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Conformal Ricci soliton in para-Sasakian manifolds

Shyam Kishor1, Pushpendra Verma23

Abstract. The object of the present paper is to studyM -projective cur-
vature tensor, pseudo projective curvature tensor, Ricci curvature tensor
in para-Sasakian manifold admitting conformal Ricci soliton. We have
studied M -projective semi symmetric para-Sasakian manifolds admitting
a conformal Ricci soliton. We have found that an M -projective Ricci
symmetric para-Sasakian manifold admitting a conformal Ricci soliton
is a quadratic equation. We have proved that a pseudo projective semi
symmetric para-Sasakian manifold admitting a conformal Ricci soliton is
an η-Einstein manifold. We have also studied Ricci pseudo projectively
symmetric para-Sasakian manifold.
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1. Introduction

The Ricci flow concept and its proof was introduced by Hamilton [9] in
the year 1982. It was degined to answer the Thurston geometric conjecture,
according to it each closed three manifold admits a geometric decomposition.
Categorization of all compact manifolds with positive curvature operator in
fourth dimension was done by Hamilton [5]. After which, the Ricci flow became
one of the powerful tools to study Riemannian manifolds, especially in the
manifolds having positive curvatures.

The Ricci flow is presented as

(1.1)
∂g

∂t
= −2S,

for a compact Riemannian manifold M̃ with Riemannian metric g. Ricci soliton
has come as the limit of the solutions of Ricci flow. The solution for the Ricci
flow is known as a Ricci soliton in case it moves only by a one parameter group
of diffeomorphism and scaling. Ramesh Sharma [6] began the study of the Ricci
soliton for a compact manifold and later it was studied by M. M. Tripathi [3],
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Bejan, Crasmareanu [2] analysed the Ricci soliton in contact metric manifolds.
The Ricci soliton equation is presented as

(1.2) £Xg + 2S + 2λg = 0,

where £X is the Lie derivative, S is a Ricci tensor, g is a Riemannian metric,
X is a vector field and λ is a scalar.

A.E. Fischer [4] in the year 2005 established a new concept known as confor-
mal Ricci flow, a variation of the classical Ricci flow equation which has revised
the unit volume constrain of that equation to a scalar curvature constraint.
After that a conformal geometry has played a prevalent role to constraint the
scalar curvature and equations are the vector field sum of a conformal flow equa-
tion and a Ricci flow equation, the equations resulting from this are known as
conformal Ricci flow equations. The new equations are presented as

(1.3)
∂g

∂t
+ 2(S +

g

n
) = −pg,

and R(g) = −1, where p is a scalar non-dynamical field (time dependent scalar
field), R(g) is the scalar curvature of the manifold and n is the dimension of
manifold.

N. Basu and A. Bhattacharyya [1] in 2015 brought the notion of conformal
Ricci soliton and the equation given as follows

(1.4) £Xg + 2S = [2λ− (p+
2

n
)]g.

The above equation is the generalization of the Ricci soliton equation and
it also assures the conformal Ricci flow equation.

A Riemannian manifold is said to be locally symmetric if its curvature ten-
sor R satisfies ∇R = 0, where ∇ is Levi-Civita connection on the Riemannian
manifold. As a generalization of locally symmetric spaces, many geometers
have considered semi symmetric spaces and their generalization. A Rieman-
nian manifold is said to be semi symmetric if its curvature tensor R satisfies
R(X,Y ).R = 0 for all X,Y ∈ TM̃, where R(X,Y ) acts on R as a derivation.

In this paper, we have studied M -projective curvature tensor, pseudo pro-
jective curvature tensor, Ricci curvature tensor in a para-Sasakian manifold
admitting a conformal Ricci soliton. We have studied para-Sasakian manifold
admitting a conformal Ricci soliton and R(ξ,X).Q̃ = 0, and proved that it is an
η-Einstein manifold. We have proved that a para-Sasakian manifold admitting
a conformal Ricci soliton and Q̃(ξ,X).S = 0, must be a quadratic equation. We
have found that a para-Sasakian manifold admitting a conformal Ricci soliton
and R(ξ,X).V̂ = 0, is an η-Einstein manifold. We have studied a para-Sasakian

manifold admitting a conformal Ricci soliton and V̂ (ξ,X).S = 0, and proved
that it is an η-Einstein manifold.

2. Preliminaries

Let M̃ be a (2n+1) dimensional connected almost metric manifold with an
almost contact metric structure (φ, ξ, η, g), where φ is a (1, 1) tensor field, ξ is
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a covariant vector field, η is a 1-form and g is compatible Riemannian metric
such that

(2.1) φ2(X) = X − η(X)ξ,

(2.2) g(X, ξ) = η(X),

(2.3) η(ξ) = 1, φξ = 0, ηoφ = 0,

(2.4) η(φX) = 0, rank(φ) = 2n,

(2.5) g(φX, Y ) = −g(X,φY ),

(2.6) g(φX,φY ) = −g(X,Y ) + η(X)η(Y ),

for all X,Y ∈ χ(M̃).
If (φ, ξ, η, g) satisfy the equations

dη = 0, ∇Xξ = −φX

(∇Xφ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ,

then M̃ is called a para-Sasakian manifold or, briefly, a P-Sasakian manifold.
Especially, a P-Sasakian manifold M̃ is called a special para-Sasakian manifold
or briefly a SP Sasakian manifold if M̃ admits a 1-form η satisfying

(2.7) (∇Xη)(Y ) = −g(X,Y ) + η(X)η(Y )

It is known that in a para-Sasakian manifold the following relations hold
[8]:

(2.8) R(X,Y )Z = g(X,Z)Y − g(Y, Z)X,

(2.9) R(ξ,X)Y = −g(X,Y )ξ + η(Y )X,

(2.10) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.11) R(X, ξ)Y = g(X,Y )ξ − η(Y )X,

(2.12) η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X),

(2.13) S(X,Y ) = g(QX,Y ),
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for all X,Y ∈ χ(M̃), where R is a Riemannian curvature, S is the Ricci tensor
and Q is the Ricci operator.

Now from the definition of a Lie derivative, we have

(£ξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ).

Using (2.3)and (2.7), we have

(2.14) (£ξg)(X,Y ) = 0.

Applying conformal Ricci soliton equation (1.4) in (2.14), we obtain

(2.15) S(X,Y ) = Ag(X,Y ),

where A = 1
2 [2λ− (p+ 2

n )], which shows that manifold is an Einstein manifold.
Also

(2.16) QX = AX,

(2.17) S(X, ξ) = Aη(X),

(2.18) S(ξ, ξ) = A.

Using these results, we shall prove some important results on para-Sasakian
manifold in the following sections.

3. Para-Sasakian manifold admitting a conformal Ricci

soliton and R(ξ,X).Q̃ = 0

Let M̃ be a (2n+ 1) dimensional para-Sasakian manifold admitting a con-
formal Ricci soliton (g, V, λ), where g is a Riemannian metric, V is a vector

field and λ is scalar. The M -projective curvature tensor Q̃ on M̃ is defined by
[7]

Q̃(X,Y )Z = R(X,Y )Z − 1

4n
[S(Y,Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY ].(3.1)

Now we prove the following theorem.

Theorem 1. If a para-Sasakian manifold admits a conformal Ricci soliton and
is M -projective semi symmetric i.e., R(ξ,X).Q̃ = 0, then the manifold is an

η-Einstein manifold where Q̃ is an M -projective curvature tensor and R(ξ,X)
is the derivation of tensor algebra of the tangent space of the manifold.
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Proof. Let M̃ be a (2n + 1) dimensional para-Sasakian manifold admitting a
conformal Ricci soliton (g, V, λ). Putting Z = ξ in (3.1), we have

Q̃(X,Y )ξ = R(X,Y )ξ − 1

4n
[S(Y, ξ)X − S(X, ξ)Y

+g(Y, ξ)QX − g(X, ξ)QY ],(3.2)

using (2.2), (2.10), (2.16) and (2.17) in (3.2), we get

(3.3) Q̃(X,Y )ξ = (1 +
2A

4n
)[η(X)Y − η(Y )X],

considering

b1 = 1 +
2A

4n
,

therefore, equation (3.3) becomes

(3.4) Q̃(X,Y )ξ = b1[η(X)Y − η(Y )X],

and

(3.5) g(Q̃(X,Y )ξ, Z) = b1[η(X)g(Y,Z)− η(Y )g(X,Z)],

which implies

(3.6) η(Q̃(X,Y )Z) = b1[η(Y )g(X,Z)− η(X)g(Y, Z)].

Now we recall that the para-Sasakian manifold admits a conformal Ricci soliton
and is M -projective semi symmetric i.e., R(ξ,X).Q̃ = 0 holds in M̃ , which
implies

R(ξ,X)(Q̃(Y,Z)W )− Q̃(R(ξ,X)Y,Z)W

−Q̃(Y,R(ξ,X)Z)W − Q̃(Y,Z)R(ξ,X)W = 0,(3.7)

for all vector field X,Y, Z on M̃ .
Using (2.9) in (3.7) and putting W = ξ, we get

−g(X, Q̃(Y,Z)ξ)ξ + η(Q̃(Y, Z)ξ)X

+g(X,Y )Q̃(ξ, Z)ξ − η(Y )Q̃(X,Z)ξ

+g(X,Z)Q̃(Y, ξ)ξ − η(Z)Q̃(Y,X)ξ

+g(X, ξ)Q̃(Y,Z)ξ − η(ξ)Q̃(Y,Z)X = 0(3.8)

which implies

−b1η(Y )g(X,Z)ξ + b1η(Z)g(X,Y )ξ + g(X,Y )Q̃(ξ, Z)ξ

−η(Y )Q̃(X,Z)ξ + g(X,Z)Q̃(Y, ξ)ξ − η(Z)Q̃(Y,X)ξ

+η(X)Q̃(Y,Z)ξ − Q̃(Y,Z)X = 0.(3.9)
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Taking inner product with ξ in (3.8) and using (2.3), we get

−b1η(Y )g(X,Z) + b1η(Z)g(X,Y ) + g(X,Y )η(Q̃(ξ, Z)ξ)

−η(Y )η(Q̃(X,Z)ξ) + g(X,Z)η(Q̃(Y, ξ)ξ)− η(Z)η(Q̃(Y,X)ξ)

+η(X)η(Q̃(Y,Z)ξ)− η(Q̃(Y,Z)X) = 0.(3.10)

Using (3.4) in (3.10), we have

(3.11) b1[η(Z)g(X,Y )− η(Y )g(X,Z)]− η(Q̃(Y,Z)X) = 0.

Putting Z = ξ in (3.11) and using (2.3), we get

(3.12) b1{g(X,Y )− η(Y )η(X)} − η(Q̃(Y, ξ)X) = 0.

Now from (3.1), we get

η(Q̃(Y, ξ)X) = g(X,Y )− η(Y )η(X)

− 1

4n
[Aη(X)η(Y )− S(X,Y )

+Aη(X)η(Y )−Ag(X,Y ).(3.13)

After putting (3.13) in (3.12), we get

b1{g(X,Y )− η(Y )η(X)} − g(X,Y )

+η(Y )η(X) +
1

4n
[Aη(X)η(Y )− S(X,Y )

+Aη(X)η(Y )−Ag(X,Y ) = 0,(3.14)

simplifying (3.14), we get

S(X,Y ) = 4n[b1 − 1− A

4n
]g(X,Y )

+4n[−b1 + 1 +
A

4n
]η(X)η(Y ),

the above equation can be written in the form

(3.15) S(X,Y ) = ρg(X,Y ) + ση(X)η(Y ),

where

ρ = 4n[b1 − 1− A

4n
],

and

σ = 4n[−b1 + 1 +
A

4n
].

So from (3.14), we conclude that the manifold becomes an η-Einstein manifold.
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4. Para-Sasakian manifold admitting a conformal Ricci

soliton and Q̃(ξ,X).S = 0

Theorem 2. If a para-Sasakian manifold M̃ admits a conformal Ricci soliton
and the manifold is M -projective Ricci symmetric i.e., Q̃(ξ,X).S = 0, then
the Ricci operator Q satisfies the quadratic equation Q2 − Q + D = 0 for all
X ∈ χ(M̃), where D are constants, Q̃ is an M -projective curvature tensor and
S is a Ricci tensor.

Proof. Let M̃ be a (2n + 1) dimensional para-Sasakian manifold admitting a
conformal Ricci soliton (g, V, λ). From (3.1), we can write

Q̃(ξ,X)Y = R(ξ,X)Y − 1

4n
[S(X,Y )ξ − S(ξ, Y )X

+g(X,Y )Qξ − g(ξ, Y )QX].(4.1)

Using (2.9), (2.16) and (2.17) in (4.1), we have

Q̃(ξ,X)Y = [−g(X,Y )ξ + η(Y )X]− 1

4n
[S(X,Y )ξ

−Aη(Y )X +Ag(X,Y )ξ − η(Y )QX],(4.2)

and similarly, we have

Q̃(ξ,X)Z = [−g(X,Y )ξ + η(Y )X]− 1

4n
[S(X,Z)ξ

−Aη(Z)X +Ag(X,Z)ξ − η(Z)QX].(4.3)

Now we consider that the tensor derivative of S by Q̃(ξ,X) is zero i.e.,

Q̃(ξ,X).S = 0. Then the para-Sasakian manifold M̃ admitting a conformal
Ricci soliton is M -projective Ricci symmetric. It gives

(4.4) S(Q̃(ξ,X)Y, Z) + S(Y, Q̃(ξ,X)Z) = 0,

using (4.2) and (4.3) in (4.4), we get

S([−g(X,Y )ξ + η(Y )X]− 1

4n
[S(X,Y )ξ

−Aη(Y )X +Ag(X,Y )ξ − η(Y )QX], Z)

+S(Y, [−g(X,Y )ξ + η(Y )X]− 1

4n
[S(X,Z)ξ

−Aη(Z)X +Ag(X,Z)ξ − η(Z)QX]) = 0.(4.5)

Putting Z = ξ and using (2.3) and (2.17) in (4.5), we get

(4.6) S(X,Y ) + S(Y,QX)− (A+
A2

4n
)g(X,Y ) = 0,

which implies
S(X,Y ) = Dg(X,Y )− S(QX,Y ),
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where D = (A+ A2

4n ), which implies

(4.7) QX = DX −Q2X ∀ Y ∈ χ(M̃),

i.e.,
Q2 +Q−D = 0 ∀ X,

which is a quadratic equation in Q.

5. Para-Sasakian manifold admitting a conformal Ricci

soliton and R(ξ,X).V̂ = 0

Let M̃ be a (2n+ 1) dimensional para-Sasakian manifold admitting a con-

formal Ricci soliton (g, V, λ). The pseudo projective curvature tensor V̂ on M̃
is defined by [7]

V̂ (X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

− r

2n+ 1
[
a

2n
+ b][g(Y,Z)X − g(X,Z)Y ].(5.1)

Now we prove the following theorem:

Theorem 3. If a para-Sasakian manifold admits a conformal Ricci soliton
and is pseudo projective semi symmetric i.e., R(ξ,X).V̂ = 0, then the mani-

fold is an η-Einstein manifold where V̂ is a pseudo projective curvature tensor
and R(ξ,X) is the derivation of the tensor algebra of the tangent space of the
manifold.

Proof. Let M̃ be a (2n + 1) dimensional para-Sasakian manifold admitting a
conformal Ricci soliton (g, V, λ). Putting Z = ξ in (5.1), we have

V̂ (X,Y )ξ = aR(X,Y )ξ + b[S(Y, ξ)X − S(X, ξ)Y ]

− r

2n+ 1
[
a

2n
+ b][g(Y, ξ)X − g(X, ξ)Y ],(5.2)

using (2.2), (2.10), (2.17) in (5.2), we get

(5.3) V̂ (X,Y )ξ = [−a+ bA− r

2n+ 1
(
a

2n
+ b)][η(Y )X − η(X)Y ].

Considering

γ = [−a+ bA− r

2n+ 1
(
a

2n
+ b)],

therefore, (5.3) becomes

(5.4) V̂ (X,Y )ξ = γ[η(Y )X − η(X)Y ],

and

(5.5) g(V̂ (X,Y )ξ, Z) = γ[η(Y )g(X,Z)− η(X)g(Y,Z)],
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which implies

(5.6) η(V̂ (X,Y )Z) = γ[η(X)g(Y,Z)− η(Y )g(X,Z)].

Now we consider that para-Sasakian manifold admits a conformal Ricci soliton
and is pseudo projective semi symmetric i.e., R(ξ,X).V̂ = 0 holds in M̃ , which
implies

R(ξ,X)(V̂ (Y,Z)W )− V̂ (R(ξ,X)Y,Z)W

−V̂ (Y,R(ξ,X)Z)W − V̂ (Y,Z)R(ξ,X)W = 0,(5.7)

for all vector field X,Y, Z on M̃ .
Using (2.9) in (5.7) and putting W = ξ, we get

−g(X, V̂ (Y,Z)ξ) + η(V̂ (Y,Z)ξ)X − V̂ (−g(X,Y )ξ

+η(Y )X,Z)ξ − V̂ (Y,−g(X,Z)ξ + η(Z)X)ξ

−V̂ (Y, Z)(−g(X, ξ)ξ + η(ξ)X) = 0,(5.8)

which implies

γ(−η(Z)g(X,Y )ξ + η(Y )g(X,Z)ξ) + g(X,Y )V̂ (ξ, Z)ξ

−η(Y )V̂ (X,Z)ξ + g(X,Z)V̂ (Y, ξ)ξ − η(Z)V̂ (Y,X)ξ

+η(X)V̂ (Y,Z)ξ − V̂ (Y,Z)X = 0.(5.9)

Taking inner product with ξ in (5.9) and using (2.3), we get

γ(−η(Z)g(X,Y ) + η(Y )g(X,Z)) + g(X,Y )η(V̂ (ξ, Z)ξ)

−η(Y )η(V̂ (X,Z)ξ) + g(X,Z)η(V̂ (Y, ξ)ξ)− η(Z)η(V̂ (Y,X)ξ)

+η(X)η(V̂ (Y, Z)ξ)− η(V̂ (Y,Z)X) = 0,(5.10)

using (5.4) in (5.10), we have

(5.11) γ[η(Z)g(X,Y )− η(Y )g(X,Z)] + η(V̂ (Y,Z)X)) = 0.

Putting Z = ξ in (3.11) and using (2.2) and (2.3), we get

(5.12) γ[g(X,Y )− η(Y )η(X)] + η(V̂ (Y, ξ)X) = 0.

Now from (5.1), we get

η(V̂ (Y, ξ)X) = a[g(X,Y )− η(Y )η(X)]

+b[Aη(X)η(Y )− S(X,Y )]

− r

2n+ 1
[
a

2n
+ b][η(X)η(Y )− g(X,Y )].(5.13)

After putting (5.13) in (5.12), the equation reduces to

γ[g(X,Y )− η(Y )η(X)] + a[g(X,Y )

−η(Y )η(X)] + b[Aη(X)η(Y )− S(X,Y )]

− r

2n+ 1
[
a

2n
+ b][η(X)η(Y )− g(X,Y )] = 0.(5.14)
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Simplifying (5.14), we get

S(X,Y ) =
[γ + a+ r

2n+1 (
a
2n + b)]

b
g(X,Y )

+
[bA− a−D − r

2n+1 (
a
2n + b)]

b
η(X)η(Y ).

the above equation can be written in the form

(5.15) S(X,Y ) = E1g(X,Y ) + E2η(X)η(Y ),

where

E1 =
[γ + a+ r

2n+1 (
a
2n + b)]

b
,

and

E2 =
[bA− a−D − r

2n+1 (
a
2n + b)]

b
.

So from (5.15), we conclude that the manifold becomes an η-Einstein manifold.

6. Para-Sasakian manifold admitting a conformal Ricci

soliton and V̂ (ξ,X).S = 0

Theorem 4. If a para-Sasakian manifold M̃ admits a conformal Ricci soliton
and V̂ (ξ,X).S = 0 holds i.e., the manifold is Ricci pseudo projectively sym-

metric, then the manifold is an η-Einstein manifold, where V̂ is a pseudo
projective curvature tensor and S is a Ricci tensor.

Proof. Let M̃ be a (2n + 1) dimensional para-Sasakian manifold admitting a
conformal Ricci soliton (g, V, λ). Now the equation (5.1) can be written as

V̂ (ξ,X)Y = aR(ξ,X)Y + b[S(X,Y )ξ − S(ξ, Y )X]

− r

2n+ 1
[
a

2n
+ b][g(X,Y )ξ − g(ξ, Y )X],(6.1)

and

V̂ (ξ,X)Z = aR(ξ,X)Z + b[S(X,Z)ξ − S(ξ, Z)X]

− r

2n+ 1
[
a

2n
+ b][g(X,Z)ξ − g(ξ, Z)X].(6.2)

Now we assume that the manifold is Ricci pseudo projectively symmetric i.e.,
V̂ (ξ,X).S = 0 holds in M̃ , which gives

(6.3) S(V̂ (ξ,X)Y,Z) + S(Y, V̂ (ξ,X)Z) = 0,
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using (6.1), (6.2) in (6.3), we have

S(aR(ξ,X)Y + b[S(X,Y )ξ − S(ξ, Y )X]

− r

2n+ 1
[
a

2n
+ b][g(X,Y )ξ − g(ξ, Y )X], Z)

+S(Y, aR(ξ,X)Z + b[S(X,Z)ξ − S(ξ, Z)X]

− r

2n+ 1
[
a

2n
+ b][g(X,Z)ξ − g(ξ, Z)X]) = 0.(6.4)

Putting Z = ξ, we get

S(aR(ξ,X)Y + b[S(X,Y )ξ − S(ξ, Y )X]

− r

2n+ 1
[
a

2n
+ b][g(X,Y )ξ − g(ξ, Y )X], ξ)

+S(Y, aR(ξ,X)ξ + b[S(X, ξ)ξ − S(ξ, ξ)X]

− r

2n+ 1
[
a

2n
+ b][g(X, ξ)ξ − g(ξ, ξ)X]) = 0,(6.5)

on simplifying, we have
(6.6)

S(X,Y ) = (
aA+ rA

2n+1 [
a
2n + b]

aA+ r
2n+1 [

a
2n + b]

)g(X,Y ) + (
aA− aA2

aA+ r
2n+1 [

a
2n + b]

)η(X)η(Y ).

Let α = (
aA+ rA

2n+1 [
a
2n+b]

aA+ r
2n+1 [

a
2n+b] ) and β = ( aA−aA2

aA+ r
2n+1 [

a
2n+b] ), then teh above equation

becomes
S(X,Y ) = αg(X,Y ) + βη(X)η(Y ),

which proves that the manifold is an η-Einstein manifold.

References

[1] Basu, N., and Bhattacharyya, A. Conformal Ricci soliton in Kenmotsu man-
ifold. Glob. J. Adv. Res. Class. Mod. Geom. 4, 1 (2015), 15–21.

[2] Bejan, C. L., and Crasmareanu, M. Ricci solitons in manifolds with quasi-
constant curvature. Publ. Math. Debrecen 78, 1 (2011), 235–243.

[3] Dwivedi, M. K., and Kim, J.-S. On conharmonic curvature tensor in K-contact
and Sasakian manifolds. Bull. Malays. Math. Sci. Soc. (2) 34, 1 (2011), 171–180.

[4] Fischer, A. E. An introduction to conformal Ricci flow. vol. 21. 2004, pp. S171–
S218. A spacetime safari: essays in honour of Vincent Moncrief.

[5] Hamilton, R. S. Three-manifolds with positive Ricci curvature. J. Differential
Geometry 17, 2 (1982), 255–306.

[6] Hamilton, R. S. The Ricci flow on surfaces. In Mathematics and general rel-
ativity (Santa Cruz, CA, 1986), vol. 71 of Contemp. Math. Amer. Math. Soc.,
Providence, RI, 1988, pp. 237–262.

[7] Mani Tripathi, M. Ricci solitons in contact metric manifolds. arXiv e-prints
(Jan. 2008), arXiv:0801.4222.



28 Shyam Kishor
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