Symmetric properties of elementary operators Messaoud Guesba ${ }^{1}$

Abstract

We consider the elementary operator $M_{A, B}$, acting on the Hilbert-Schmidt class $C_{2}(\mathcal{H})$, given by $M_{A, B}(T)=A T B$ with A and B bounded operators on \mathcal{H}. In this work, we establish necessary and sufficient conditions on A and B for $M_{A, B}$ to be a 2-symmetric and 3symmetric. We also characterize binormality of elementary operators.

AMS Mathematics Subject Classification (2010): 47A05; 47A55; 47B15
Key words and phrases: Elementary operator; Symmetric operator; Binormal operator; Hilbert-Schmidt class

1. Introduction

In this work, \mathcal{H} denotes a complex Hilbert space with inner product $\langle.,$.$\rangle .$ $\mathcal{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H}.

For $A, B \in \mathcal{B}(\mathcal{H})$, we have the left multiplication operator L_{A} defined by

$$
L_{A}(X)=A X, \forall X \in \mathcal{B}(\mathcal{H}) ;
$$

the right multiplication operator R_{B} defined by

$$
R_{B}(X)=X B, \forall X \in \mathcal{B}(\mathcal{H})
$$

the basic elementary operator (two-side multiplication)

$$
M_{A, B}=L_{A} R_{B}
$$

the Jordan elementary operator $U_{A, B}$ on $\mathcal{B}(\mathcal{H})$ by

$$
U_{A, B}=M_{A, B}+M_{B, A} .
$$

An elementary operator on $\mathcal{B}(\mathcal{H})$ is a finite $\operatorname{sum} R=\sum_{i=1}^{n} M_{A_{i}, B_{i}}$ of basic ones. For more facts about the elementary operators, we refer the reader to [7, 8] and the references therein.

Let J be a non-zero linear subspace of the space $\mathcal{B}(\mathcal{H})$. We say that J is a symmetric norm ideal if it is equipped with a norm $\|\cdot\|_{J}$ satisfying the following conditions:
i) if $A, B \in \mathcal{B}(\mathcal{H})$ and $X \in J$ then $A X \in J$ and $X B \in J$.

[^0]ii) J is Banach space with respect to the norm $\|\cdot\|_{J}$.
iii) $\|X\|_{J}=\|X\|$ for all rank 1 operators $X \in J$.
iv) $\|A X B\| \leq\|A\|\|X\|_{J}\|B\|$ for all $A, B \in \mathcal{B}(\mathcal{H})$ and $X \in J$.

Familiar examples of symmetric norm ideals are the Schatten p-ideals $\left(C_{p}(\mathcal{H}),\|\cdot\|_{p}\right)$ such that $1 \leq p \leq \infty$ on a Hilbert space \mathcal{H}. (see [5, 15]).

The space $C_{p}(\mathcal{H})$ consists of compact operators K such that $\sum_{j} s_{j}^{p}(K)<$ ∞, where $\left\{s_{j}(K)\right\}_{j}$ denotes the sequence of the singular values of K.

For $K \in C_{p}(\mathcal{H})(1 \leq p \leq \infty)$ we set

$$
\|K\|_{p}=\left(\sum_{j} s_{j}^{p}(K)\right)^{\frac{1}{p}}
$$

where by convention $\|K\|_{\infty}=s_{1}(K)$ is the usual operator norm of K.
For $p=2$, the espace $\left(C_{2}(\mathcal{H}),\|\cdot\|_{2}\right)$ is a Hilbert space (it is called the Hilbert-Schmidt class) with inner product, defined by

$$
\langle X, Y\rangle=\operatorname{tr}\left(X Y^{*}\right) \quad\left(X, Y \in C_{2}(\mathcal{H})\right)
$$

where $\operatorname{tr}($.$) denotes the usual trace of operators. Furthermore, C_{2}(\mathcal{H})$ is an ideal of the algebra of all bounded operators on \mathcal{H}. We direct the reader to $[5,7,4,12,13,15]$ and the references therein.

Let A and B be bounded operators on \mathcal{H}, and $M_{A, B}$ a bounded operator on $C_{2}(\mathcal{H})$ defined by $M_{A, B}(T)=A T B$. The adjoint $M_{A, B}^{*}$ is given by $M_{A, B}^{*}(T)=$ $A^{*} T B^{*}$ (see [1, 6, 8]).

We recall the definition of an m-symmetric operator, as given in [3, 4, 11, 10]. If $T \in \mathcal{B}(\mathcal{H})$, then T is said to be an m-symmetric if and only if

$$
\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} T^{* j} T^{m-j}=0
$$

In particular, if T is a 2 -symmetric or 3 -symmetric operator, then it must satisfy the operator equation

$$
T^{2}-2 T^{*} T+T^{* 2}=0
$$

or

$$
T^{3}-3 T^{*} T^{2}+3 T^{* 2} T-T^{* 3}=0, \text { respectively. }
$$

In this work, we give necessary and sufficient conditions on A and B under which the elementary operator $M_{A, B}$ is 2-symmetric, 3 -symmetric and binormal on $C_{2}(\mathcal{H})$. Our characterization follows from a theorem of Fong and Sourour (see [8]). This theorem was used by Magajana [14] to characterize subnormal elementary operators on $C_{2}(\mathcal{H})$, also Botelho and Jamison used this theorem to characterize m-isometry elementary operators on $C_{2}(\mathcal{H})$ (see [2]).

We consider $\left\{A_{i}\right\}_{i=1, \ldots . m}$ and $\{B\}_{i=1, \ldots . m}$ bounded operators on the Hilbert space \mathcal{H} and ϕ an operator acting on $C_{2}(\mathcal{H})$ as follows:

$$
\phi(T)=A_{1} T B_{1}+A_{2} T B_{2}+\ldots \ldots+A_{m} T B_{m}
$$

with not all the A_{i} equal to 0 .
Theorem 1.1 (Fong and Sourour [8). If $\phi(T)=0$ for all $T \in C_{2}(\mathcal{H})$, then $\left\{B_{1}, B_{2}, \ldots . B_{m}\right\}$ is linearly dependent. Furthemore, if $\left\{B_{1}, B_{2}, \ldots . B_{n}\right\}$ $(n \leq m)$ is a maximal linearly independent subset of $\left\{B_{1}, B_{2}, \ldots . B_{m}\right\}$, and $\left(c_{k j}\right)$ denote constants for which,

$$
B_{j}=\sum_{k=1}^{n} c_{k j} B_{k}, \quad 1 \leq j \leq m
$$

then $\phi(T)=0$ for all $T \in C_{2}(H)$ if and only if

$$
A_{k}=-\sum_{j=n+1}^{m} c_{k j} A_{j}, \quad 1 \leq k \leq n .
$$

2. Main results

In this section we present our main results. First, we give necessary and sufficient conditions for the elementary operator $M_{A, B}(T)=A T B$ on $C_{2}(\mathcal{H})$ to be 2-symmetric.

Theorem 2.1. Let $M_{A, B}$ be an elementary operator of two-sided multiplication, acting on $\mathbf{C}_{2}(\mathcal{H})$, such that $M_{A^{*}, B}^{2}=-M_{A, B^{*}}^{2}$. Then, the operator $M_{A, B}$ is 2-symmetric if and only if there exists a scalar λ so that $A^{2}+A^{* 2}=2 \lambda A^{*} A$ and $B B^{*}=\lambda\left(B^{2}+B^{* 2}\right)$ such that $\frac{1}{2} \leq|\lambda| \leq 1$.

Proof. If $M_{A, B}$ is 2-symmetric, then for any $T \in C_{2}(\mathcal{H})$ we have that

$$
\begin{equation*}
M_{A, B}^{2}(T)-2 M_{A, B}^{*} M_{A, B}(T)+M_{A, B}^{* 2}(T)=0 . \tag{2.1}
\end{equation*}
$$

We know that $M_{A, B}^{*}(T)=A^{*} T B^{*}$. Moreover, it easy to check that $M_{A, B}^{2}(T)=$ $A^{2} T B^{2}, M_{A, B}^{*} M_{A, B}(T)=A^{*} A T B B^{*}$ and $M_{A, B}^{* 2}(T)=A^{* 2} T B^{* 2}$. Since $M_{A^{*}, B}^{2}=-M_{A, B^{*}}^{2}$, this means that $A^{* 2} T B^{2}=-A^{2} T B^{* 2}$. Thus, the above equation (2.1) implies that

$$
\left(A^{2}+A^{* 2}\right) T\left(B^{2}+B^{* 2}\right)=2 A^{*} A T B B^{*} .
$$

Fong-Sourour's theorem implies that there exists a nonzero scalar λ so that

$$
A^{2}+A^{* 2}=2 \lambda A^{*} A \text { and } B B^{*}=\lambda\left(B^{2}+B^{* 2}\right)
$$

We have

$$
A^{2}+A^{* 2}=2 \lambda A^{*} A,
$$

therefore

$$
\left\|A^{2}+A^{* 2}\right\|=2|\lambda|\left\|A^{*} A\right\| .
$$

Then

$$
2|\lambda|\left\|A^{*} A\right\| \leq\left\|A^{2}\right\|+\left\|A^{* 2}\right\|
$$

since $\left\|A^{2}\right\| \leq\|A\|^{2}$ and $\left\|A^{*} A\right\|=\|A\|^{2}$, so $|\lambda| \leq 1$.
By applying similar technique on the equation $B B^{*}=\lambda\left(B^{2}+B^{* 2}\right)$ we can show that $|\lambda| \geq \frac{1}{2}$.

Conversely, it is straightforward to show that the conditions on A and B stated in the theorem imply that $M_{A, B}$ is a 2-symmetric.

The next theorem gives a characterization of 3 -symmetricity for elementary operators of two-sided multiplication.

Theorem 2.2. Let $M_{A, B}$ be an elementary operator of two-sided multiplication, acting on $\mathbf{C}_{2}(\mathcal{H})$ with $A, B \in \mathcal{B}(\mathcal{H})$ such that $\left\{A^{3}, A^{* 2} A\right\}$ and $\left\{B^{3}, B B^{* 2}\right\}$ are two linearly independent subsets of $\mathcal{B}(\mathcal{H})$. The operator $M_{A, B}$ is 3-symmetric if and only if there exist scalars λ and μ so that one of the following statements holds:
(i) $3 A^{* 2} A=\lambda A^{* 3}-\mu A^{3}, B^{3}=\bar{\lambda} B^{2} B^{*}+\mu B B^{* 2}$.
(ii) $A^{3}=3 \lambda A^{*} A^{2}+\mu A^{* 2} A, B^{2} B^{*}=\lambda B^{3}+\mu B^{* 3}$ and $|\lambda|=|\mu|$.
(iii) $A^{* 3}=\lambda A^{3}, A^{*} A^{2}=\mu A^{*^{2}} A, B^{3}=\lambda B^{*^{3}}, B B^{* 2}=\mu B^{2} B^{*}$ and $|\lambda|=$ $|\mu|=1$.

Proof. If $M_{A, B}$ is 3-symmetric, then for any $T \in C_{2}(\mathcal{H})$ we have that

$$
A^{* 3} T B^{* 3}-3 A^{* 2} A T B B^{* 2}+3 A^{*} A^{2} T B^{2} B^{*}-3 A^{3} T B^{3}=0
$$

We first assume that $\left\{A^{3}, A^{* 2} A\right\}$ is a maximal linearly independent subset of $\left\{A^{3}, A^{* 2} A, A^{* 3}, A^{*} A^{2}\right\}$. Fong-Sourour's theorem the implies that there exist scalars $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ so that

$$
\left\{\begin{array}{r}
A^{* 3}=\alpha_{1} A^{3}+3 \alpha_{2} A^{* 2} A \tag{2.2}\\
3 A^{*} A^{2}=\beta_{1} A^{3}+3 \beta_{2} A^{* 2} A
\end{array}\right.
$$

and

$$
\left\{\begin{align*}
B^{3} & =\alpha_{1} B^{* 3}+\beta_{1} B^{2} B^{*} \tag{2.3}\\
B B^{* 2} & =\alpha_{2} B^{* 3}+\beta_{2} B^{2} B^{*}
\end{align*}\right.
$$

By 2.2 we have $A^{3}=\overline{\alpha_{1}}\left(\alpha_{1} A^{3}+3 \alpha_{2} A^{* 2} A\right)+\overline{\alpha_{2}}\left(\beta_{1} A^{3}+3 \beta_{2} A^{* 2} A\right)$. Therefore,

$$
\left(\left|\alpha_{1}\right|^{2}+\overline{\alpha_{2}} \beta_{1}-1\right) A^{3}+3\left(\overline{\alpha_{1}} \alpha_{2}+\overline{\alpha_{2}} \beta_{2}\right) A^{* 2} A=0
$$

and $3 A^{* 2} A=\overline{\beta_{1}}\left(\alpha_{1} A^{3}+3 \alpha_{2} A^{* 2} A\right)+\overline{\beta_{2}}\left(\beta_{1} A^{3}+3 \beta_{2} A^{* 2} A\right)$. Therefore,

$$
\left(\overline{\beta_{1}} \alpha_{1}+\overline{\beta_{2}} \beta_{1}\right) A^{3}+3\left(\left|\beta_{2}\right|^{2}+\alpha_{2} \overline{\beta_{1}}-1\right) A^{* 2} A=0
$$

So, $\left|\alpha_{1}\right|^{2}+\overline{\alpha_{2}} \beta_{1}-1=0, \overline{\alpha_{1}} \alpha_{2}+\overline{\alpha_{2}} \beta_{2}=0, \overline{\beta_{1}} \alpha_{1}+\overline{\beta_{2}} \beta_{1}=0$ and $\left|\beta_{2}\right|^{2}+\alpha_{2} \overline{\beta_{1}}-1=$ 0 . This implies that $\left|\alpha_{1}\right|=\left|\beta_{2}\right|$.

If we assume that $\alpha_{2} \neq 0$, then (a) and (d) become

$$
3 A^{*} A^{2}=\frac{1}{\alpha_{2}} A^{* 3}-\frac{\alpha_{1}}{\alpha_{2}} A^{3} \text { and } B^{* 3}=\frac{1}{\alpha_{2}} B B^{* 2}-\frac{\beta_{2}}{\alpha_{2}} B^{2} B^{*}
$$

and if we set $\lambda=\frac{1}{\alpha_{2}}$ and $\mu=-\frac{\alpha_{1}}{\alpha_{2}}$ we get $3 A^{* 2} A=\lambda A^{* 3}-\mu A^{3}$ and $B^{3}=$ $\bar{\lambda} B^{2} B^{*}+\mu B B^{* 2}$ as listed in (i).

If $\alpha_{2}=0$, then $\left|\alpha_{1}\right|=\left|\beta_{2}\right|=1$ so (a) and (d) reduce to $A^{* 3}=\alpha_{1} A^{3}$ and $B B^{* 2}=\beta_{2} B^{2} B^{*}$, respectively. If in addition we assume that $\beta_{1} \neq 0$, then (b) and (c) become

$$
A^{3}=\frac{1}{\beta_{2}}\left(3 A^{*} A^{2}\right)-\frac{\beta_{2}}{\beta_{1}}\left(A^{* 2} A\right) \text { and } B^{2} B^{*}=\frac{1}{\beta_{1}} B^{3}-\frac{\alpha_{1}}{\beta_{1}} B^{* 3}
$$

respectively. We now set $\lambda=\frac{1}{\beta_{1}}$ and $\mu=-\frac{\beta_{2}}{\beta_{1}}$. Hence we find (ii).
If $\alpha_{2}=\beta_{1}=0$, then $\left|\alpha_{1}\right|=\left|\beta_{2}\right|=1$ and the system (2.2) reduces to $A^{* 3}=\alpha_{1} A^{3}, A^{*} A^{2}=\beta_{2} A^{* 2} A, B^{3}=\alpha_{1} B^{* 3}$ and $B B^{* 2}=\beta_{2} B^{2} B^{*}$. When we set $\lambda=\alpha_{1}$ and $\mu=\beta_{2}$, we get (iii).

Now, we assume that $\left\{A^{3}, A^{* 2} A, A^{* 3}\right\}$ is a maximal linearly independent subset of $\left\{A^{3}, A^{* 2} A, A^{* 3}, A^{*} A^{2}\right\}$. Then Fong-Sourour's theorem implies the existence of scalars α_{1}, α_{2} and α_{3}, so that $A^{*} A^{2}=\alpha_{1} A^{3}+\alpha_{2} A^{* 2} A+\alpha_{3} A^{* 3}$, therefore $B^{3}=\alpha_{1} B B^{* 2}, B B^{* 2}=\alpha_{2} B^{2} B^{*}$ and $B^{* 3}=-\alpha_{3} B B^{* 2}$. Then $\left\{B^{3}, B B^{* 2}\right\}$ is linearly dependent subset of $\left\{A^{3}, A^{* 2} A, A^{* 3}, A^{*} A^{2}\right\}$. This contradicts our initial assumption. Similar reasoning applies if $\left\{A^{3}, A^{* 2} A, A^{*} A^{2}\right\}$ is a maximal linearly independent subset of $\left\{A^{3}, A^{* 2} A, A^{* 3}, A^{*} A^{2}\right\}$.

Conversely, it is straightforward to verify that those relations listed in any of the items (i)-(iii) imply that $M_{A, B}$ is a 3 -symmetric operator. This completes the proof.

We recall that an operator is said to be binormal, if $T^{*} T$ and $T T^{*}$ commute. For more details about this class of operators we refer to [16].

Finally, we give necessary and sufficient conditions for the elementary operator $M_{A, B}(T)=A T B$ on $C_{2}(\mathcal{H})$ to be binormal.

Proposition 2.3. Let $M_{A, B}$ be an elementary operator of two-sided multiplication acting on $\mathbf{C}_{2}(\mathcal{H})$ with $A, B \in \mathcal{B}(\mathcal{H})$. The operator $M_{A, B}$ is a binormal if and only if there exists a scalar λ so that $A A^{* 2} A=\lambda A^{*} A^{2} A^{*}$ and $B^{*} B^{2} B^{*}=\lambda B B^{* 2} B$ with $|\lambda|=1$.

Proof. If $M_{A, B}$ is a binormal, then for any $T \in C_{2}(\mathcal{H})$ we have that

$$
A A^{* 2} A T B B^{* 2} B=A^{*} A^{2} A^{*} T B^{*} B^{2} B^{*}
$$

We apply Fong-Sourour's theorem and we find

$$
A A^{* 2} A=\lambda A^{*} A^{2} A^{*} \text { and } B^{*} B^{2} B^{*}=\lambda B B^{* 2} B
$$

So $\left\|A A^{* 2} A\right\|=|\lambda|\left\|A^{*} A^{2} A^{*}\right\|$, since $\left\|A A^{* 2} A\right\|=\left\|A^{*} A^{2} A^{*}\right\|$. Hence $|\lambda|=1$. The converse implication is straightforward.

Acknowledgement

The author is grateful to the referee for careful reading and for helpful comments on the original draft.

References

[1] Botelho, F., and Jamison, J. Elementary operators and the aluthge transform. Linear Algebra Appl 432, 1 (2010), 275-282.
[2] Botelho, F., and Jamison, J. Isometric properties of elementary operators. Linear Algebra Appl 432, 1 (2010), 357-365.
[3] Cho, M., Ko, E., and Lee, J. E. On m-complex symmetric operators. Mediterr. J. Math 13, 4 (2016), 2025-2038.
[4] Cho, M., Ko, E., and Lee, J. E. On m-complex symmetric operators ii. Mediterr. J. Math 13, 5 (2016), 3255-3264.
[5] Cowen, C., and MacCluer, B. Composition Operators on Spaces of Analytic Functions, vol. 96 of Studies in Advanced Mathematics. CRC Press, Boca Raton,FL, 1995.
[6] Fangyan, L. Normality of elementary operators. Acta Anal. Funct. Appl 4, 2 (2002), 118-123.
[7] Fialkow, L. A. Structural properties of elementary operators. In Elementary operators and applications (Blaubeuren, 1991). World Sci. Publ., River Edge, NJ, 1992, pp. 55-113.
[8] Fong, C., and Sourour, A. On the operator identity $\sum a_{k} x b_{k}=0$. Canad. J. Math 31, 4 (1979), 845-857.
[9] Furuta, T. Invitation to linear operators. Taylor and Francis Group, London, 2001. From matrices to bounded linear operators on a Hilbert space.
[10] Garcia, S. R. Aluthge transforms of complex symmetric operators. Integral Equations Operator Theory 60, 3 (2008), 357-367.
[11] Garcia, S. R., and Putinar, M. Complex symmetric operators and applications. Trans. Amer. Math. Soc. 358, 3 (2006), 1285-1315.
[12] Halmos, P. R. A Hilbert Space Problem Book, second ed., vol. 19 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982. Encyclopedia of Mathematics and its Applications, 17.
[13] Helton, H. Operators with a representation as multiplication by x on a sobolev space. Colloquia Math. Soc. Janos Bolyai (1970), 279-287.
[14] Magajna, B. On subnormality of generalized derivations and tensor products. Bull. Austral. Math. Soc. 31, 2 (1985), 235-243.
[15] Schatten, R. Norm ideals of completely continuous operators. Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960.
[16] Wang, Y. Some properties of binormal and complex symmetric operators. Mathematica Aeterna 7, 4 (2017), 436-446.

Received by the editors January 31, 2021
First published online March 8, 2021

[^0]: ${ }^{1}$ Mathematics Department, Faculty of Exact Sciences, Echahid Hamma Lakhdar University, 39000 El Oued, Algeria,
 e-mails: guesbamessaoud2@gmail.com, guesba-messaoud@univ-eloued.dz

