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Generalization of 2-absorbing quasi primary ideals
Emel Aslankarayigit Ugurl Suat Ko and Unsal Teki

Abstract. In this article, we introduce and study the concept of
¢-2-absorbing quasi primary ideals in commutative rings. Let R be a
commutative ring with a nonzero identity and L(R) be the lattice of
all ideals of R. Suppose that ¢ : L(R) — L(R) U {0} is a function. A
proper ideal I of R is called a ¢-2-absorbing quasi primary ideal of R if
a,b,c € R and whenever abc € I—¢(I), then either ab € VT orac € VT or
be € V1. In addition to giving many properties of ¢-2-absorbing quasi
primary ideals, we also use them to characterize von Neumann regular
rings.
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1. Introduction

In this article, we focus only on commutative rings with a nonzero identity
and nonzero unital modules. Let R always denote such a ring and M denote
such an R-module. L(R) denotes the lattice of all ideals of R. Let I be a proper
ideal of R, the set {r € R | rs € I for some s € R\ I} will be denoted by Z;(R).
Also the radical of I is defined as VT := {r € R | r* € I for some k € N} and
for x € R, (I : x) denotes the ideal {r € R | rz € I} of R. A proper ideal I of a
commutative ring R is prime if whenever a1, a2 € R with ajas € I, thenay €
or ag € I, [7]. In 2003, the authors of [4] said that if whenever a1, a2 € R with
Or # ajas € I, then a; € I or as € I, a proper ideal I of a commutative ring R
is weakly prime. In [I1], Bhatwadekar and Sharma defined a proper ideal I of
an integral domain R as almost prime (resp. n-almost prime) if for a;,as € R
with ajas € I — I?, (resp. ajaz € I —I",n > 3) then a; € I or ay € I.
This definition can be made for any commutative ring R. Later, Anderson and
Batanieh [2] introduced a concept which covers all the previous definitions in
a commutative ring R as following: Let ¢ : L(R) — L(R) U {0} be a function,
where L(R) denotes the set of all ideals of R. A proper ideal I of a commutative
ring R is called ¢-prime if for a1, as € R with ajas € I — ¢(I), then a; € T or
ay € I. They defined the map ¢, : L(R) — L(R) U {0} as follows:
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(
(

(V) ¢uw = d(I) = NS, I™ defines w-prime ideals.

(i) ¢g : ¢(I) = 0 defines prime ideals.
(ii) ¢o : o(I) = {OR} defines weakly prime ideals.
(iii) @2 : ¢(I) = I* defines almost prime ideals.
(iv) ¢n @ @(I) = I defines n-almost prime ideals(n > 2).
)
)

(vi) ¢1 : ¢(I) = I defines any ideal.

The notion of a 2-absorbing ideal, which is a generalization of the prime
ideal, was introduced by Badawi as the following: a proper ideal I of R is
called a 2-absorbing ideal of R if whenever a,b,c € R and abc € I, then ab € I
or ac € I or be € I, see [§]. Also, the notion is investigated in [6], [I5], [19],
18] and [20]. Then, the notion of a 2-absorbing primary ideal, which is a
generalization of a primary ideal, was introduced in [I0] as: a proper ideal T
of R is called a 2-absorbing primary ideal of R if whenever a,b,c € R and
abc € I, then ab € I or ac € /T or be € \/I. Note that a 2-absorbing ideal of
a commutative ring R is a 2-absorbing primary ideal of R. But the converse is
not true. For example, consider the ideal I = (20) of Z. Since 2-2-5 € I, but
2-2¢ Tand 2-5 ¢ I, Iis not a 2-absorbing ideal of Z. However, it is clear that
I is a 2-absorbing primary ideal of Z, since 2-5 € v/I. In 2016, the authors
introduced the concept of a ¢-2-absorbing primary ideal which a proper ideal
I of R is called a ¢-2-absorbing primary ideal of R if whenever a,b,c € R and
abc € I — ¢(I), then ab € I or ac € /T or be € V1, see [9].

On the other hand, the concept of quasi primary ideals in commutative
rings was introduced and investigated by Fuchs in [12]. The author called an
ideal I of R as a quasi primary ideal if v/T is a prime ideal. In [I6], the notion
of 2-absorbing quasi primary ideals is introduced as following: a proper ideal
I of R to be a 2-absorbing quasi primary if v/T is a 2-absorbing ideal of R.

In this paper, our aim to obtain some generalizations of the concept of the
quasi primary ideals and 2-absorbing quasi primary ideals. For this, firstly we
define the ¢-quasi primary ideal. Let ¢ : L(R) — L(R) U {0} be a function
and I be a proper ideal of R. Then [ is said to be a ¢-quasi primary ideal
if whenever a,b € R and ab € T — ¢(I), then a € VT or b € V1. Similarly,
I is called a ¢-2-absorbing quasi primary ideal if whenever a,b,c € R and
abc € T — ¢(I), then ab € /T or ac € /T or be € VI. In Section 2, firstly we
investigate the basic properties of a ¢-quasi primary ideal and a ¢-2-absorbing
quasi primary. With the help of Theorem and Theorem we give a
diagram which clarifies the place of a ¢-2-absorbing quasi primary ideal in the
lattice of all ideals L(R) of R, see Figure 1. In Proposition [2.9] we give a
method for constructing ¢-2-absorbing quasi primary ideals in commutative
rings. Also, if ¢(I) is a quasi primary ideal of R, we prove that I is a ¢-2-
absorbing quasi primary ideal of R < I is a 2-absorbing quasi primary ideal of
R, see Corollary With Theorem we obtain the Nakayama "s Lemma
for weakly (2-absorbing) quasi primary ideals. Moreover, we examine the notion
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of 7 ¢-2-absorbing quasi primary ideals” in S~!R, where S is a multiplicatively
closed subset of R. In Theorem [2.19) we characterize the weakly 2-absorbing
quasi primary ideal of R o< M, that is, the trivial ring extension, where M is
an R-module. In Theorem [2.20] we describe von Neumann regular rings in
terms of ¢-2-absorbing quasi primary ideals. Finally, with the all results of
the Section 3, we characterize a ¢-2-absorbing quasi primary ideal in the direct
product of finitely many commutative rings.

2. Characterization of ¢-2-aborbing quasi primary ideals
Throughout the paper, ¢ : L(R) — L(R) U {0} is a fixed function.

Definition 2.1. Let R be a ring and I be a proper ideal of R.

(i) I is said to be a ¢-quasi primary ideal if whenever a,b € R and ab €
I —¢(I), then a € VT or b€ V1.

(ii) I is said to be a ¢-2-absorbing quasi primary ideal if whenever a,b,c € R
and abc € I — ¢(I), then ab € V/T or ac € VT or be € V1.

Definition 2.2. Let ¢, : L(R) — L(R) U {0} be one of the following special
functions and I be a ¢,-quasi primary (¢,-2-absorbing quasi primary) ideal of
R. Then,

¢g(I) =0 is a quasi primary (2-absorbing quasi primary) ideal

¢o(I) =0gr is a weakly quasi primary (weakly 2-absorbing quasi primary) ideal

$2(I) = I? is an almost quasi primary (almost 2-absorbing quasi primary) ideal

¢n(I) =1I" is an n-almost quasi primary (n-almost 2-absorbing quasi primary) ideal (n >
du(I) =N, I™ is an w-quasi primary (w-2-absorbing quasi primary) ideal

¢1(I) =1 is any ideal.

Note that since I — ¢(I) =1 — (IN¢(I)), for any ideal I of R, without loss
of generality, assume that ¢(I) C I. Let 91, 12 : L(R) — L(R) U {0} be two
functions, if ¢ (I) C vo(I) for each I € L(R), we denote 11 < 1p5. Thus clearly,
we have the following order: ¢y < g < ¢, < - < Dpy1 < Oy < -+- < pg <
¢1. Also, 2-almost quasi primary (2-almost 2-absorbing quasi primary) ideals
are exactly almost quasi primary (almost 2-absorbing quasi primary) ideals.

Proposition 2.3. Let R be a ring and I be a proper ideal R. Let 11,19 :
L(R) — L(R) U{0} be two functions with 11 < .

(i) If I is a 1-quasi primary ideal of R, then I is a vq-quasi primary ideal
of R.

(i) I is a quasi primary ideal = I is a weakly quasi primary ideal = I is
an w-quasi primary ideal = I is an (n+ 1)-almost quasi primary ideal = I is
an n-almost quasi primary ideal (n > 2) = I is an almost quasi primary ideal.

(iii) I is an w-quasi primary ideal if and only if I is an n-almost quasi
primary ideal for each n > 2.

() If I is a 1-2-absorbing quasi primary ideal of R, then I is a 1o-2-
absorbing quasi primary ideal of R.
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(v) I is a 2-absorbing quasi primary ideal = I is a weakly 2-absorbing quasi
primary ideal = I is an w-2-absorbing quasi primary ideal = I is an (n+ 1)-
almost 2-absorbing quasi primary tdeal = I 1s an n-almost 2-absorbing quasi
primary ideal (n > 2) = I is an almost 2-absorbing quasi primary ideal.

(vi) I is an w-2-absorbing quasi primary ideal if and only if I is an n-almost
2-absorbing quasi primary ideal for each n > 2.

Proof. (i): It is evident.

(ii): Follows from (i).

(iii): Every w-quasi primary ideal is an n-almost quasi primary ideal for
each n > 2 since ¢, < ¢,. Now, let I be an n-almost quasi primary ideal for
each n > 2. Choose elements a,b € R such that ab € I— N2, I". Then we have
ab € I —I™ for some n > 2. Since [ is an n-almost quasi primary ideal of R, we
conclude either a € VT or b € V/I. Therefore, I is an w-quasi primary ideal.

(iv): Tt is evident.

(v): Follows from (iv).

(vi): Similar to (iii). O

Theorem 2.4. (i) If VI =1, then I is a ¢-2-absorbing quasi primary ideal of
R if and only if I is a ¢-2-absorbing ideal of R.

(ii) If I is a ¢-2-absorbing quasi primary ideal of R and ¢(\/I) = \/o(I),
then V1 is a ¢-2-absorbing ideal of R.

(ii) If VT is a ¢-2-absorbing ideal of R and ¢(v/I) C ¢(I), then I is a
¢-2-absorbing quasi primary ideal of R.

(iv) If I is a ¢-quasi primary ideal of R and ¢(vVI) = \/d(I), then /T is a
¢-prime ideal of R.

(v) If VI is a ¢-prime ideal of R and ¢(vI) C ¢(I), then I is a p-quasi
primary ideal of R.

Proof. (i): Tt is evident.

(ii): Let I be a ¢-2-absorbing quasi primary ideal of R. Take a,b,c € R
such that abc € VI — d)(\/f) Then there exists a positive integer n such
that (abc)® = a™b"c" € I. Since abc ¢ ¢(vI) and ¢(VI) = \/o(I), we get
abe ¢ \/o(I), so a™b"c* ¢ ¢(I). Thus, by our hypothesis, a”b” € /T or
bre™ € VI or ac" € V/I. Consequently, ab € VT or be € VT or ac € V1.

(iii): Assume that /T is a ¢-2-absorbing ideal of R. Choose a,b,c € R such
that abc € I—¢(I). Since I C /T and ¢(v/T) C ¢(I), we have abc € VI—¢(V/T).
Then as VT is ¢-2-absorbing, ab € VTorbeeVIoraceVI. Solisa ¢-quasi
primary ideal of R.

(iv): It is similar to (i).

(v): It is similar to (ii). O

Theorem 2.5. (i) Every ¢-quasi primary ideal is a ¢-2-absorbing primary
ideal.

(i1) Fvery ¢-2-absorbing primary ideal is a ¢-2-absorbing quasi primary
ideal.

(iii) Every ¢-quasi primary ideal is a ¢-2-absorbing quasi primary ideal.
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Proof. (i): Let I be a ¢-quasi primary ideal and choose a,b,c € R such that
abe = a(be) € I — ¢(I). Since I is a ¢-quasi primary ideal, we conclude either
a € VT or be € /T . Then we have either ac € VT or be € /I, which completes
the proof.

(ii): It is clear.

(iii): It follows from (i) and (ii). O

By Theorem and Theorem we give the following diagram which
clarifies the place of ¢-2-absorbing quasi primary ideals in the lattice of all
ideals L(R) of R.

Vi=1

. ) ¢-quasi primary
¢-prime ideals Tl
¢-2-absorbing

ideals
Vs
e

¢-2-absorbing ¢-2-absorbing quasi
primary ideals primary ideals

Figure 1: ¢-2-absorbing quasi primary ideal vs other classical ¢-ideals

Corollary 2.6. If I is a ¢-2-absorbing primary ideal of R and ¢(v/I) = \/o(I),
then VT is a ¢-2-absorbing ideal of R.

Proof. 1t follows from Theorem [2.4{ii) and Theorem [2.5[(ii). O

Proposition 2.7. Let I be a proper ideal of R. Then,

(i) I is a ¢-quasi primary ideal of R if and only if I/d(I) is a weakly quasi
primary ideal of R/¢(I).

(ii) I is a ¢-2-absorbing quasi primary ideal of R if and only I/¢(I) is a
weakly 2-absorbing quasi primary ideal of R/¢(I).

Proof. (i): Suppose that I is a ¢-quasi primary ideal of R. Let Og/q (1) # (a +
(D) +o(I) = ab+ ¢(I) € I/¢(I) for some a,b € R. Then we have ab €
I—¢(I). Since I is a ¢-quasi primary ideal of R, we conclude either a € /T or b €
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V/T. This implies that a + ¢(I) € VI/¢(I) = \/T/d(I) or b+ ¢(I) € \/T/p(I).
Therefore, I/¢(I) is a weakly quasi primary ideal of R/¢(I). Conversely, assume
that I/¢(I) is a weakly quasi primary ideal of R/¢(I). Now, choose a,b €
R such that ab € I — ¢(I). This yields that 0 ¢y # (a + ¢(1))(b + ¢(I)) =
ab+¢(I) € I/p(1 ) Since I/gb( ) is a weakly quasi primary ideal of R/¢(I), we
get either a + ¢(I) € /T/p(I) = VI/d(I) or b+ ¢(I) € VI/p(I). Then we
have a € VT or b € V1. Hence, I is a ¢-quasi primary ideal of R.

(ii): Similar to (i). O

In the following, we characterize all quasi primary and 2-absorbing quasi
primary ideals in factor rings R/¢(I). Since the proof is similar to that of the
previous proposition (i), we omit the proof.

Proposition 2.8. Let I be a proper ideal of R. Then,

(i) I is a quasi primary ideal of R if and only if I/&(I) is a quasi primary
ideal of R/p(I).

(ii) I is a 2-absorbing quasi primary ideal of R if and only I/¢(I) is a
2-absorbing quasi primary ideal of R/¢(I).

Now, we give a method for constructing ¢-2-absorbing quasi primary ideals
in commutative rings.

Proposition 2.9. Let Py, Py be ¢p-quasi primary ideal of a ring R. Then the
following statements hold:

(i) If (P1) = &(P2) = ¢(Py N Py), then Py N Py is a ¢-2-absorbing quasi
primary ideal of R.

(ii) If ¢(P1) = ¢(Po) = ¢(P1Ps), then P1Ps is a ¢p-2-absorbing quasi pri-
mary ideal of R

Proof. (i): Let abc € Py N Py — ¢(P; N P2) for some a,b,c € R. Then we have
abc € Py —¢(Py). As P is a ¢-quasi primary ideal, we conclude either a € /Py
or b € /P, or ¢ € v/P;. Similarly, we get either a € /P, or b € /P, or
¢ € v/P,. Without loss generality, we may assume that a € /P, and b € /P;.
Then ab € VPivP, C VPN VP, = /PN P,. Hence, P, N P, is a ¢-2-
absorbing quasi primary ideal of R.

(ii): Similar to (i). O

Definition 2.10. Let I be a ¢-2-absorbing quasi primary ideal of R and
a,b,c € R such that abc € ¢(I). If ab ¢ VI, ac ¢ /I and be ¢ /I, then
(a,b,c) is called a strongly-¢-triple zero of I. In particular, if ¢(I) = 0, then
(a,b,c) is called a strongly-triple zero of I.

Remark 2.11. If I is a ¢-2-absorbing quasi primary ideal of R that is not a
2-absorbing quasi primary ideal, then I has a strongly-¢-triple zero (a, b, ¢) for
some a, b, c € R.

Proposition 2.12. Suppose that I is a weakly 2-absorbing quasi primary ideal
of R which is not 2-absorbing quasi primary ideal, then I® = 0.
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Proof. Let I be a weakly 2-absorbing quasi primary ideal of R such that
I3 # 0. Now, we will show that I is a 2-absorbing quasi primary ideal of
R. Choose a,b,c € R such that abc € I. Since I is a weakly 2-absorbing
quasi primary ideal, we may assume that abc = 0. Otherwise, we would have
ab € VT or be € VT or ac € VI. If abl # 0, then there exists x € I such that
abx # 0. Since 0 # abx = ab(c + ) € I and I is a weakly 2-absorbing quasi
primary ideal, we get either ab € /T or a(c +2) € VI or b(c + x) € VI. If
we have either ab € VI or ac € VI or be € VI, then we are done. So assume
that abl = 0 = acl = bel. On the other hand, if aI? # 0, then there exists
21,29 € I such that axize # 0. Then we have 0 # a(b+ z1)(c+ x2) = axi29 €
I since abl = acl = 0. As I is a weakly 2-absorbing quasi primary ideal, we
get either a(b + x1) € VI or a(c+ x3) € VT or (b+ 21)(c+ x2) € VI. Then
we have ab € VT or be € VT or ac € VI. So assume that al? = 0. Similarly,
we may assume that bI? = cI? = 0. As I® # 0, there exist y,2z,w € I such
that yzw # 0. As abl = 0 = acl = bcl = al? = bI? = cI?, it is clear that
0 # yzw = (a+y)(b+ 2)(c +w) € I. This implies that (a + y)(b+ 2) € VT
or (a+y)(c+w) € VI or (b+ 2)(c+w) € VI and so we have ab € VT or
be € VI or ac € V1. Hence, I is a 2-absorbing quasi primary ideal of R. O

Corollary 2.13. If I is a weakly 2-absorbing quasi primary ideal of R which
is not a 2-absorbing quasi primary ideal, then VI = /0.

Theorem 2.14. (i) Let I be a ¢-2-absorbing quasi primary ideal of R. Then
either I is a 2-absorbing quasi primary ideal or I3 C ¢(I).

(i) If I is a ¢-2-absorbing quasi primary ideal of R which is not a 2-
absorbing quasi primary ideal, then VT = \/¢(I).

Proof. (i) Suppose that I is a ¢-2-absorbing quasi primary ideal of R that is not
a 2-absorbing quasi primary ideal. Then note that I/¢(I) is not a 2-absorbing
quasi primary ideal of R/¢(I). Also by Proposition I/¢(I) is a weakly
2-absorbing quasi primary ideal of R/¢(I). Then by Proposition we get
(I/o(I))? = ORspr) and this yields I C ¢(I).

(ii): Suppose that I is a ¢-2-absorbing quasi primary ideal of R which is not
a 2-absorbing quasi primary ideal. Then by (i), we have I? C ¢(I) and thus

VI C \/¢(I). On the other hand, since ¢(I) C I, we have VT = /o(1). O

Corollary 2.15. Suppose that I is a proper ideal of R such that ¢(I) is a quasi
primary ideal of R. Then the following statments are equivalent:

(i) I is a ¢-2-absorbing quasi primary ideal of R.

(i) I is a 2-absorbing quasi primary ideal of R.

Proof. (i) = (it) : Suppose that I is a ¢-2-absorbing quasi primary ideal of
R. Now, we will show that I is a 2-absorbing quasi primary ideal of R. Suppose
that it is not. Then by Theorem (i), we have VT = \/¢(I). Since ¢(I) is
a quasi primary ideal, we have v/I = \/¢(I) is a prime ideal and so I is quasi
primary. Then by [I6, Proposition 2.6], I is a 2-absorbing quasi primary, a
contradiction.

(#4) = (i) : Directly from the definition. O
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Theorem 2.16. (i) If P is a weakly quasi primary ideal of R that is not quasi
primary, then P? = 0.

(ii) If P is a ¢-quasi primary ideal of R that is not quasi primary, then
P* C §(P).

(11i) If P is a ¢-quasi primary ideal of R where ¢ < ¢3, then P is n-almost
quasi primary for all n > 2, so P is w-quasi primary.

Proof. (i): Similar to Proposition [2.12]

(ii): Similar to Theorem [2.14] (i).

(ii): Assume that P is a ¢-quasi primary ideal of R and ¢ < ¢3. If P is
quasi primary, then P is ¢-quasi primary for each ¢. If P is not quasi primary,
by (i), P? C ¢(P). Also as ¢ < ¢3, we get P? C ¢(P) C P?, so ¢(P) = P"
for each n > 2. Consequently, since P is ¢-quasi primary, P is n-almost quasi
primary for all n > 2, so P is w-quasi primary by Proposition (iii). O

Now, we give the Nakayama’s Lemma for weakly (2-absorbing) quasi pri-
mary ideals as follows.

Theorem 2.17. (Nakayama’s Lemma) Let P be a weakly 2-absorbing quasi
primary (weakly quasi primary) ideal of R that is not 2-absorbing quasi primary
(quasi primary) and let M be an R-module. Then the following statements hold:

(i) P C Jac(R), where Jac(R) is the Jacobson radical of R.

(i1) If PM = M, then M = 0.

(iti) If N is a submodule of M such that PM + N = M, then N = M.

Proof. (i) : Suppose that P is a weakly 2-absorbing quasi primary ideal of
R that is not 2-absorbing quasi primary. Then by Theorem P3 =0. Let
x € P. Now, we will show that 1—rz is a unit of R for each r € R. Note that rz €
P and so r3x® = 0. This implies that 1 = 1—732% = (1—rz)(1+rx+r22?). Thus
x € Jac(R) and so P C Jac(R).

(i4) : Suppose that PM = M. Then by Theorem P3 = 0 and so
M =PM = P3M =0.

(¢i7) : Follows from (ii). O

Theorem 2.18. Let S be a multiplicatively closed subset of R and ¢4 : L(S™'R)
L(ST'R) U {0}, defined by ¢o(S~'I) = S7(¢p(I)) for each ideal I of R, be a
function. Then the following statements hold:

(i) If P is a ¢-2-absorbing quast primary ideal of R with SN P = 0, then
S~LP is a ¢4-2-absorbing quasi primary ideal of ST R.

(i) Let P be an ideal of R such that Zypy(R)NS =0 and Zp(R)NS = 0.
If STIP is a ¢4-2-absorbing quasi primary ideal of ST'R, then P is a ¢-2-
absorbing quasi primary ideal of R.

Proof. (i): Let %%5 € S7IP — ¢4(STIP) for any a,b,c € R and s,t,u € S. As
Bq(STIP) = STYH(@(P)), we get t*abe = (t*a)bc € P — ¢(P) for some t* € S.
Since P is a ¢-2-absorbing quasi primary ideal of R, we get t*ab € /P or
t*ac € VP or be € v/P. This implies that ‘S’—i’ = Lab ¢ ¢-1./P — \/S=1P or

t*st
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&© = fgﬁ € VS—IP or % € VS~1P. Hence S™1'P is a ¢,-2-absorbing quasi
primary ideal of ST R.

(ii): Let abc € P — ¢(P) for some a,b,c € R. Then 22¢ € S~1P. Since
Zypy(R) NS =0, it is clear that 22¢ ¢ S~1(¢(P)) = ¢4(S™1P). As S71P is
a ¢g-2-absorbing quasi primary ideal of ST!R, we get either %% eVvVS-1IpP =

S~'VP or 17 € S~'V/P or %% € S~1y/P. Without loss generality, we may
assume that %% € S~'/P. Then we get thc € /P and so t"b"c¢* € P for some
n € N. If b"¢™ ¢ P, then we have t" € Zp(R) N S, a contradiction. So we have
b"¢" € P and thus be € V/P. Thus P is a ¢-2-absorbing quasi primary ideal of

R. O

Let M be an R-module. The trivial ring extension (or idealization) R o
M = R®&M of M is a commutative ring with the componentwise addition and
the multiplication (a,m)(b,m’) = (ab,am’ + bm) for each a,b € R; m,m’ €
M [13]. Let I be an ideal of R and N is a submodule of M. Then I x N =
I® N is an ideal of R o« M if and only if IM C N [5]. In that case, I x N
is called a homogeneous ideal of R o< M. For any ideal I o« N of R o M, the
radical of I «« N is characterized as follows:

VIx N=+VIxM

[5, Theorem 3.2].
Now, we characterize certain weakly 2-absorbing quasi primary ideals in
trivial ring extensions.

Theorem 2.19. Let M be an R-module and I be a proper ideal of R. Then
the following statements are equivalent:

(i) I < M is a weakly 2-absorbing quasi primary ideal of R o< M.

(ii) I is a weakly 2-absorbing quasi primary ideal of R and for any strongly
triple zero (a,b,c) of I, we have abM = 0 = acM = bcM.

Proof. (i) = (i1) : Suppose that I oc M is a weakly 2-absorbing quasi primary
ideal of R o« M. Now, we will show that [ is a weakly 2-absorbing quasi primary
ideal of R. Let 0 # abc € I. Then note that (0,0n7) # (a,0n7)(b,0a7)(c,0pr) =
(abe,0pr) € I x M. As T < M is a weakly 2-absorbing quasi primary ideal, we
conclude either (a,0,7)(b,0r) = (ab,0x;) € VT o M = +/T occ M or (ac,0p) €
VI < M or (be,0pp) € VT o< M. This implies that ab € VT or ac € VI or be €
V1. Therefore, I is a weakly 2-absorbing quasi primary ideal of R. Let (z,y,2)
be a strongly triple zero of I. Then zyz = 0 and also zy, zz,yz ¢ V1. Assume
that zyM # 0. Then there exists m € M such that zym # 0. Then note
that (0,057) # (2,0p)(y,0n)(2,m) = (0,zym) € I x M. Since I x M is a
weakly 2-absorbing quasi primary ideal, we conclude either (z,0.7)(y,0p) =
(zy,00) € VIx M =T < M or (zz,xm) € VI o< M or (yz,ym) € VI
M, a contradiction. Thus e M =yM = zM = 0.

(i) = (i) : Suppose that (0,057) # (a,m)(b,m')(c,m”) = (abc,abm’ +
acm’ 4+ bem) € I o M for some a,b,c € R; m,m',m” € M. Then abc €
I. If abc # 0, then either ab € VI or ac € VI or bec € v/I. This implies
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that (a,m)(b,m’) € VI M = /T < M or (a,m)(c,m”) € VT o« M or
(b,m")(c,m") € VT «c M. Now assume that abc = 0. If (a,b,c) is a strongly
triple zero of I, then by assumption abM = 0 = acM = beM and so (0,07) =
(abc, abm!” + acm’ + bem) = (a, m)(b, m')(c,m”) which is a contradiction. So
that (a, b, ¢) is not strongly triple zero and this yields ab € v/T or ac € v/ or be €
V/I. Therefore, we have (a,m)(b,m’) € /I oc M or (a,m)(c,m") € /I oc M or
(b,m")(c,m"”) € VI x M. Hence, I x M is a weakly 2-absorbing quasi primary
ideal of R o< M. O

Let Ry, Rs, ..., R, be commutative rings and R = Ry X Ry X--- X R, be the
direct product of those rings. It is well known that every ideal of R has the form
I =1 x Iy x---xI,, where I is an ideal of R}, for each 1 < k < n. Suppose
that ¢; : L(R;) — L(R;) U {0} is a function for each 1 < ¢ < n and put
G = X Wy X -+ X Py, that is, S(I) = 1 (I1) X Ya(I2) X -+ X ¥y (L,). Then
note that ¢ : L(R) — L(R) U {0} becomes a function.

Recall that a commutative ring R is said to be a von Neumann regular ring
if for each a € R, there exists x € R such that a = a?z [I7]. In this case, the
principal ideal (a) is a generated by an idempotent element e € R. The notion
of von Neumann regular rings has an important place in commutative algebra.
So far, there have been many generalizations of this concept. See, for example,
[14], [3] and [I]. Now, we characterize von Neumann regular rings in terms of
¢-2-absorbing quasi primary ideals.

Theorem 2.20. Let Ry, Ro, ..., R, be commutative rings and R = Ry X Rg X
«+X Ry, where 3 < m < oo. Suppose that n > 2. Then the following statements
are equivalent.

(i) Every ideal of R is a ¢n-2-absorbing quasi primary ideal.

(i) Ri, R, ..., Ry, are von Neumann regular rings.

Proof. (i) = (ii) : Suppose that every ideal of R is a ¢,-2-absorbing quasi
primary ideal. Now, we will show that Ry, Ro,...,R,, are von Neumann
regular rings. Suppose not. Without loss of generality, we may assume that Ry
is not a von Neumann regular ring. Then there exists an ideal I; of Ry such
that IT & I. Then we can find an element a € I; —I7'. Now, put J = I; x0x0x
RyX Rsx xR, and also 1 = (a,1,1,1,...,1), xzo = (1,0,1,1,...,1), a3 =
(1,1,0,1,...,1). Then note that 1z9x5 € J— ¢, (J). As z129, 2125 and xox3 ¢
V/J, J is not a ¢,,-2-absorbing quasi primary ideal of R which is a contradiction.
Thus Ry, Ra, ..., R, are von Neumann regular rings.

(#9) = (4) : Suppose that Ry, Rs, ..., Ry, are von Neumann regular rings.
Then note that I* = I; for any ideal I; of R;. Take any ideal J of R. Then
J =J x Jy X -+ x J,, for some ideal J; of Ry, where 1 < k < m. Then
Jr=Jrx Iy x o x I = ¢n(J) = Jp X Jo X -+ X Jp, = J. This implies
that J — ¢, (J) = 0 and so J is trivially a ¢,,-2-absorbing quasi primary ideal
of R. O

Corollary 2.21. Let R be a ring and n > 2. Then the following statements
are equivalent:
(i) Every ideal of R? is a ¢,,-2-absorbing quasi primary ideal.
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(ii) R is a von Neumann regular ring.

3. ¢-(2-absorbing) quasi primary ideals in the direct prod-
uct of rings

In this section, we investigate ¢-2-absorbing quasi primary ideal in the direct
product of finitely many commutative rings.

Theorem 3.1. Let R = Ry X Ry, where Ry and Ry are rings and let ; :
L(R;) = L(R;) U{0} is a function for each i = 1,2. Let ¢ := 1)1 X 1y and let
J be an ideal of R. Then J is a ¢-quasi primary ideal of R if and only if J is
in one of the following three forms:

(Z) J = I X Iy such that wi(Ii) =1 fO’I“i = 1,2.

(ii) J = Iy X Ry for some i1 -quasi primary ideal Iy of Ry which must be
quast primary if Vo(R2) # Ra.

(iti) J = Ry x I for some o-quasi primary ideal Iy of Re which must be
quasi primary if ¥ (Ry) # Ry,

Proof. =: Suppose that J is a ¢-quasi primary ideal of R. Then J = I; x I
for some ideal I of Ry and some ideal Iy of Ry. Let xy € Iy — ¢1(I1). Then
we have (z,0)(y,0) = (zy,0) € J — ¢(J). As J is a ¢-quasi primary ideal,
we conclude either (z,0) € v/J or (y,0) € V/J. Since V.J = T; x VIo, we
get x € /I or y € /I;. Hence, I, is a v;-quasi primary ideal. Similarly,
I, is a to-quasi primary ideal. We may assume that J # ¢(J). Then we have
either I1 # ¥1(I1) or Iy # ¥o(l3). Without loss of generality, we may assume
that Iy # 11 (7). So there exists a € I — 11 (I1). Take b € I5. Then we have
(a,1)(1,b) € J — ¢(J). This implies either (a,1) € v/J or (1,b) € v/J. Then
we get 1 € /I or 1 € \/I5, that is, I, = R; or I, = Ry. Now, assume that
I, = R,. Now, we will show that I; is a quasi primary ideal provided that
o (R2) # Ra. So suppose 5(R2) # Ro. Let xy € I for some z,y € Ry. Then
we have (z,1)(y,1) = (zy,1) € I1 Xx Ro — ¢(I; X Ry). As J is a ¢-quasi primary
ideal, we get either (z,1) € V/J or (y,1) € VJ. Hence, 2 € /I or y €
V1. Therefore, I; is a quasi primary ideal.

<: Suppose that J = I x I5 such that ¢;(I;) = I; for i = 1,2. Since ¢(I; x
12) = wl(Il) Xwg(lg) = Il XIQ, we get Il XIQ-(ﬁ(Il XIQ) = @ and so J is trivially
a ¢-quasi primary ideal. Let J = I; X Ry for some t1-quasi primary ideal I; of
R; which must be quasi primary if 19(R3) # Rs. First, assume that ¢9(Rs) =
Rs. Then note that ¢(J) = 11 ([1) X Ra. Let (x1,22)(y1,y2) = (x1y1, T2Yy2) €
J — ¢(J) for some z;,y; € R;. Then we have z1y; € Iy — 11 (I1). This yields
that 1 € v/I; or y; € /I since I; is a ¢;-quasi primary ideal. Then we get
either (z1,22) € VI X Ry = /I X Ry or (y1,y2) € VI1 x Ry. Hence, J is a
¢-quasi primary ideal of R. Now, assume that 19(R2) # Ro and I; is a quasi
primary ideal. Then I; X Ry is a quasi primary ideal of R by [I6l Lemma 2.2].
Hence, J = I; X Ry is a ¢-quasi primary ideal of R. In the third case, one can
see that J is also a ¢-quasi primary ideal of R. O

Theorem 3.2. Let R = R; X Ry X --- X R, where R1,Rs,..., R, are rings
and let v; : L(R;) — L(R;) U {0} be a function for each i = 1,2,...,n. Let
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¢ =11 Xy X -+ Xy, and let J be an ideal of R. Then J is a ¢-quasi primary
ideal of R if and only if J is in one of the following two forms:

(i) J =11 x Iy x -+ x I, such that ¥;(I;) = 1I; fori=1,2,... n.

(ii) J = R X Rg X -++ X Ry_1 X It X Ry X -+ X Ry, for some 1y-quasi
primary ideal Iy of Ry which must be quasi primary if 1;(R;) # R; for some
J#t

Proof. We use induction on n to prove the claim. If n = 1, the claim is
clear. If n = 2, the claim follows from the previous theorem. Assume that
the claim is true for all n < k and put n = k. Put R = Ry X Ry X -+- X
kal, J = I]_ X ]2 X X Ik,1 and d)/ = ¢1 X ’(/)2 X X wkfl. Then note that
R=R xRy, J=J xJ; and ¢ = ¢ x 15.. Then by the previous theorem, J is
a ¢-quasi primary ideal of R if and only if one of the following conditions hold:
(i) J = J' x Ij; such that ¢'(J') = J' and ¢y (Iy) = I (i) J = J' x Ry, for some
@'-quasi primary ideal J’ of R’ which must be quasi primary if ¢y (Rx) # Rk
(iii) J = R’ x I}, for some ;-quasi primary ideal I}, of R which must be quasi
primary if ¢'(R’) # R'. The rest follows from the induction hypothesis and [16]
Theorem 2.3]. O

Theorem 3.3. Let Ry and Rs be commutative rings with identity and let
R = Ry X Ry. Suppose that v; : L(R;) — L(R;) U{0} (i = 1,2) are functions
such that ¥a(R2) # Ro and ¢ = i1 X 1pa. Then the following assertions are
equivalent:

(i) Iy X Ry is a ¢-2-absorbing quasi primary ideal of R.

(i) Iy X Ry is a 2-absorbing quasi primary ideal of R.

(1i) I is a 2-absorbing quasi primary ideal of Ry.

Proof. Assume that 11 (I7) = 0 or 12(R3) = 0. Then clearly ¢(I; x Ry) = 0 so
that (¢) & (it) < (i) follows from [16, Theorem 2.23]. Hence suppose that
Y1(I1) # 0 and ¥2(R2) # 0, so ¢(I1 x Rp) # 0.

(1) = (i7) : Suppose that I; x Ry is a ¢-2-absorbing quasi primary ideal of
R. A similar argument to the one we made in the proof of Theorem shows
that I is a 11-2-absorbing quasi primary ideal of R;. If I; is 2-absorbing quasi
primary, then I; X Ry is a 2-absorbing quasi primary ideal of R, by [16, Theorem
2.23]. If I; is not 2-absorbing quasi primary, then I; has a strongly t;-triple
zero (z,y,z) for some x,y,z € Ry by Remark 1. Then (x,1)(y,1)(z,1) =
(zyz,1) € I1 X Ry — 1(I1) X 2(R2) since ¥o(R2) # Ro. This implies that
xy € VI or yz € /I or xz € /I, a contradiction. Thus I; is 2-absorbing
quasi primary. Consequently, I; X Ry is a 2-absorbing quasi primary ideal of
R.

(1) = (u4t) and (i4i) = (i) : Follows from [I6, Theorem 2.23]. O

Theorem 3.4. Let Ry and Rs be commutative rings with identity and let
R = Ry x Ry. Suppose that v; : S(R;) — S(R;) U{0} (i = 1,2) are functions
and ¢ = Y X o. The following statements are equivalent:

(i) I, x Ry is a ¢-2-absorbing quasi primary ideal of R that is not a 2-
absorbing quasi primary ideal of R.
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(11) (11 X Ra) # 0,%2(R2) = Ry and Iy is a v1-2-absorbing quasi primary
ideal of Ry that is not a 2-absorbing quasi primary ideal of R;.

Proof. (i) = (i7) : Let I; X Ry be ¢-2-absorbing quasi primary ideal that is not
2-absorbing quasi primary. By Theorem since I1 X Ry is not a 2-absorbing
quasi primary ideal of R, one can see that ¢(I; X Ro) # 0 and ¢9(Rs) = Ra. As
I} X Ry is a ¢-2-absorbing quasi primary ideal of R, it is clear that I; is a 1);-
2-absorbing quasi primary ideal of R;. Also, since I; X Ry is not a 2-absorbing
quasi primary ideal of R, I is not a 2-absorbing quasi primary ideal of Ry by
[16, Theorem 2.3].

(i7) = (%) : Since ¢(I1 x R2) # 0 and ¢2(R2) = Ra, we get R/¢(I1 X Ro) =
Ry/11(Ry) and I x Ro/é(I1 X Re) = I1 /41 (I1). By Proposition ii), since
I, is a 11-2-absorbing quasi primary ideal of Ry, I1/v1(I1) is a weakly 2-
absorbing quasi primary ideal of Ry /11 (R1). Also, as I; is not a 2-absorbing
quasi primary ideal of Ry, then I; /11 (I1) is not a 2-absorbing quasi primary
ideal of Ry /11 (R1), by Proposition|2.8(ii). Thus, I1 x Ry/¢(I1 X Rs) is a weakly
2-absorbing quasi primary ideal of R/¢(I; X R2) that is not a 2-absorbing quasi
primary. Consequently, again by Proposition ii) and Proposition (ii)7 we
obtain that I; X Ry is a ¢-2-absorbing quasi primary ideal of R that is not a
2-absorbing quasi primary ideal of R. O

The following theorem is a consequence of Theorem [3.3]

Theorem 3.5. Let R and Ro be commutative rings with a nonzero identity
and let R = Ry X Ry. Then the following assertions are equivalent:

(i) Iy X Ry is a weakly 2-absorbing quasi primary ideal of R.

(i1) Iy X Ry is a 2-absorbing quasi primary ideal of R.

(iti) Iy is a 2-absorbing quasi primary ideal of R;.

Theorem 3.6. Let Ry and Ry be commutative rings with a nonzero identity
and R = Ry X Ry. Let I) X Is be a proper ideal of R, where Iy, Iy are nonzero
ideals of Ry and Rs, respectively. Then the following assertions are equivalent:

(i) Iy x Iy is a weakly 2-absorbing quasi primary ideal of R.

(ii) Iy X I is a 2-absorbing quasi primary ideal of R.

(i) Iy = Ry and Iy is a 2-absorbing quasi primary ideal of Ry or Is = Ry
and I is a 2-absorbing quasi primary ideal of Ry or Iy, Iy are quasi primary
of R1, Ro, respectively.

Proof. (i) = (iii) : Suppose that I; x I is a weakly 2-absorbing quasi primary
ideal of R. If I = R;, by Theorem I, is a 2-absorbing quasi primary
ideal of Ry. Similarly, if Iy = Rg, I; is a 2-absorbing quasi primary ideal
of R;. Thus we may assume that Iy # R; and I # Rs. Let us show I
is a quasi primary ideal of R,. Take x,y € Ry such that xy € I,. Choose
0#a€l;. Then 0 # (a,1)(1,2)(1,y) = (a,zy) € I x Is. By our hypothesis,
(a,2) € VI; x Iz = /T1 x VI or (1,zy) € VI x VI3 or (a,y) € VI; x /15
If (1,zy) € VI1 x /I3, a contradiction (as I; # R;). Thus we obtain that
(a,2) € VI1 x /I or (a,y) € v/I1 X v/Is. This implies that = € /I3 or

y € v/I5. Similarly, we can show that I is a quasi primary ideal of R;.
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(1) < (i41) : By [16] Theorem 2.23].
(i4) = (i) : It is clear. O

Theorem 3.7. Let Ry and Ry be commutative rings with a nonzero identity
and R = Ry X Ry. Then a nonzero ideal Iy x Is of R is weakly 2-absorbing
quast primary that is not 2-absorbing quasi primary if and only if one of the
following assertions holds:

(i) Iy # Ry is a nonzero weakly quasi primary ideal of Ry that is not quasi
primary and Iy = 0 is a quasi primary ideal of Rs.

(ii) Iz # Ry is a nonzero weakly quasi primary ideal of Ry that is not quasi
primary and I; = 0 is a quasi primary ideal of Ry.

Proof. Assume that I; x I3 is a weakly 2-absorbing quasi primary ideal of R
that is not 2-absorbing quasi primary. Suppose that I; # 0 and I, # 0. By
Theorem [3.6] I1 x I is 2-absorbing quasi primary, a contradiction. Thus I; = 0
or I = 0. Without loss of generality, suppose that I = 0. Let us prove that
I, = 0 is a quasi primary ideal of Ry. Choose z,y € Ry such that zy € I>. Take
0+#a€ ;. Then 0 # (a,1)(1,2)(1,y) = (a,2y) € Iy x Iz. By our hypothesis,
(a,2) € VI; X I = /T1 x VI or (1,zy) € VI x VI3 or (a,y) € VI1 x /15
Here (1, zy) ¢ /I X v/I>. Indeed, firstly observe that Iy # R;. If I} = Ry, then
by Theorem I; x I = Ry x 0 is 2-absorbing quasi primary, a contradiction.
Thus we conclude that (a,z) € VI X Iz = /I; x VI or (a,y) € VT x V5.
This implies € /I or y € v/I. Hence I, = 0 is quasi primary. Now, let
us show that I; is weakly quasi primary ideal of R;. Choose x,y € R; such
that 0 # zy € I;. Then 0 # (x,1)(y,1)(1,0) = (zy,0) € Iy x 0 = I; X I5. As
I x I is weakly 2-absorbing quasi primary and (zy,1) ¢ +/I; x 0, we have
(y,0) € VI x 0 or (x,0) € v/I; x 0. This implies that z € /I; or y € /1.
Finally, we show that I; is not quasi primary. Suppose that I is quasi primary.
As I, = 0 is a quasi primary, we have that Iy x I is 2-absorbing quasi primary
by [16, Theorem 2.3]. This contradicts with our assumption. Thus I; is not
quasi primary. Conversely, assume that (i) holds. Let us prove I; x Iy is
weakly 2-absorbing quasi primary. Let (0,0) # (a1, a2)(b1,b2)(c1,c2) € I =
I x Iy = I; x 0. As asbaca = 0, we get ajbic; # 0. Since asbacs € I3 and
I, is a quasi primary ideal of Ry, we get either ay € /I or by € /Iy or
¢y € /I,. Without loss of generality, we may assume that a; € +/I5. On
the other hand, since 0 # aibic; = bi(a1c1) € I and I; is a weakly quasi
primary ideal, we have either b; € /I; or ajc; € v/I;. This implies that either
(a1,a2)(b1,b2) € VI X Iz or (a1, az2)(c1,c2) € VI X Iz. In other cases, one can
similarly show that (ai,as2)(b1,b2) € V11 X I or (ay,az2)(c1,¢2) € VI X I or
(b1,b2)(c1,c2) € VI X Iy. Hence, I x I is weakly 2-absorbing quasi primary
ideal of R. Also, since I is not a quasi primary ideal, I X I5 is not a 2-absorbing
quasi primary ideal by [I6, Theorem 2.3]. O

Theorem 3.8. Let Ry and Ry be commutative rings with a nonzero identity
and let R = Ry x Ry. Suppose that ¢¥; : L(R;) — L(R;) U {0} (i = 1,2)
are functions and ¢ = 1 X 9. Let I = I} X Iy be a nonzero ideal of R
and ¢(I) # Iy x Iy. Then I X Iy is ¢-2-absorbing quasi primary that is not
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2-absorbing quasi primary if and only if ¢(I) # O and one of the following
statements holds.

(i) ¥2(R2) = Ry and Iy is a Y1 -2-absorbing quasi primary ideal of Ry that
s mot a 2-absorbing quasi primary ideal of Ry.

(#) 1 (R1) = Ry and Iy is a 12-2-absorbing quasi primary ideal of Ry that
s mot a 2-absorbing quasi primary ideal of Ro.

(iti) Io = o(I3) is a quasi primary ideal of Ry and Iy # Ry is a 11 -quasi
primary ideal of Ry that is not quasi primary such that I; # 11(11) (note that
ZfIl = 0, then IQ 7é 0)

(iv) I = ¥1(L1) is a quasi primary ideal of Ry and Is # Ro is a 1a-quasi
primary ideal of Ry that is not quasi primary such that Is # o (I2) (note that
ifIQ = O, then Il 75 O)

Proof. Suppose that I; x I is a ¢-2-absorbing quasi primary ideal that is not
2-absorbing quasi primary. Then ¢(I) # 0. Let I; = Ry. Then 91(R1) = Ry
and Iy is a 19-2-absorbing quasi primary ideal of Ry that is not a 2-absorbing
quasi primary ideal of Ry by Theorem Let Iy = Rs. Then vs(Rs) = Ro
and I is a 11-2-absorbing quasi primary ideal of R; that is not a 2-absorbing
quasi primary ideal of Ry by Theorem [3.4 Hence assume that I; # R; and
Iy # Rs. Since ¢(I) # I x Iy, we obtain that I/¢(I) is a nonzero weakly 2-
absorbing quasi primary ideal of R/¢(I) that is not 2-absorbing quasi primary
by Proposition (ii). Thus I /¢1(I1) X Ia/1)2(I2) is a nonzero weakly 2-
absorbing quasi primary ideal of Ry /1 (I1) X R2/12(I2) that is not 2-absorbing
quasi primary. Then by Theorem [3.7] we know that one of the following cases
holds:

Case 1: I /Y1(I1) = ¢¥1(I1)/9¥1(11) is a quasi primary ideal of Ry /(1)
and I /19(I3) is a non-zero weakly quasi primary ideal of Ro/t2(I2) that is
not quasi primary.

Case 2: Iy/Ya(l2) = 2(I2)/12(I2) is a quasi primary ideal of Ry /1)o(1l2)
and I /¢1(I1) is a non-zero weakly quasi primary ideal of Ry /;([1) that is
not quasi primary.

Thus, (iii) or (iv) holds by Proposition 2.7)i) and Proposition i).

Conversely, assume that ¢(I) # (. If (i) or (ii) holds, then I; x Iy is ¢-2-
absorbing quasi primary that is not 2-absorbing quasi primary by Theorem 3.4
Assume that (iii) or (iv) holds, then I/¢(I) is a non-zero weakly 2-absorbing
quasi primary ideal of R/¢(I) that is not 2-absorbing quasi primary by Theorem
Thus I; x Iy is ¢-2-absorbing quasi primary that is not 2-absorbing quasi
primary of R by Proposition 2.7(ii) and Proposition ii). O

Theorem 3.9. Let R and Ro be commutative rings with a nonzero identity
and I1,Is be monzero ideals of Ry and Rs, respectively. Let R = R X Ro
and ; : L(R;) — L(R;) U{0} (i = 1,2) be functions such that ¢1(I1) # I
and Y9(I2) # Iy. Suppose that ¢ =11 X 1y and I X Iy is a proper ideal of R.
Then the following assertions are equivalent:

(i) Iy x I5 is a ¢-2-absorbing quasi primary ideal of R.

(ii) Either Iy = Ry and Iy is a 2-absorbing quasi primary ideal of Ry or
I, = Ry and I, is a 2-absorbing quasi primary ideal of Ry or I, Iy are quasi



170 Emel Aslankarayigit Ugurlu, Suat Ko¢ and Unsal Tekir

primary ideals of Ry and Rs, respectively.
(iti) Iy X Iy is a 2-absorbing quasi primary ideal of R.

Proof. Assume that ¢ (I;) = 0 or ¥5(I2) = 0. Then clearly ¢(I; x Is) = 0 so
that (i) < (ii) < (i4i) follows from [I6], Theorem 2.23]. Hence suppose that
Y1(I1) # 0 and P2(12) # 0, so ¢(I1 x I2) # 0.

(1) = (ii) : Let I; x I3 be a ¢-2-absorbing quasi primary ideal of R. Thus
I /91(11) % Iz /19(12) is a non-zero weakly 2-absorbing quasi primary ideal of
Ry /11 (I1) x Ra/12(I2) by Proposition (ii). Then by Theorem we know
that one of the following cases holds:

Case 1: I /91(I1) = Ry /91(11) and Iz /¢2(I2) is a 2-absorbing quasi pri-
mary ideal of Ry/19(I2). Then we have Iy = Ry and Iy is a 2-absorbing quasi
primary ideal of R.

Case 2: I /92(I3) = Ra/12(I2) and Iy /41 (1) is a 2-absorbing quasi pri-
mary ideal of Ry /11 (I1). Similar to Case 1, Is = Ry and I; is a 2-absorbing
quasi primary ideal of R;.

Case 3: I1 /91 (1) and Iz /12 (I3) are quasi primary of Ry /91 (11), Re/v2(12),
respectively. Then I, Is are quasi primary ideals of Ry and Rs, respectively
by Proposition ii).

(#4) = (i) : Assume that I; = R; and Iy is a 2-absorbing quasi primary
ideal of Ry or Iy = Ry and I; is a 2-absorbing quasi primary ideal of Ry or
Iy, I5 are quasi primary ideals of Ry and Rs, respectively. Then by Theorem
Theorem [I6, Theorem 2.23], I; x I5 is a 2-absorbing quasi primary ideal of R.

(i4i) = (4) : It is evident. O
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