤ l}

of algebra of generalized functions. In particular, we show that the generalized
solution u♯ ∈ NL∞(Ω) obtained through the Theorem 2.7 is a chain generalized
solution.

Definition 6.1. Let A be a chain. A generalized function u + I∞ ∈ A∞(Ω)
is a chain generalized solution of (2.10) in the chain A if

T (γ∞
l (u+ I∞)) = γ∞

k (f + I∞)

for all k, l ∈ N so that k +m ≤ l.

In order to show the generalized solution u♯ ∈ NL∞(Ω) is a chain general-
ized solution we consider the nonlinear partial differential operator

T : Cl(Ω) −→ Ck(Ω), k +m ≤ l(6.1)



56 Dennis Ferdinand Agbebaku, Jan Harm van der Walt

of order at most m, defined through a C∞-smooth mapping

F : Ω× RM −→ R

by setting

Tu(x) = F (x, u(x), · · · , Dpu(x), · · · ), |p| ≤ m(6.2)

for each x ∈ Ω. Since

T (Cl(Ω)) ⊆ Ck(Ω),

it follows that

T (Cl(Ω)N) ⊆ Ck(Ω)N.

By the definition of MLl(Ω), see (2.4), and owing to F being C∞-smooth, the
mapping (6.1) may be extended to a map

T : MLl(Ω) −→ MLk(Ω) k +m ≤ l.(6.3)

It follows from the uniform continuity of the mapping T, see [22, Theorem 6]
and the uniform continuity of the embedding

MLl(Ω) ∋ u 7→ u ∈ MLk(Ω) k ≤ l.

that (6.3) is uniformly continuous for all l, k ∈ N such that k +m ≤ l. Hence
there exists unique uniformly continuous extensions

T ♯ : NLl(Ω) −→ NLk(Ω), k +m ≤ l.(6.4)

of (6.3).
On the other hand, in view of the construction of the extension of a uni-

formly continuous map to the completion of its domain, the map

T : Cl(Ω)N ∋ (un) 7→ (Tun) ∈ Ck(Ω)N k +m ≤ l.

satisfies

T (Sl
cs) ⊆ Sk

cs, k +m ≤ l

and

(un)− (vn) ∈ Il
cs =⇒ T (un)− T (vn) ∈ Ik

cs, k +m ≤ l

Thus in view of (2.14) - (2.16), and since Sl
cs and Il

cs satisfy the neutrix con-
dition (4.9), it follows that

T : NLl(Ω) ∋ u+ Il
cs 7→ Tu+ Ik

cs ∈ NLk(Ω) k +m ≤ l.(6.5)

defines an extension of (6.1). Using the same argument as in the proof of
Theorem 4.5, it follows that (6.4) and (6.5) are equal, in the sense that the
diagram
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NLl(Ω)
-T ♯

NLk(Ω)

?

El
cs

?
Sl
cs/Il

cs
-

El
cs

T Sk
cs/Il

cs

(6.6)

commutes for all l, k ∈ N, k +m ≤ l

Our main result is the following

Theorem 6.2. Assume that the PDE

T (x,D)u(x) = f(x), x ∈ Ω(6.7)

with f ∈ C∞(Ω) and T defined as in (6.2) satisfies (2.17). Then (6.7) admits
a chain generalized solution u+ I∞

cs ∈ NL∞(Ω).

Proof. According to Theorem 2.7, there exists a generalized solution

u ∈ NL∞(Ω)

of the PDE (6.7). Thus there exists a sequence (un) ∈ Sl
cs so that

u = (un) + I∞
cs

satisfies Tu = f in NL∞(Ω). That is,

(Tun)− f ∈ I∞
cs ⊆ Ik

cs, k ∈ N.(6.8)

By definition of the algebra homomorphism

γl
k : NLl(Ω) −→ NLk(Ω)(6.9)

we have

T (γl
k(u)) = T (un) + Ik

cs, k +m ≤ l(6.10)

and

γ∞
k (f) = f + Il

cs(6.11)

Thus (6.8), (6.10) and (6.11) imply that

T (γl
k(u)) = γ∞

cs (f + I∞), k +m ≤ l
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7. Differential chains of nowhere dense algebras

In this section we briefly outline the main points in the construction of the
so-called differential chain of nowhere dense algebras of generalized functions

And = {(Al
nd(Ω),Ak

nd(Ω), γ
l
k) : k, l ∈ N, k ≤ l}

introduced by Rosinger [13, 14, 15], as well as the differential chain of almost
everywhere algebras of generalized functions

Aae = {(Al
ae(Ω),Ak

ae(Ω), γ
l
k) : k, l ∈ N, k ≤ l}

which was obtained using Verneave’s construction of the almost everywhere
algebra A∞

ae(Ω), see [26, 27]. In this regard, let l ∈ N and denote by Il
nd the

set of all sequences of functions in Cl(Ω) satisfying the following asymptotic
vanishing condition:

u = (un)n∈N ∈ Il
nd ⇐⇒


∃ Γ ⊂ Ω closed nowhere dense :
∀ x ∈ Ω\Γ :
∃ V ⊂ Ω\Γ, neighbourhood of x, NV ∈ N :
∀ y ∈ V, n ≥ NV :

un(y) = 0

In other words, the terms of the sequence (un) vanish at each point of the
open and dense subset Ω\Γ, provided n ∈ N is sufficiently large. The set Il

nd

is an ideal in Cl(Ω)N, see [13, Chapter 1 Sction 7]. The ideal Il
nd ⊆ Cl(Ω)N is

called the nowhere dense ideal on Ω and satisfies the neutrix condition, 4.9 so
that

Al
nd(Ω) = Cl(Ω)N/Il

nd

is an algebra of generalized functions. Furthermore the inclusions

Il
nd ⊂ Ik

nd, k ≤ l

and
Dp(Il

nd) ⊂ Ik
nd, |p|+ k ≤ l

hold. Thus we have the following

Theorem 7.1.

And = {(Al
nd(Ω),Ak

nd(Ω), γ
l
k) : k, l ∈ N, k ≤ l}

is a differential chain of algebras of generalized functions.

The algebra homomorphism

γl
k : Al

nd(Ω) −→ Ak
nd(Ω), k ≤ l

is defined as (4.6). That is,

γl
k : Al

nd(Ω) ∋ u+ Il
nd 7→ u+ Ik

nd ∈ Ak
nd(Ω), k ≤ l(7.1)
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Since the neutrix condition (4.9) is satisfied, it follows from Theorem 4.3 that

El : Cl(Ω) ∋ u 7→ ∆(u) + Il
nd ∈ Ak

nd(Ω).

defines an injective algebra homomorphism for each l ∈ N. Furthermore, the
diagrams

Al
nd

-
γlk

?

γlh

Ak
nd

-
γkh

Ah
nd

6

El EkEh

6

Cl(Ω) -
⊆

Ck(Ω) -
⊆

6

Ch(Ω)

(7.2)

and

Al′

nd(Ω)
-Dp

Ak′

nd(Ω)

6

γk
k′

6

γl
l′

Al
nd(Ω)

-Dp

Ak
nd(Ω)

(7.3)

commute, for all h ≤ k ≤ l and all k + |p| ≤ l.
We next discuss the construction of the chain of almost everywhere algebras

of generalized functions, Aae. Let M0 be a set of closed nowhere dense subset
of Ω that is closed under the formation of finite unions of its elements. For
l ∈ N, let

E l
ae(Ω) =

(un)

∣∣∣∣∣∣∣∣
∃ Γ ∈ M0 :
∀ n ∈ N :

(1) un : Ω −→ R :
(2) un ∈ Cl(Ω\Γ)

(7.4)

It is easy to see that E l
ae(Ω) is an algebra over R with respect to the termwise

operations on sequences of functions. Consider the ideals

Il
E :=

(un) ∈ E l
ae(Ω)

∣∣∣∣∣∣∣∣
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V

(7.5)

and

Il
ae :=

(un) ∈ E l
ae(Ω)

∣∣∣∣∣∣
∃ Γ ∈ M0 :
∀ n ∈ N :

un(x) = 0, x ∈ Ω \ Γ

(7.6)
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Since Il
E and Il

ae are ideals, so is

Il
E + Il

ae =

(un) ∈ E l
ae(Ω)

∣∣∣∣∣∣∣∣∣∣
∃ Γ ∈ M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V \ Γ

 .(7.7)

The algebra Al
ae(Ω) is defined as

Al
ae(Ω) = E l

ae/(Il
E + Il

ae).(7.8)

Since

E l
ae(Ω) ⊆ Ek

ae(Ω) and Il
E + Il

ae ⊆ Ik
E + Ik

ae(7.9)

whenever l ≥ k, it follows that

γl
k : Al

ae(Ω) ∋ u+ (Il
E + Il

ae) 7→ u+ (Ik
E + Ik

ae) ∈ Ak
ae(Ω)(7.10)

defines an algebra homomorphism.

Theorem 7.2.

Aae = {Al
ae(Ω),Ak

ae(Ω), γ
l
k} | l, k ∈ N, k ≤ l}

is a differential chain of algebras of generalized functions with γl
k defined in

(7.10).

8. Relationship between the chain of order convergence
Algebras and the chain of nowhere Dense Algebras

In this section we show how the chain Aoc is related to the chain of nowhere
dense algebra of generalized functions, denoted as And, which was introduced
by Rosinger [14] In order to establish the mentioned relationship between the
chains Aoc and And, we introduce an auxiliary chain A0

nd. In this regard, we
note that

Il
nd ⊂ Il

cs ⊂ Sl
cs, l ∈ N.(8.1)

Indeed, for each (un) ∈ Il
nd there exists Γ ⊂ Ω closed and nowhere dense such

that
∀ x ∈ Ω \ Γ :
∃ N ∈ N :
∀ n ≥ N, |p| ≤ l :

Dpun(x) = 0

Thus (un) converges to 0 pointwise on an open and dense, hence residual, subset
of Ω. It follows from Proposition 3.3 that (un) ∈ Il

cs. Since Il
nd is an ideal in

Cl(Ω)N, it is also an ideal in Sl
cs. Furthermore, the inclusions,

Il
nd ⊆ Ik

nd, Sl
cs ⊆ Sk

cs, k ≤ l
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and
Dp(Il

nd) ⊆ Ik
nd, Dp(Sl

cs) ⊆ Sk
cs, |p|+ k ≤ l

imply that
A0

nd = {Al
0(Ω),Ak

0(Ω), γ
l
k)|l, k ∈ N, k ≤ l}

with Al
0(Ω) = Sl

cs/Il
nd and γl

k defined as

γl
k : Al

0(Ω) ∋ (un) + Il
nd 7→ (un) + Ik

nd ∈ Ak
0(Ω) k ≤ l(8.2)

is a differential chain of algebras of generalized functions. The way in which
Aoc is related to And is given in the following

Theorem 8.1. For each l ∈ N then there exists an injective algebra homomor-
phism

H l : Al
0(Ω) −→ Al

nd(Ω)

and a surjective algebra homomorphism

Gl : Al
0(Ω) −→ NLl(Ω)

such that the following hold.

(i) The diagrams

Al
0(Ω)

-H l

Al
nd(Ω)

?

γl
k

?
Ak

0(Ω)
-

γl
k

Hk

Ak
nd(Ω)

(8.3)

and

Al
0(Ω)

-Gl

NLl(Ω)

?

γl
k

?
Ak

0(Ω)
-

γl
k

Gk

NLk(Ω)

(8.4)

commute for all k ≤ l.

(ii) The diagrams

Al
0(Ω)

-Dp

Ak
0(Ω)

?

Hk

?
Al

nd(Ω)
-

H l

Dp

Ak
nd(Ω)

(8.5)
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and

Al
0(Ω)

-Dp

Ak
0(Ω)

?

Gk

?
NLl(Ω) -

Gl

Dp

NLk(Ω)

(8.6)

commute whenever k + |p| ≤ l.

Proof. For each l ∈ N define H l and Gl as

H l : Al
0(Ω) ∋ (un) + Il

nd 7→ (un) + Il
nd ∈ Al

nd(Ω)(8.7)

and

Gl : Al
0(Ω) ∋ (un) + Il

nd 7→ (un) + Il
cs ∈ NLl(Ω)(8.8)

H l is well defined since Sl
cs ⊆ Cl(Ω)N, whileGl also well defined since Il

nd ⊆ Ics.
Clearly H l is injective, and Gl is surjective.

The commutativity of the diagrams in (i) follows immediately from (8.2),
(8.7) and (8.8) as well as the definition of the algebra homomorphisms

γl
k : Al

nd(Ω) −→ Ak
nd(Ω) k ≤ l(8.9)

and

γl
k : NLl(Ω) −→ NLk(Ω)(8.10)

see (7.1) and (4.18).

The commutativity of the diagrams in (ii) follows in a similar way tak-
ing into account the definitions of the differential operators in the algebras
Al

nd(Ω), Al
0(Ω) and NLl(Ω), respectively.

Each of the algebras Al
nd and NLl(Ω) contain MLl(Ω) as a subalgebra.

Indeed, there exist injective algebra homomorphisms

H l
oc : MLl(Ω) −→ NLl(Ω)(8.11)

and

H l
nd : MLl(Ω) −→ Al

nd(Ω)(8.12)
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so that the diagrams

NLl(Ω)
-

γl
k

NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
nd

Hk
oc

⊂

? ?

H l
oc

H l
nd

Al
nd(Ω)

-
γl
k Ak

nd(Ω)

(8.13)

and

NLl(Ω)
-Dp

NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
nd

Hk
oc

Dp

? ?

H l
oc

H l
nd

Al
nd(Ω)

-
Dp

Ak
nd(Ω)

(8.14)

commute whenever k ≤ l and k + |p| ≤ l, respectively.
Therefore we have the following

Proposition 8.2. For each l ∈ N, there exists an injective algebra homomor-
phism

Γl
0 : MLl(Ω) −→ Al

0(Ω)

such that the diagrams

Al
0(Ω)

-γl
k Ak

0(Ω)

6

Γk
0

6

Γl
0

MLl(Ω) -⊂ MLk(Ω)

(8.15)
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and

Al
0(Ω)

-Dp

Ak
0(Ω)

6

Γk
0

6

Γl
0

MLl(Ω) -Dp

MLk(Ω)

(8.16)

commute, whenever k ≤ l and |p|+ k ≤ l, respectively.

As we show next, the homomorphisms

H l : Al
0(Ω) −→ Al

nd(Ω)

and
Gl : Al

0(Ω) −→ NLl(Ω)

leave MLl(Ω) invariant.

Theorem 8.3. The following diagrams

Al
0(Ω)

-H l

Al
nd(Ω)

�
�
�
�

�
���

H l
nd

@
@

@
@

@
@@I

MLl(Ω)

Γl
0

(8.17)

and

Al
0(Ω)

-Gl

NLl(Ω)

�
�
�
�

�
���

H l
oc

@
@

@
@

@
@@I

MLl(Ω)

Γl
0

(8.18)

commute for all l ∈ N.

Proof. For each u ∈ MLl(Ω),

Γl
0(u) = (un) + Il

nd

where (un) ∈ Cl(Ω)N ⊂ Sl
cs satisfies

∀ x ∈ Ω\Γ :
∃ V ∈ VX , N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = u(y), y ∈ V.

(8.19)
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where Γ ⊂ Ω is closed, nowhere dense set so that u ∈ Cl(Ω\Γ). Likewise, the
map H l

nd(u) may be expressed as

H l
nd(u) = (un) + Il

nd

where (un) ∈ Cl(Ω)N satisfies (8.19). Clearly, (un) ∈ Sl
cs for any (un) ∈ Cl(Ω)N

that satisfies (8.19). Thus the commutativity of (8.17) follows from Definition
8.7 of H l.

Since any sequence (un) ∈ Cl(Ω)N that satisfies (8.19) converges to u ∈
MLl(Ω) with respect to λl, the commutativity of (8.18) follows the same way
as that of (8.17), taking into account the definition (5.5) of H l

oc.

9. Relationship between the chain of order convergence
algebras and the chain of almost everywhere algebras

In this section we consider the relationship between the chain Aoc and Aae.
In this regards, we note that

Il
0 = (Il

E + Il
ae) ∩ Cl(Ω)N ⊆ Il

cs ⊂ Sl
cs, l ∈ N

Indeed, for (un) ∈ Il
0 there exists, by (7.4), a closed nowhere dense set Γ ∈ M0

so that

∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V \ Γ.

Hence (un) converges pointwise to 0 on the open and dense set Ω \ Γ so that
(un) ∈ Il

cs.
Furthermore, the inclusions

Il
0 ⊂ Ik

0 , Sl
cs ⊂ Sk

cs, l, k ∈ N(9.1)

and

Dp(Il
0) ⊂ Ik

0 , Dp(Sl
cs) ⊂ Sk

cs, k + |p| ≤ l(9.2)

hold. Therefore
A0

ae = {(Bl
ae,Bk

ae, γ
l
k)|l, k ∈ N, k ≤ l}

is a differential chain of algebra of generalized functions, where

Bl
ae(Ω) = Sl

cs/Il
0

and

γl
k : Bl

ae(Ω) ∋ (un) + Il
0 7→ (un) + Ik

0 ∈ Bk
ae(Ω)(9.3)

for all l, k ∈ N with k ≤ l. The differential operators are defined in the usual
way, that is

Dp : Bl
ae(Ω) ∋ (un) + Il

0 7→ Dp(un) + Ik
0 ∈ Bk

ae(Ω), |p|+ k ≤ l.
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Theorem 9.1. For every l ∈ N there exists an injective algebra homomorphism

F l
ae : Bl

ae(Ω) −→ Al
ae(Ω)

and a surjective algebra homomorphism

Gl
ae : Bl

ae(Ω) −→ NLl(Ω)

so that the following hold.

(i) The diagrams

Bl
ae(Ω)

-
F l
ae

Al
ae(Ω)

?

γl
k

?

γl
k

Bk
ae(Ω)

-
F k
ae Ak

ae(Ω)

(9.4)

and

Bl
ae(Ω)

-
Gl

ae

NLl(Ω)

?

γl
k

?

γl
k

Bk
ae(Ω)

-
Gk

ae NLk(Ω)

(9.5)

commute for all k ≤ l.

(ii) The diagrams

Bl
ae(Ω)

-Dp

Bk
ae(Ω)

?

F k
ae

?

F l
ae

Al
ae(Ω)

-Dp

Ak
ae(Ω)

(9.6)

and

Bl
ae(Ω)

-Dp

Bk
ae(Ω)

?

Gk
ae

?

Gl
ae

NLl(Ω) -Dp

NLk(Ω)

(9.7)

commute whenever k + |p| ≤ l.
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Proof. For each l ∈ N define algebra homomorphisms F l
ae and Gl

ae as

F l
ae : Bl

ae(Ω) ∋ (un) + Il
0 7→ (un) + (Il

E + Iae) ∈ Al
ae(Ω)(9.8)

and

Gl
ae : Bl

ae(Ω) ∋ (un) + Il
0 7→ (un) + Il

cs ∈ NLl(Ω).(9.9)

Since Sl
cs ⊆ Cl(Ω)N ⊆ E l

ae and Il
0 ⊆ (Il

E + Iae) it follows that F l
ae is well

defined. Also Gl
ae is well defined since Il

0 ⊆ Ics. The mapping F l
ae is injective

since Il
0 = (Il

E+Il
oc)∩Sl

cs which implies that {(un)+Il
0 ∈ Bl

ae | F l
ae((un)+Il

0) =
0} = {0}. Gl

ae is surjective since

Il
0 ⊆ Il

cs.

The commutativity of the diagrams in (i) follows immediately from (9.3), (9.8)
and (9.9) as well as the definition of the algebra homomorphisms

γl
k : Al

ae(Ω) −→ Ak
ae(Ω) k ≤ l(9.10)

and

γl
k : NLl(Ω) −→ NLk(Ω)(9.11)

given by (7.10) and (4.18) respectively.
The commutativity of the diagrams in (ii) follows in a similar way tak-

ing into account the definitions of the differential operators in the algebras
Al

ae(Ω), Bl
ae(Ω) and NLl(Ω) respectively.

If M0 consists of all closed nowhere dense subsets of Ω, then each of the
algebras Al

ae(Ω) contain MLl(Ω) as a subalgebra. In particular, there exists
for each l ∈ N an injective algebra homomorphism

H l
ae : MLl(Ω) −→ Al

ae(Ω)(9.12)

so that the diagrams

NLl(Ω)
-γl

k NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
ae

Hk
oc

⊂

? ?

H l
oc

H l
ae

Al
ae(Ω)

-
γl
k Ak

ae(Ω)

(9.13)
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and

NLl(Ω)
-Dp

NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
ae

Hk
oc

Dp

? ?

H l
oc

H l
ae

Al
ae(Ω)

-
Dp

Ak
ae(Ω)

(9.14)

commute whenever k ≤ l and k+ |p| ≤ l, respectively, where H l
oc is defined by

(8.11).
Thus we have the following

Proposition 9.2. Assume that M0 = {Γ ⊂ Ω|Γ is closed nowhere dense}.
Then for each l ∈ N, there exists an injective algebra homomorphism

H l
ae : MLl(Ω) −→ Bl

ae(Ω)

such that the diagrams

Bl
ae(Ω)

-γl
k Bk

ae(Ω)

6

Hk
ae

6

H l
ae

MLl(Ω) -⊂ MLk(Ω)

(9.15)

and

Bl
ae(Ω)

-Dp

Bk
ae(Ω)

6

Hk
ae

6

H l
ae

MLl(Ω) -Dp

MLk(Ω)

(9.16)

commute, whenever k ≤ l and |p|+ k ≤ l, respectively.

We note that the algebra homomorphism

H l
oc(u) : MLl(Ω) −→ Bl

ae(Ω)
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is obtained by setting
H l

oc(u)(u) = (un) + Il
0

where (un) ∈ Sl
cs. The existence of such a sequence is guaranteed by Lemma

3.5.
The homomorphism

F l
ae : Bl

ae(Ω) −→ Al
ae(Ω)

and
Gl

ae : Bl
ae(Ω) −→ NLl(Ω)

leave the subalgebra MLl(Ω) of Bl
ae(Ω) invariant as shows in the following.

Theorem 9.3. Assume that M0 = {Γ ⊂ Ω|Γ is closed nowhere dense . Then
the diagrams

Bl
ae(Ω)

-
F l
ae

Al
ae(Ω)

�
�

�
�
�

���

H l
ae

@
@

@
@

@
@@I

MLl(Ω)

H l
ae

(9.17)

and

Bl
ae(Ω)

-
Gl

ae

NLl(Ω)

�
�

�
�

�
���

H l
oc

@
@

@
@

@
@@I

MLl(Ω)

H l
ae(9.18)

commute for all l ∈ N.

Proof. The proof is similar to that of Theorem 8.3 which we outline below.
For each u ∈ MLl(Ω),

Γl
0(u) = (un) + Il

nd

where (un) ∈ Cl(Ω)N ⊂ Sl
cs satisfies

∀ x ∈ Ω\Γ :
∃ V ∈ VX , N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = u(y), y ∈ V.

(9.19)
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where Γ ⊂ Ω is closed, nowhere dense set so that u ∈ Cl(Ω\Γ). Likewise, the
map H l

ae(u) may be expressed as

H l
ae(u) = (un) + Il

nd

where (un) ∈ Cl(Ω)N satisfies (9.19). Clearly, (un) ∈ Sl
cs for any (un) ∈ Cl(Ω)N

that satisfies (9.19). Thus the commutativity of (9.17) follows from the defini-
tion (9.8) of F l

ae.
Since any sequence (un) ∈ Cl(Ω)N that satisfies (9.19) converges to u ∈

MLl(Ω) with respect to λl, the commutativity of (9.18) follows the same way
as that of (9.17), taking into account the definition (5.5) of H l

oc.

10. Chain generalized solutions in nowhere dense alge-
bras and almost everywhere algebras

In this section we show how the existence result for chain generalized solu-
tions of nonlinear PDEs in Aoc given in Theorem 6.2 leads to corresponding
existence results in the chains Aae and And, respectively. In this regard, con-
sider a polynomial nonlinear differential operator

T =
∑

1≤i≤h

ci(x)
∏

1≤j≤ki

Dpij , x ∈ Ω(10.1)

where h, ki ∈ N, ci ∈ C∞(Ω) and pij ∈ Nn satisfies |pij | ≤ m for all
i = 1, · · · , h and j = 1, · · · , ki. For f ∈ C∞(Ω) we show that, under a mild
assumption on the operator T, the polynomial PDE,

(10.2) Tu = f.

admits a chain generalized solutions in And and Aae respectively.
We deal first with the case of solutions in And. In this regard, it is clear

that
T (Il

nd) ⊂ Ik
nd

whenever k +m ≤ l and, obviously,

T (Cl(Ω)N) ⊂ Ck(Ω)N, k +m ≤ l

Therefore, since Il
nd is off diagonal, (un) − (vn) ∈ Il

nd which implies (Tun) −
(tvn) ∈ Ik

nd, so that

Tnd : Al
nd(Ω) ∋ (un) + Il

nd 7→ T (un) + Ik
nd ∈ Ak

nd(Ω) k +m ≤ l

defines an extension of
T : Cl(Ω) −→ Ck(Ω),

for k +m ≤ l. In the same way,

Toc : NLl(Ω) ∋ (un) + Il
cs 7→ T (un) + Ik

cs ∈ NLk(Ω), k +m ≤ l

and
T0 : Al

0(Ω) ∋ (un) + Il
nd 7→ T (un) + Ik

nd ∈ Ak
0(Ω) k +m ≤ l

defines an extension of T : Cl(Ω) −→ Ck(Ω).
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Proposition 10.1. The diagrams

Al
0(Ω)

-T0
Ak

0(Ω)

?

F k
nd

?

F l
nd

Al
nd(Ω)

-Tnd Ak
nd(Ω)

(10.3)

and

Al
0(Ω)

-T0
Ak

0(Ω)

?

Gk
nd

?

Gl
nd

NLl(Ω) -Toc NLk(Ω)

(10.4)

commute whenever k +m ≤ l, with F l
nd and Gl

nd algebra homomorphisms.

Proof. For u = (un) + Il
nd ∈ Al

0 with k +m ≤ l,

Tnd(F
l
nd(u)) = Tnd((un) + Il

nd)

= T (un) + Ik
nd

and

F k
nd(T0(u)) = F k

nd(T (un) + Ik
nd)

= T (un) + Ik
nd

Hence (10.3) commutes. The commutativity of diagram (10.4) follows in the
same way.

Theorem 10.2. If f ∈ C∞(Ω), and the operator T defined in (10.1) satisfies
(2.16) to (2.17) then the PDE

Tu = f(10.5)

admits a chain generalized solution in And.

Proof. According to Theorem 6.2, there exists a chain generalized solution of
(10.5) in Aoc. That is, there exists (un) ∈ S∞

cs so that u = (un) + Il
cs satisfies

Tu = T (un) + Ik
cs = f + Ik

cs

for all l, k ∈ N with k +m ≤ l. Since

Gl
nd : Al

0(Ω) −→ NLl(Ω)
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is surjective for each l ∈ N, it follows that there exists v = (vn)+Il
nd ∈ A∞

0 (Ω)
so that G∞

nd(v) = u. It follows from Proposition 10.1 that

To((vn) + Il
nd) = f + Ik

nd

for all k, l ∈ N so that k +m ≤ l. In the same way, it follows that

F∞
nd(v) = (vn) + I∞

nd ∈ A∞
nd(Ω)

is a chain generalized solution of (10.5) in And.

Let us now consider the existence of chain generalized solutions of the PDE
(10.5) in the chain Aae. It is clear that

(un)− (vn) ∈ Il
0 =⇒ T (un)− T (vn) ∈ Ik

0

for all (un), (vn) ∈ C∞(Ω)N and k +m ≤ l. Thus

TB : Bl
ae(Ω) ∈ (un) + Il

0 7→ T (un) + Ik
0 ∈ Bk

ae(Ω)

is a well-defined extension of T : Cl(Ω) −→ Ck(Ω), for all l, k ∈ N such that
m+ k ≤ l. With each (un) ∈ E l

ae(Ω) and k ∈ N, we associate the set

T ae(un) =

(vn) ∈ Ek
ae(Ω)

∣∣∣∣∣∣∣∣∣∣
∃ Γ0 ∈ M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

vn(y) = Tun(y), y ∈ V \ Γ

 .(10.6)

This gives rise to a relation

E l
ae(Ω) ∋ (un) 7→ T ae(un) ⊂ Ek

ae(Ω).

It follows that
T ae(un)− T ae(un) ⊆ Ik

E + Ik
ae

and

(vn) ∈ T ae(un), ((vn)− (wn)) ∈ Ik
E + Ik

ae =⇒ (wn) ∈ T ae(un)

for all (un) ∈ E l
ae(Ω) and l, k ∈ N such that k +m ≤ l. Therefore,

Tae : Al
ae(Ω) ∋ (un) + (Il

E + Il
ae) 7→ T ae(un) ∈ Ak

ae(Ω)(10.7)

is well-defined for all k, l ∈ N such that m+ k ≤ l. Note that

Tae((un) + (Il
E + Il

ae)) = (vn) + (Ik
E + Il

ae)

where (vn) is any member of the set T ae(un). Since the ideal Il
E + Il

ae is off
diagonal, it follows that (10.7) is an extension of

T : Cl(Ω) −→ Ck(Ω), k +m ≤ l.
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Proposition 10.3. For all k, l ∈ N so that m+ k ≤ l, the diagrams

Bl
ae(Ω)

-TB
Bk
ae(Ω)

?

Gk
ae

?

Gl
ae

NLl(Ω) -Toc NLk(Ω)

(10.8)

and

Bl
ae(Ω)

-TB
Bk
ae(Ω)

?

F k
ae

?

F l
ae

Al
ae(Ω)

-Tae Ak
ae(Ω)

(10.9)

commute.

Proof. For u = (un) + Il
0 ∈ Bl

ae with k +m ≤ l,

Toc(G
l
ae(u)) = Toc((un) + Il

cs)

= T (un) + Ik
cs

and

Gk
ae(TB(u)) = Gk

ae(T (un) + Ik
0 )

= T (un) + (Ik
cs)

Hence (10.8) commutes. The commutativity of diagram (10.9) follows in the
same way.

Theorem 10.4. If f ∈ C∞(Ω), and the operator T defined in (10.1) satisfies
(2.16) to (2.17) then the PDE

Tu = f(10.10)

admits a chain generalized solution in Aae.

Proof. According to Theorem 6.2, there exists a chain generalized solution of
(10.5) in Aoc. That is, there exists (un) ∈ S∞

cs so that u = (un) + Il
cs satisfies

Tu = T (un) + Ik
cs = f + Ik

cs

for all l, k ∈ N with k +m ≤ l. Since

Gl
ae : Bl

ae(Ω) −→ NLl(Ω)
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is surjective for each l ∈ N, there exists v = (vn) + Il
0 ∈ B∞

ae(Ω) so that
G∞

ae(v) = (un) + Il
0. It follows from Proposition 10.3 that

TB((vn) + Il
0) = f + Ik

0

for all k, l ∈ N so that k +m ≤ l. In the same way, it follows that

F∞
ae (v) = (vn) + I∞

0 ∈ A∞
nd(Ω)

is a chain generalized solution of (10.5) in Aae.

Theorem 10.4 establishes the existence of a chain generalized solution in
Aae for a large class of PDEs, as demonstrated in the following

Example 10.5. Consider the PDE

Dtu(x, t) =
∑

1≤i≤h

ci(x)
∏

1≤j≤ki

Dpij
x u(x, t), (x, t) ∈ Ω = Ω′ × R(10.11)

where Ω′ ⊂ Rn−1 is open, h, ki ∈ N, ci ∈ C∞(Ω) and pij ∈ Nn satisfies
|pij | ≤ m for all i = 1, · · · , h and j = 1, · · · , ki. The PDE (10.11) can be
written in the form

T (x, t,D)u(x, t) = 0, (x, t) ∈ Ω

where 0 denotes the zero function on Ω. The operator T (x, t,D) is defined
through a jointly continuous, C∞-smooth mapping

(10.12) F : Ω× RM+1 −→ R

as
T (x, t,D) = F (x, t, u(x, t), · · · , Dpij

x u(x, t), · · · , Dtu(x, t)).

where M is the cardinality of {pij | i = 1 · · ·h, j = 1 · · · ki}. In particular,

F (x, t, ξ1 · · · , ξM+1) = ξM+1 −
∑

1≤i≤h

ci(x)
∏

1≤j≤ki

ξpij
, (x, t) ∈ Ω = Ω′ × R.

Since the PDE in (10.11) is linear in ξM+1, it follows that the range of F
in R is given by

RF = {F (x, t, ξ1 · · · , ξM+1)|(x, t) ∈ Ω, (x, t, ξ1 · · · , ξM+1) ∈ RM+1} = R.

Hence RF is open and F is surjective. Furthermore, RF = intRF = R so that
0 ∈ intRF .

Now define the mapping

F∞ : Ω× RNn+1

−→ RNn+1

by setting

F∞(x, t, (ξM+1)M∈Nn) = (F β(x, t, · · · , ξM , ξM+1)), β ∈ Nn+1



Differential chain of algebras of generalized functions 75

where, for each β ∈ Nn+1, the mapping

F β : Ω× RNn+1

−→ RNN+1

is defined by setting

Dβ(T (x, t,D)u(x, t)) = F β(x, t, · · · , Dpiju(x, t), · · · , Dtu(x, t)), |pij | ≤ m+ |β|

for all u ∈ C∞(Ω). Note that for each β ∈ Nn+1, F β is linear in at least one

factor of RNn+1

, so that, for β′ ̸= β, F β is independent of this factor. Hence

∀ (x, t) ∈ Ω

∃ ξ(x, t) ∈ RNn+1

, F∞(x, t, ξ(x, t)) = 0
∃ V ∈ V(x,t),W ∈ Vξ(x,t) :

F∞ : V ×W ∈ RNn+1

is open

Thus the PDE (10.11) satisfies (2.17). Therefore by Theorems 10.4, the PDE
(10.11) has a chain generalized solution in Aae.

11. Conclusion

The underlying spaces of generalized functions, NLl(Ω), involve in the Or-
der Completion Method as formulated in the setting of convergence spaces, has
been shown to form a differential chain Aoc of algebras of generalized functions.
Any generalized solution in the underlying space may be interpreted as a chain
generalized solution.

We also established a relationship between the differential chains Aoc and
And, as well as a relationship between the differential chain Aoc and Aae of
almost-everywhere algebras was introduced. It was shown that the existence
results for chain generalized solution of nonlinear PDEs lead to corresponding
existence results in And and Aae, respectively. It was shown that chains And

and Aae admits embeddings of the spaces MLl(Ω) which preserve both the
algebraic and differential structure of NLl(Ω). These results demonstrate the
extent to which these chains of are able to handle singularities occurring on a
closed, nowhere dense set.
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