Generalization of 2-absorbing quasi primary ideals

 Emel Aslankarayiğit Uğurlu ${ }^{14}$, Suat Kos ${ }^{3}$ and Ünsal Tekir ${ }^{4}$
Abstract

In this article, we introduce and study the concept of ϕ-2-absorbing quasi primary ideals in commutative rings. Let R be a commutative ring with a nonzero identity and $L(R)$ be the lattice of all ideals of R. Suppose that $\phi: L(R) \rightarrow L(R) \cup\{\emptyset\}$ is a function. A proper ideal I of R is called a ϕ-2-absorbing quasi primary ideal of R if $a, b, c \in R$ and whenever $a b c \in I-\phi(I)$, then either $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. In addition to giving many properties of ϕ-2-absorbing quasi primary ideals, we also use them to characterize von Neumann regular rings.

AMS Mathematics Subject Classification (2010): 13A15; 16E50
Key words and phrases: weakly 2 -absorbing quasi primary ideal; ϕ-2absorbing quasi primary ideal; von Neumann regular ring

1. Introduction

In this article, we focus only on commutative rings with a nonzero identity and nonzero unital modules. Let R always denote such a ring and M denote such an R-module. $L(R)$ denotes the lattice of all ideals of R. Let I be a proper ideal of R, the set $\{r \in R \mid r s \in I$ for some $s \in R \backslash I\}$ will be denoted by $Z_{I}(R)$. Also the radical of I is defined as $\sqrt{I}:=\left\{r \in R \mid r^{k} \in I\right.$ for some $\left.k \in \mathbb{N}\right\}$ and for $x \in R,(I: x)$ denotes the ideal $\{r \in R \mid r x \in I\}$ of R. A proper ideal I of a commutative ring R is prime if whenever $a_{1}, a_{2} \in R$ with $a_{1} a_{2} \in I$, then $a_{1} \in I$ or $a_{2} \in I$, 7]. In 2003, the authors of [4] said that if whenever $a_{1}, a_{2} \in R$ with $0_{R} \neq a_{1} a_{2} \in I$, then $a_{1} \in I$ or $a_{2} \in I$, a proper ideal I of a commutative ring R is weakly prime. In [11, Bhatwadekar and Sharma defined a proper ideal I of an integral domain R as almost prime (resp. n-almost prime) if for $a_{1}, a_{2} \in R$ with $a_{1} a_{2} \in I-I^{2}$, (resp. $a_{1} a_{2} \in I-I^{n}, n \geq 3$) then $a_{1} \in I$ or $a_{2} \in I$. This definition can be made for any commutative ring R. Later, Anderson and Batanieh [2] introduced a concept which covers all the previous definitions in a commutative ring R as following: Let $\phi: L(R) \rightarrow L(R) \cup\{\emptyset\}$ be a function, where $L(R)$ denotes the set of all ideals of R. A proper ideal I of a commutative ring R is called ϕ-prime if for $a_{1}, a_{2} \in R$ with $a_{1} a_{2} \in I-\phi(I)$, then $a_{1} \in I$ or $a_{2} \in I$. They defined the map $\phi_{\alpha}: L(R) \rightarrow L(R) \cup\{\emptyset\}$ as follows:

[^0](i) $\phi_{\emptyset}: \phi(I)=\emptyset$ defines prime ideals.
(ii) $\phi_{0}: \phi(I)=\left\{0_{R}\right\}$ defines weakly prime ideals.
(iii) $\phi_{2}: \phi(I)=I^{2}$ defines almost prime ideals.
(iv) $\phi_{n}: \phi(I)=I^{n}$ defines n-almost prime ideals $(n \geq 2)$.
(v) $\phi_{\omega}: \phi(I)=\cap_{n=1}^{\infty} I^{n}$ defines ω-prime ideals.
(vi) $\phi_{1}: \phi(I)=I$ defines any ideal.

The notion of a 2 -absorbing ideal, which is a generalization of the prime ideal, was introduced by Badawi as the following: a proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$, see [8]. Also, the notion is investigated in [6], [15], 19], [18] and [20]. Then, the notion of a 2-absorbing primary ideal, which is a generalization of a primary ideal, was introduced in [10] as: a proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. Note that a 2 -absorbing ideal of a commutative ring R is a 2 -absorbing primary ideal of R. But the converse is not true. For example, consider the ideal $I=(20)$ of \mathbb{Z}. Since $2 \cdot 2 \cdot 5 \in I$, but $2 \cdot 2 \notin I$ and $2 \cdot 5 \notin I, I$ is not a 2 -absorbing ideal of \mathbb{Z}. However, it is clear that I is a 2 -absorbing primary ideal of \mathbb{Z}, since $2 \cdot 5 \in \sqrt{I}$. In 2016, the authors introduced the concept of a ϕ-2-absorbing primary ideal which a proper ideal I of R is called a ϕ-2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $a b c \in I-\phi(I)$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$, see (9].

On the other hand, the concept of quasi primary ideals in commutative rings was introduced and investigated by Fuchs in [12]. The author called an ideal I of R as a quasi primary ideal if \sqrt{I} is a prime ideal. In [16], the notion of 2-absorbing quasi primary ideals is introduced as following: a proper ideal I of R to be a 2-absorbing quasi primary if \sqrt{I} is a 2 -absorbing ideal of R.

In this paper, our aim to obtain some generalizations of the concept of the quasi primary ideals and 2-absorbing quasi primary ideals. For this, firstly we define the ϕ-quasi primary ideal. Let $\phi: L(R) \rightarrow L(R) \cup\{\emptyset\}$ be a function and I be a proper ideal of R. Then I is said to be a ϕ-quasi primary ideal if whenever $a, b \in R$ and $a b \in I-\phi(I)$, then $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Similarly, I is called a ϕ-2-absorbing quasi primary ideal if whenever $a, b, c \in R$ and $a b c \in I-\phi(I)$, then $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. In Section 2 , firstly we investigate the basic properties of a ϕ-quasi primary ideal and a ϕ-2-absorbing quasi primary. With the help of Theorem 2.4 and Theorem 2.5 we give a diagram which clarifies the place of a ϕ-2-absorbing quasi primary ideal in the lattice of all ideals $L(R)$ of R, see Figure 1. In Proposition 2.9, we give a method for constructing ϕ-2-absorbing quasi primary ideals in commutative rings. Also, if $\phi(I)$ is a quasi primary ideal of R, we prove that I is a $\phi-2$ absorbing quasi primary ideal of $R \Leftrightarrow I$ is a 2 -absorbing quasi primary ideal of R, see Corollary 2.15. With Theorem 2.17, we obtain the Nakayama's Lemma for weakly (2-absorbing) quasi primary ideals. Moreover, we examine the notion
of " ϕ-2-absorbing quasi primary ideals" in $S^{-1} R$, where S is a multiplicatively closed subset of R. In Theorem 2.19, we characterize the weakly 2 -absorbing quasi primary ideal of $R \propto M$, that is, the trivial ring extension, where M is an R-module. In Theorem 2.20 , we describe von Neumann regular rings in terms of ϕ-2-absorbing quasi primary ideals. Finally, with the all results of the Section 3, we characterize a ϕ-2-absorbing quasi primary ideal in the direct product of finitely many commutative rings.

2. Characterization of ϕ-2-aborbing quasi primary ideals

Throughout the paper, $\phi: L(R) \rightarrow L(R) \cup\{\emptyset\}$ is a fixed function.
Definition 2.1. Let R be a ring and I be a proper ideal of R.
(i) I is said to be a ϕ-quasi primary ideal if whenever $a, b \in R$ and $a b \in$ $I-\phi(I)$, then $a \in \sqrt{I}$ or $b \in \sqrt{I}$.
(ii) I is said to be a ϕ-2-absorbing quasi primary ideal if whenever $a, b, c \in R$ and $a b c \in I-\phi(I)$, then $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$.

Definition 2.2. Let $\phi_{\alpha}: L(R) \rightarrow L(R) \cup\{\emptyset\}$ be one of the following special functions and I be a ϕ_{α}-quasi primary (ϕ_{α}-2-absorbing quasi primary) ideal of R. Then,
$\phi_{\emptyset}(I)=\emptyset \quad$ is a quasi primary (2-absorbing quasi primary) ideal
$\phi_{0}(I)=0_{R} \quad$ is a weakly quasi primary (weakly 2 -absorbing quasi primary) ideal
$\phi_{2}(I)=I^{2} \quad$ is an almost quasi primary (almost 2-absorbing quasi primary) ideal
$\phi_{n}(I)=I^{n} \quad$ is an n-almost quasi primary (n-almost 2 -absorbing quasi primary) ideal ($n \geq$
$\phi_{\omega}(I)=\cap_{n=1}^{\infty} I^{n} \quad$ is an ω-quasi primary (ω-2-absorbing quasi primary) ideal $\phi_{1}(I)=I \quad$ is any ideal.

Note that since $I-\phi(I)=I-(I \cap \phi(I))$, for any ideal I of R, without loss of generality, assume that $\phi(I) \subseteq I$. Let $\psi_{1}, \psi_{2}: L(R) \rightarrow L(R) \cup\{\emptyset\}$ be two functions, if $\psi_{1}(I) \subseteq \psi_{2}(I)$ for each $I \in L(R)$, we denote $\psi_{1} \leq \psi_{2}$. Thus clearly, we have the following order: $\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_{n} \leq \cdots \leq \phi_{2} \leq$ ϕ_{1}. Also, 2-almost quasi primary (2 -almost 2 -absorbing quasi primary) ideals are exactly almost quasi primary (almost 2 -absorbing quasi primary) ideals.

Proposition 2.3. Let R be a ring and I be a proper ideal R. Let ψ_{1}, ψ_{2} : $L(R) \rightarrow L(R) \cup\{\emptyset\}$ be two functions with $\psi_{1} \leq \psi_{2}$.
(i) If I is a ψ_{1}-quasi primary ideal of R, then I is a ψ_{2}-quasi primary ideal of R.
(ii) I is a quasi primary ideal $\Rightarrow I$ is a weakly quasi primary ideal $\Rightarrow I$ is an ω-quasi primary ideal $\Rightarrow I$ is an $(n+1)$-almost quasi primary ideal $\Rightarrow I$ is an n-almost quasi primary ideal $(n \geq 2) \Rightarrow I$ is an almost quasi primary ideal.
(iii) I is an ω-quasi primary ideal if and only if I is an n-almost quasi primary ideal for each $n \geq 2$.
(iv) If I is a ψ_{1}-2-absorbing quasi primary ideal of R, then I is a $\psi_{2}-2$ absorbing quasi primary ideal of R.
(v) I is a 2-absorbing quasi primary ideal $\Rightarrow I$ is a weakly 2-absorbing quasi primary ideal $\Rightarrow I$ is an ω-2-absorbing quasi primary ideal $\Rightarrow I$ is an $(n+1)$ almost 2-absorbing quasi primary ideal $\Rightarrow I$ is an n-almost 2-absorbing quasi primary ideal $(n \geq 2) \Rightarrow I$ is an almost 2-absorbing quasi primary ideal.
(vi) I is an ω-2-absorbing quasi primary ideal if and only if I is an n-almost 2-absorbing quasi primary ideal for each $n \geq 2$.

Proof. (i): It is evident.
(ii): Follows from (i).
(iii): Every ω-quasi primary ideal is an n-almost quasi primary ideal for each $n \geq 2$ since $\phi_{\omega} \leq \phi_{n}$. Now, let I be an n-almost quasi primary ideal for each $n \geq 2$. Choose elements $a, b \in R$ such that $a b \in I-\cap_{n=1}^{\infty} I^{n}$. Then we have $a b \in I-I^{n}$ for some $n \geq 2$. Since I is an n-almost quasi primary ideal of R, we conclude either $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Therefore, I is an ω-quasi primary ideal.
(iv): It is evident.
(v): Follows from (iv).
(vi): Similar to (iii).

Theorem 2.4. (i) If $\sqrt{I}=I$, then I is a ϕ-2-absorbing quasi primary ideal of R if and only if I is a ϕ-2-absorbing ideal of R.
(ii) If I is a ϕ-2-absorbing quasi primary ideal of R and $\phi(\sqrt{I})=\sqrt{\phi(I)}$, then \sqrt{I} is a ϕ-2-absorbing ideal of R.
(iii) If \sqrt{I} is a ϕ-2-absorbing ideal of R and $\phi(\sqrt{I}) \subseteq \phi(I)$, then I is a ϕ-2-absorbing quasi primary ideal of R.
(iv) If I is a ϕ-quasi primary ideal of R and $\phi(\sqrt{I})=\sqrt{\phi(I)}$, then \sqrt{I} is a ϕ-prime ideal of R.
(v) If \sqrt{I} is a ϕ-prime ideal of R and $\phi(\sqrt{I}) \subseteq \phi(I)$, then I is a ϕ-quasi primary ideal of R.

Proof. (i): It is evident.
(ii): Let I be a ϕ-2-absorbing quasi primary ideal of R. Take $a, b, c \in R$ such that $a b c \in \sqrt{I}-\phi(\sqrt{I})$. Then there exists a positive integer n such that $(a b c)^{n}=a^{n} b^{n} c^{n} \in I$. Since $a b c \notin \phi(\sqrt{I})$ and $\phi(\sqrt{I})=\sqrt{\phi(I)}$, we get $a b c \notin \sqrt{\phi(I)}$, so $a^{n} b^{n} c^{n} \notin \phi(I)$. Thus, by our hypothesis, $a^{n} b^{n} \in \sqrt{I}$ or $b^{n} c^{n} \in \sqrt{I}$ or $a^{n} c^{n} \in \sqrt{I}$. Consequently, $a b \in \sqrt{I}$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$.
(iii): Assume that \sqrt{I} is a ϕ-2-absorbing ideal of R. Choose $a, b, c \in R$ such that $a b c \in I-\phi(I)$. Since $I \subseteq \sqrt{I}$ and $\phi(\sqrt{I}) \subseteq \phi(I)$, we have $a b c \in \sqrt{I}-\phi(\sqrt{I})$. Then as \sqrt{I} is ϕ-2-absorbing, $a b \in \sqrt{I}$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. So I is a ϕ-quasi primary ideal of R.
(iv): It is similar to (i).
(v): It is similar to (ii).

Theorem 2.5. (i) Every ϕ-quasi primary ideal is a ϕ-2-absorbing primary ideal.
(ii) Every ϕ-2-absorbing primary ideal is a ϕ-2-absorbing quasi primary ideal.
(iii) Every ϕ-quasi primary ideal is a ϕ-2-absorbing quasi primary ideal.

Proof. (i): Let I be a ϕ-quasi primary ideal and choose $a, b, c \in R$ such that $a b c=a(b c) \in I-\phi(I)$. Since I is a ϕ-quasi primary ideal, we conclude either $a \in \sqrt{I}$ or $b c \in \sqrt{I}$. Then we have either $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$, which completes the proof.
(ii): It is clear.
(iii): It follows from (i) and (ii).

By Theorem 2.4 and Theorem 2.5, we give the following diagram which clarifies the place of ϕ-2-absorbing quasi primary ideals in the lattice of all ideals $L(R)$ of R.

Figure 1: ϕ-2-absorbing quasi primary ideal vs other classical ϕ-ideals

Corollary 2.6. If I is a ϕ-2-absorbing primary ideal of R and $\phi(\sqrt{I})=\sqrt{\phi(I)}$, then \sqrt{I} is a ϕ-2-absorbing ideal of R.

Proof. It follows from Theorem 2.4 (ii) and Theorem 2.5 (ii).
Proposition 2.7. Let I be a proper ideal of R. Then,
(i) I is a ϕ-quasi primary ideal of R if and only if $I / \phi(I)$ is a weakly quasi primary ideal of $R / \phi(I)$.
(ii) I is a ϕ-2-absorbing quasi primary ideal of R if and only $I / \phi(I)$ is a weakly 2-absorbing quasi primary ideal of $R / \phi(I)$.

Proof. (i): Suppose that I is a ϕ-quasi primary ideal of R. Let $0_{R / \phi(I)} \neq(a+$ $\phi(I))(b+\phi(I))=a b+\phi(I) \in I / \phi(I)$ for some $a, b \in R$. Then we have $a b \in$ $I-\phi(I)$. Since I is a ϕ-quasi primary ideal of R, we conclude either $a \in \sqrt{I}$ or $b \in$
\sqrt{I}. This implies that $a+\phi(I) \in \sqrt{I} / \phi(I)=\sqrt{I / \phi(I)}$ or $b+\phi(I) \in \sqrt{I / \phi(I)}$. Therefore, $I / \phi(I)$ is a weakly quasi primary ideal of $R / \phi(I)$. Conversely, assume that $I / \phi(I)$ is a weakly quasi primary ideal of $R / \phi(I)$. Now, choose $a, b \in$ R such that $a b \in I-\phi(I)$. This yields that $0_{R / \phi(I)} \neq(a+\phi(I))(b+\phi(I))=$ $a b+\phi(I) \in I / \phi(I)$. Since $I / \phi(I)$ is a weakly quasi primary ideal of $R / \phi(I)$, we get either $a+\phi(I) \in \sqrt{I / \phi(I)}=\sqrt{I} / \phi(I)$ or $b+\phi(I) \in \sqrt{I} / \phi(I)$. Then we have $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Hence, I is a ϕ-quasi primary ideal of R.
(ii): Similar to (i).

In the following, we characterize all quasi primary and 2-absorbing quasi primary ideals in factor rings $R / \phi(I)$. Since the proof is similar to that of the previous proposition (i), we omit the proof.

Proposition 2.8. Let I be a proper ideal of R. Then,
(i) I is a quasi primary ideal of R if and only if $I / \phi(I)$ is a quasi primary ideal of $R / \phi(I)$.
(ii) I is a 2-absorbing quasi primary ideal of R if and only $I / \phi(I)$ is a 2-absorbing quasi primary ideal of $R / \phi(I)$.

Now, we give a method for constructing ϕ-2-absorbing quasi primary ideals in commutative rings.

Proposition 2.9. Let P_{1}, P_{2} be ϕ-quasi primary ideal of a ring R. Then the following statements hold:
(i) If $\phi\left(P_{1}\right)=\phi\left(P_{2}\right)=\phi\left(P_{1} \cap P_{2}\right)$, then $P_{1} \cap P_{2}$ is a ϕ-2-absorbing quasi primary ideal of R.
(ii) If $\phi\left(P_{1}\right)=\phi\left(P_{2}\right)=\phi\left(P_{1} P_{2}\right)$, then $P_{1} P_{2}$ is a ϕ-2-absorbing quasi primary ideal of R

Proof. (i): Let $a b c \in P_{1} \cap P_{2}-\phi\left(P_{1} \cap P_{2}\right)$ for some $a, b, c \in R$. Then we have $a b c \in P_{1}-\phi\left(P_{1}\right)$. As P_{1} is a ϕ-quasi primary ideal, we conclude either $a \in \sqrt{P_{1}}$ or $b \in \sqrt{P_{1}}$ or $c \in \sqrt{P_{1}}$. Similarly, we get either $a \in \sqrt{P_{2}}$ or $b \in \sqrt{P_{2}}$ or $c \in \sqrt{P_{2}}$. Without loss generality, we may assume that $a \in \sqrt{P_{1}}$ and $b \in \sqrt{P_{2}}$. Then $a b \in \sqrt{P_{1}} \sqrt{P_{2}} \subseteq \sqrt{P_{1}} \cap \sqrt{P_{2}}=\sqrt{P_{1} \cap P_{2}}$. Hence, $P_{1} \cap P_{2}$ is a $\phi-2$ absorbing quasi primary ideal of R.
(ii): Similar to (i).

Definition 2.10. Let I be a ϕ-2-absorbing quasi primary ideal of R and $a, b, c \in R$ such that $a b c \in \phi(I)$. If $a b \notin \sqrt{I}, a c \notin \sqrt{I}$ and $b c \notin \sqrt{I}$, then (a, b, c) is called a strongly- ϕ-triple zero of I. In particular, if $\phi(I)=0$, then (a, b, c) is called a strongly-triple zero of I.

Remark 2.11. If I is a ϕ-2-absorbing quasi primary ideal of R that is not a 2-absorbing quasi primary ideal, then I has a strongly- ϕ-triple zero (a, b, c) for some $a, b, c \in R$.

Proposition 2.12. Suppose that I is a weakly 2-absorbing quasi primary ideal of R which is not 2-absorbing quasi primary ideal, then $I^{3}=0$.

Proof. Let I be a weakly 2 -absorbing quasi primary ideal of R such that $I^{3} \neq 0$. Now, we will show that I is a 2 -absorbing quasi primary ideal of R. Choose $a, b, c \in R$ such that $a b c \in I$. Since I is a weakly 2 -absorbing quasi primary ideal, we may assume that $a b c=0$. Otherwise, we would have $a b \in \sqrt{I}$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. If $a b I \neq 0$, then there exists $x \in I$ such that $a b x \neq 0$. Since $0 \neq a b x=a b(c+x) \in I$ and I is a weakly 2 -absorbing quasi primary ideal, we get either $a b \in \sqrt{I}$ or $a(c+x) \in \sqrt{I}$ or $b(c+x) \in \sqrt{I}$. If we have either $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$, then we are done. So assume that $a b I=0=a c I=b c I$. On the other hand, if $a I^{2} \neq 0$, then there exists $x_{1}, x_{2} \in I$ such that $a x_{1} x_{2} \neq 0$. Then we have $0 \neq a\left(b+x_{1}\right)\left(c+x_{2}\right)=a x_{1} x_{2} \in$ I since $a b I=a c I=0$. As I is a weakly 2 -absorbing quasi primary ideal, we get either $a\left(b+x_{1}\right) \in \sqrt{I}$ or $a\left(c+x_{2}\right) \in \sqrt{I}$ or $\left(b+x_{1}\right)\left(c+x_{2}\right) \in \sqrt{I}$. Then we have $a b \in \sqrt{I}$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. So assume that $a I^{2}=0$. Similarly, we may assume that $b I^{2}=c I^{2}=0$. As $I^{3} \neq 0$, there exist $y, z, w \in I$ such that $y z w \neq 0$. As $a b I=0=a c I=b c I=a I^{2}=b I^{2}=c I^{2}$, it is clear that $0 \neq y z w=(a+y)(b+z)(c+w) \in I$. This implies that $(a+y)(b+z) \in \sqrt{I}$ or $(a+y)(c+w) \in \sqrt{I}$ or $(b+z)(c+w) \in \sqrt{I}$ and so we have $a b \in \sqrt{I}$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. Hence, I is a 2 -absorbing quasi primary ideal of R.

Corollary 2.13. If I is a weakly 2-absorbing quasi primary ideal of R which is not a 2-absorbing quasi primary ideal, then $\sqrt{I}=\sqrt{0}$.

Theorem 2.14. (i) Let I be a ϕ-2-absorbing quasi primary ideal of R. Then either I is a 2-absorbing quasi primary ideal or $I^{3} \subseteq \phi(I)$.
(ii) If I is a ϕ-2-absorbing quasi primary ideal of R which is not a 2absorbing quasi primary ideal, then $\sqrt{I}=\sqrt{\phi(I)}$.

Proof. (i) Suppose that I is a ϕ-2-absorbing quasi primary ideal of R that is not a 2 -absorbing quasi primary ideal. Then note that $I / \phi(I)$ is not a 2 -absorbing quasi primary ideal of $R / \phi(I)$. Also by Proposition 2.7, $I / \phi(I)$ is a weakly 2-absorbing quasi primary ideal of $R / \phi(I)$. Then by Proposition 2.12, we get $(I / \phi(I))^{3}=0_{R / \phi(I)}$ and this yields $I^{3} \subseteq \phi(I)$.
(ii): Suppose that I is a $\phi-2$-absorbing quasi primary ideal of R which is not a 2-absorbing quasi primary ideal. Then by (i), we have $I^{3} \subseteq \phi(I)$ and thus $\sqrt{I} \subseteq \sqrt{\phi(I)}$. On the other hand, since $\phi(I) \subseteq I$, we have $\sqrt{I}=\sqrt{\phi(I)}$.

Corollary 2.15. Suppose that I is a proper ideal of R such that $\phi(I)$ is a quasi primary ideal of R. Then the following statments are equivalent:
(i) I is a ϕ-2-absorbing quasi primary ideal of R.
(ii) I is a 2-absorbing quasi primary ideal of R.

Proof. $(i) \Rightarrow(i i)$: Suppose that I is a ϕ-2-absorbing quasi primary ideal of R. Now, we will show that I is a 2 -absorbing quasi primary ideal of R. Suppose that it is not. Then by Theorem 2.14 (ii), we have $\sqrt{I}=\sqrt{\phi(I)}$. Since $\phi(I)$ is a quasi primary ideal, we have $\sqrt{I}=\sqrt{\phi(I)}$ is a prime ideal and so I is quasi primary. Then by [16, Proposition 2.6], I is a 2 -absorbing quasi primary, a contradiction.
$(i i) \Rightarrow(i)$: Directly from the definition.

Theorem 2.16. (i) If P is a weakly quasi primary ideal of R that is not quasi primary, then $P^{2}=0$.
(ii) If P is a ϕ-quasi primary ideal of R that is not quasi primary, then $P^{2} \subseteq \phi(P)$.
(iii) If P is a ϕ-quasi primary ideal of R where $\phi \leq \phi_{3}$, then P is n-almost quasi primary for all $n \geq 2$, so P is ω-quasi primary.

Proof. (i): Similar to Proposition 2.12 .
(ii): Similar to Theorem 2.14 (i).
(ii): Assume that P is a ϕ-quasi primary ideal of R and $\phi \leq \phi_{3}$. If P is quasi primary, then P is ϕ-quasi primary for each ϕ. If P is not quasi primary, by (i), $P^{2} \subseteq \phi(P)$. Also as $\phi \leq \phi_{3}$, we get $P^{2} \subseteq \phi(P) \subseteq P^{3}$, so $\phi(P)=P^{n}$ for each $n \geq 2$. Consequently, since P is ϕ-quasi primary, P is n-almost quasi primary for all $n \geq 2$, so P is ω-quasi primary by Proposition 2.3 (iii).

Now, we give the Nakayama's Lemma for weakly (2-absorbing) quasi primary ideals as follows.

Theorem 2.17. (Nakayama's Lemma) Let P be a weakly 2-absorbing quasi primary (weakly quasi primary) ideal of R that is not 2-absorbing quasi primary (quasi primary) and let M be an R-module. Then the following statements hold:
(i) $P \subseteq \operatorname{Jac}(R)$, where $\operatorname{Jac}(R)$ is the Jacobson radical of R.
(ii) If $P M=M$, then $M=0$.
(iii) If N is a submodule of M such that $P M+N=M$, then $N=M$.

Proof. (i) : Suppose that P is a weakly 2 -absorbing quasi primary ideal of R that is not 2 -absorbing quasi primary. Then by Theorem 2.12, $P^{3}=0$. Let $x \in P$. Now, we will show that $1-r x$ is a unit of R for each $r \in R$. Note that $r x \in$ P and so $r^{3} x^{3}=0$. This implies that $1=1-r^{3} x^{3}=(1-r x)\left(1+r x+r^{2} x^{2}\right)$. Thus $x \in \operatorname{Jac}(R)$ and so $P \subseteq \operatorname{Jac}(R)$.
(ii) : Suppose that $P M=M$. Then by Theorem $2.12, P^{3}=0$ and so $M=P M=P^{3} M=0$.
(iii) : Follows from (ii).

Theorem 2.18. Let S be a multiplicatively closed subset of R and $\phi_{q}: L\left(S^{-1} R\right) \rightarrow$ $L\left(S^{-1} R\right) \cup\{\emptyset\}$, defined by $\phi_{q}\left(S^{-1} I\right)=S^{-1}(\phi(I))$ for each ideal I of R, be a function. Then the following statements hold:
(i) If P is a ϕ-2-absorbing quasi primary ideal of R with $S \cap P=\emptyset$, then $S^{-1} P$ is a ϕ_{q}-2-absorbing quasi primary ideal of $S^{-1} R$.
(ii) Let P be an ideal of R such that $Z_{\phi(P)}(R) \cap S=\emptyset$ and $Z_{P}(R) \cap S=\emptyset$. If $S^{-1} P$ is a ϕ_{q}-2-absorbing quasi primary ideal of $S^{-1} R$, then P is a ϕ-2absorbing quasi primary ideal of R.

Proof. (i): Let $\frac{a}{s} \frac{b}{t} \frac{c}{u} \in S^{-1} P-\phi_{q}\left(S^{-1} P\right)$ for any $a, b, c \in R$ and $s, t, u \in S$. As $\phi_{q}\left(S^{-1} P\right)=S^{-1}(\phi(P))$, we get $t^{*} a b c=\left(t^{*} a\right) b c \in P-\phi(P)$ for some $t^{*} \in S$. Since P is a ϕ-2-absorbing quasi primary ideal of R, we get $t^{*} a b \in \sqrt{P}$ or $t^{*} a c \in \sqrt{P}$ or $b c \in \sqrt{P}$. This implies that $\frac{a b}{s t}=\frac{t^{*} a b}{t^{*} s t} \in S^{-1} \sqrt{P}=\sqrt{S^{-1} P}$ or
$\frac{a c}{s u}=\frac{t^{*} a c}{t^{*} s u} \in \sqrt{S^{-1} P}$ or $\frac{b c}{t u} \in \sqrt{S^{-1} P}$. Hence $S^{-1} P$ is a $\phi_{q^{-}}$-2-absorbing quasi primary ideal of $S^{-1} R$.
(ii): Let $a b c \in P-\phi(P)$ for some $a, b, c \in R$. Then $\frac{a}{1} \frac{b}{1} \frac{c}{1} \in S^{-1} P$. Since $Z_{\phi(P)}(R) \cap S=\emptyset$, it is clear that $\frac{a}{1} \frac{b}{1} \frac{c}{1} \notin S^{-1}(\phi(P))=\phi_{q}\left(S^{-1} P\right)$. As $S^{-1} P$ is a ϕ_{q}-2-absorbing quasi primary ideal of $S^{-1} R$, we get either $\frac{a}{1} \frac{b}{1} \in \sqrt{S^{-1} P}=$ $S^{-1} \sqrt{P}$ or $\frac{a}{1} \frac{c}{1} \in S^{-1} \sqrt{P}$ or $\frac{b}{1} \frac{c}{1} \in S^{-1} \sqrt{P}$. Without loss generality, we may assume that $\frac{b}{1} \frac{c}{1} \in S^{-1} \sqrt{P}$. Then we get $t b c \in \sqrt{P}$ and so $t^{n} b^{n} c^{n} \in P$ for some $n \in \mathbb{N}$. If $b^{n} c^{n} \notin P$, then we have $t^{n} \in Z_{P}(R) \cap S$, a contradiction. So we have $b^{n} c^{n} \in P$ and thus $b c \in \sqrt{P}$. Thus P is a $\phi-2$-absorbing quasi primary ideal of R.

Let M be an R-module. The trivial ring extension (or idealization) $R \propto$ $M=R \oplus M$ of M is a commutative ring with the componentwise addition and the multiplication $(a, m)\left(b, m^{\prime}\right)=\left(a b, a m^{\prime}+b m\right)$ for each $a, b \in R ; m, m^{\prime} \in$ M [13]. Let I be an ideal of R and N is a submodule of M. Then $I \propto N=$ $I \oplus N$ is an ideal of $R \propto M$ if and only if $I M \subseteq N[5]$. In that case, $I \propto N$ is called a homogeneous ideal of $R \propto M$. For any ideal $I \propto N$ of $R \propto M$, the radical of $I \propto N$ is characterized as follows:

$$
\sqrt{I \propto N}=\sqrt{I} \propto M
$$

[5. Theorem 3.2].
Now, we characterize certain weakly 2 -absorbing quasi primary ideals in trivial ring extensions.

Theorem 2.19. Let M be an R-module and I be a proper ideal of R. Then the following statements are equivalent:
(i) $I \propto M$ is a weakly 2-absorbing quasi primary ideal of $R \propto M$.
(ii) I is a weakly 2-absorbing quasi primary ideal of R and for any strongly triple zero (a, b, c) of I, we have $a b M=0=a c M=b c M$.

Proof. $(i) \Rightarrow(i i)$: Suppose that $I \propto M$ is a weakly 2 -absorbing quasi primary ideal of $R \propto M$. Now, we will show that I is a weakly 2 -absorbing quasi primary ideal of R. Let $0 \neq a b c \in I$. Then note that $\left(0,0_{M}\right) \neq\left(a, 0_{M}\right)\left(b, 0_{M}\right)\left(c, 0_{M}\right)=$ $\left(a b c, 0_{M}\right) \in I \propto M$. As $I \propto M$ is a weakly 2 -absorbing quasi primary ideal, we conclude either $\left(a, 0_{M}\right)\left(b, 0_{M}\right)=\left(a b, 0_{M}\right) \in \sqrt{I \propto M}=\sqrt{I} \propto M$ or $\left(a c, 0_{M}\right) \in$ $\sqrt{I} \propto M$ or $\left(b c, 0_{M}\right) \in \sqrt{I} \propto M$. This implies that $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in$ \sqrt{I}. Therefore, I is a weakly 2 -absorbing quasi primary ideal of R. Let (x, y, z) be a strongly triple zero of I. Then $x y z=0$ and also $x y, x z, y z \notin \sqrt{I}$. Assume that $x y M \neq 0$. Then there exists $m \in M$ such that xym $\neq 0$. Then note that $\left(0,0_{M}\right) \neq\left(x, 0_{M}\right)\left(y, 0_{M}\right)(z, m)=(0, x y m) \in I \propto M$. Since $I \propto M$ is a weakly 2 -absorbing quasi primary ideal, we conclude either $\left(x, 0_{M}\right)\left(y, 0_{M}\right)=$ $\left(x y, 0_{M}\right) \in \sqrt{I \propto M}=\sqrt{I} \propto M$ or $(x z, x m) \in \sqrt{I} \propto M$ or $(y z, y m) \in \sqrt{I} \propto$ M, a contradiction. Thus $x M=y M=z M=0$.
$(i i) \Rightarrow(i):$ Suppose that $\left(0,0_{M}\right) \neq(a, m)\left(b, m^{\prime}\right)\left(c, m^{\prime \prime}\right)=\left(a b c, a b m^{\prime \prime}+\right.$ $\left.a c m^{\prime}+b c m\right) \in I \propto M$ for some $a, b, c \in R ; m, m^{\prime}, m^{\prime \prime} \in M$. Then $a b c \in$ I. If $a b c \neq 0$, then either $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. This implies
that $(a, m)\left(b, m^{\prime}\right) \in \sqrt{I \propto M}=\sqrt{I} \propto M$ or $(a, m)\left(c, m^{\prime \prime}\right) \in \sqrt{I} \propto M$ or $\left(b, m^{\prime}\right)\left(c, m^{\prime \prime}\right) \in \sqrt{I} \propto M$. Now assume that $a b c=0$. If (a, b, c) is a strongly triple zero of I, then by assumption $a b M=0=a c M=b c M$ and so $\left(0,0_{M}\right)=$ $\left(a b c, a b m^{\prime \prime}+a c m^{\prime}+b c m\right)=(a, m)\left(b, m^{\prime}\right)\left(c, m^{\prime \prime}\right)$ which is a contradiction. So that (a, b, c) is not strongly triple zero and this yields $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in$ \sqrt{I}. Therefore, we have $(a, m)\left(b, m^{\prime}\right) \in \sqrt{I \propto M}$ or $(a, m)\left(c, m^{\prime \prime}\right) \in \sqrt{I \propto M}$ or $\left(b, m^{\prime}\right)\left(c, m^{\prime \prime}\right) \in \sqrt{I \propto M}$. Hence, $I \propto M$ is a weakly 2-absorbing quasi primary ideal of $R \propto M$.

Let $R_{1}, R_{2}, \ldots, R_{n}$ be commutative rings and $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be the direct product of those rings. It is well known that every ideal of R has the form $I=I_{1} \times I_{2} \times \cdots \times I_{n}$, where I_{k} is an ideal of R_{k} for each $1 \leq k \leq n$. Suppose that $\psi_{i}: L\left(R_{i}\right) \rightarrow L\left(R_{i}\right) \cup\{\emptyset\}$ is a function for each $1 \leq i \leq n$ and put $\phi:=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n}$, that is, $\phi(I)=\psi_{1}\left(I_{1}\right) \times \psi_{2}\left(I_{2}\right) \times \cdots \times \psi_{n}\left(I_{n}\right)$. Then note that $\phi: L(R) \rightarrow L(R) \cup\{\emptyset\}$ becomes a function.

Recall that a commutative ring R is said to be a von Neumann regular ring if for each $a \in R$, there exists $x \in R$ such that $a=a^{2} x$ [17]. In this case, the principal ideal (a) is a generated by an idempotent element $e \in R$. The notion of von Neumann regular rings has an important place in commutative algebra. So far, there have been many generalizations of this concept. See, for example, [14], 3] and [1]. Now, we characterize von Neumann regular rings in terms of ϕ-2-absorbing quasi primary ideals.

Theorem 2.20. Let $R_{1}, R_{2}, \ldots, R_{m}$ be commutative rings and $R=R_{1} \times R_{2} \times$ $\cdots \times R_{m}$, where $3 \leq m<\infty$. Suppose that $n \geq 2$. Then the following statements are equivalent.
(i) Every ideal of R is a ϕ_{n}-2-absorbing quasi primary ideal.
(ii) $R_{1}, R_{2}, \ldots, R_{m}$ are von Neumann regular rings.

Proof. $(i) \Rightarrow(i i)$: Suppose that every ideal of R is a ϕ_{n}-2-absorbing quasi primary ideal. Now, we will show that $R_{1}, R_{2}, \ldots, R_{m}$ are von Neumann regular rings. Suppose not. Without loss of generality, we may assume that R_{1} is not a von Neumann regular ring. Then there exists an ideal I_{1} of R_{1} such that $I_{1}^{n} \nsubseteq I_{1}$. Then we can find an element $a \in I_{1}-I_{1}^{n}$. Now, put $J=I_{1} \times 0 \times 0 \times$ $R_{4} \times R_{5} \times \cdots \times R_{m}$ and also $x_{1}=(a, 1,1,1, \ldots, 1), x_{2}=(1,0,1,1, \ldots, 1), x_{3}=$ $(1,1,0,1, \ldots, 1)$. Then note that $x_{1} x_{2} x_{3} \in J-\phi_{n}(J)$. As $x_{1} x_{2}, x_{1} x_{3}$ and $x_{2} x_{3} \notin$ \sqrt{J}, J is not a ϕ_{n}-2-absorbing quasi primary ideal of R which is a contradiction. Thus $R_{1}, R_{2}, \ldots, R_{m}$ are von Neumann regular rings.
$($ ii $) \Rightarrow(i)$: Suppose that $R_{1}, R_{2}, \ldots, R_{m}$ are von Neumann regular rings. Then note that $I_{i}^{n}=I_{i}$ for any ideal I_{i} of R_{i}. Take any ideal J of R. Then $J=J_{1} \times J_{2} \times \cdots \times J_{m}$ for some ideal J_{k} of R_{k}, where $1 \leq k \leq m$. Then $J^{n}=J_{1}^{n} \times J_{2}^{n} \times \cdots \times J_{m}^{n}=\phi_{n}(J)=J_{1} \times J_{2} \times \cdots \times J_{m}=J$. This implies that $J-\phi_{n}(J)=\emptyset$ and so J is trivially a ϕ_{n}-2-absorbing quasi primary ideal of R.

Corollary 2.21. Let R be a ring and $n \geq 2$. Then the following statements are equivalent:
(i) Every ideal of R^{3} is a ϕ_{n}-2-absorbing quasi primary ideal.
(ii) R is a von Neumann regular ring.

3. ϕ-(2-absorbing) quasi primary ideals in the direct product of rings

In this section, we investigate ϕ-2-absorbing quasi primary ideal in the direct product of finitely many commutative rings.
Theorem 3.1. Let $R=R_{1} \times R_{2}$, where R_{1} and R_{2} are rings and let ψ_{i} : $L\left(R_{i}\right) \rightarrow L\left(R_{i}\right) \cup\{\emptyset\}$ is a function for each $i=1,2$. Let $\phi:=\psi_{1} \times \psi_{2}$ and let J be an ideal of R. Then J is a ϕ-quasi primary ideal of R if and only if J is in one of the following three forms:
(i) $J=I_{1} \times I_{2}$ such that $\psi_{i}\left(I_{i}\right)=I_{i}$ for $i=1,2$.
(ii) $J=I_{1} \times R_{2}$ for some ψ_{1}-quasi primary ideal I_{1} of R_{1} which must be quasi primary if $\psi_{2}\left(R_{2}\right) \neq R_{2}$.
(iii) $J=R_{1} \times I_{2}$ for some ψ_{2}-quasi primary ideal I_{2} of R_{2} which must be quasi primary if $\psi_{1}\left(R_{1}\right) \neq R_{1}$.
Proof. \Rightarrow : Suppose that J is a ϕ-quasi primary ideal of R. Then $J=I_{1} \times I_{2}$ for some ideal I_{1} of R_{1} and some ideal I_{2} of R_{2}. Let $x y \in I_{1}-\psi_{1}\left(I_{1}\right)$. Then we have $(x, 0)(y, 0)=(x y, 0) \in J-\phi(J)$. As J is a ϕ-quasi primary ideal, we conclude either $(x, 0) \in \sqrt{J}$ or $(y, 0) \in \sqrt{J}$. Since $\sqrt{J}=\sqrt{I_{1}} \times \sqrt{I_{2}}$, we get $x \in \sqrt{I_{1}}$ or $y \in \sqrt{I_{1}}$. Hence, I_{1} is a ψ_{1}-quasi primary ideal. Similarly, I_{2} is a ψ_{2}-quasi primary ideal. We may assume that $J \neq \phi(J)$. Then we have either $I_{1} \neq \psi_{1}\left(I_{1}\right)$ or $I_{2} \neq \psi_{2}\left(I_{2}\right)$. Without loss of generality, we may assume that $I_{1} \neq \psi_{1}\left(I_{1}\right)$. So there exists $a \in I_{1}-\psi_{1}\left(I_{1}\right)$. Take $b \in I_{2}$. Then we have $(a, 1)(1, b) \in J-\phi(J)$. This implies either $(a, 1) \in \sqrt{J}$ or $(1, b) \in \sqrt{J}$. Then we get $1 \in \sqrt{I_{1}}$ or $1 \in \sqrt{I_{2}}$, that is, $I_{1}=R_{1}$ or $I_{2}=R_{2}$. Now, assume that $I_{2}=R_{2}$. Now, we will show that I_{1} is a quasi primary ideal provided that $\psi_{2}\left(R_{2}\right) \neq R_{2}$. So suppose $\psi_{2}\left(R_{2}\right) \neq R_{2}$. Let $x y \in I_{1}$ for some $x, y \in R_{1}$. Then we have $(x, 1)(y, 1)=(x y, 1) \in I_{1} \times R_{2}-\phi\left(I_{1} \times R_{2}\right)$. As J is a ϕ-quasi primary ideal, we get either $(x, 1) \in \sqrt{J}$ or $(y, 1) \in \sqrt{J}$. Hence, $x \in \sqrt{I_{1}}$ or $y \in$ $\sqrt{I_{1}}$. Therefore, I_{1} is a quasi primary ideal.
\Leftarrow : Suppose that $J=I_{1} \times I_{2}$ such that $\psi_{i}\left(I_{i}\right)=I_{i}$ for $i=1,2$. Since $\phi\left(I_{1} \times\right.$ $\left.I_{2}\right)=\psi_{1}\left(I_{1}\right) \times \psi_{2}\left(I_{2}\right)=I_{1} \times I_{2}$, we get $I_{1} \times I_{2}-\phi\left(I_{1} \times I_{2}\right)=\emptyset$ and so J is trivially a ϕ-quasi primary ideal. Let $J=I_{1} \times R_{2}$ for some ψ_{1}-quasi primary ideal I_{1} of R_{1} which must be quasi primary if $\psi_{2}\left(R_{2}\right) \neq R_{2}$. First, assume that $\psi_{2}\left(R_{2}\right)=$ R_{2}. Then note that $\phi(J)=\psi_{1}\left(I_{1}\right) \times R_{2}$. Let $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}, x_{2} y_{2}\right) \in$ $J-\phi(J)$ for some $x_{i}, y_{i} \in R_{i}$. Then we have $x_{1} y_{1} \in I_{1}-\psi_{1}\left(I_{1}\right)$. This yields that $x_{1} \in \sqrt{I_{1}}$ or $y_{1} \in \sqrt{I_{1}}$ since I_{1} is a ψ_{1}-quasi primary ideal. Then we get either $\left(x_{1}, x_{2}\right) \in \sqrt{I_{1} \times R_{2}}=\sqrt{I_{1}} \times R_{2}$ or $\left(y_{1}, y_{2}\right) \in \sqrt{I_{1} \times R_{2}}$. Hence, J is a ϕ-quasi primary ideal of R. Now, assume that $\psi_{2}\left(R_{2}\right) \neq R_{2}$ and I_{1} is a quasi primary ideal. Then $I_{1} \times R_{2}$ is a quasi primary ideal of R by [16, Lemma 2.2]. Hence, $J=I_{1} \times R_{2}$ is a ϕ-quasi primary ideal of R. In the third case, one can see that J is also a ϕ-quasi primary ideal of R.

Theorem 3.2. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$, where $R_{1}, R_{2}, \ldots, R_{n}$ are rings and let $\psi_{i}: L\left(R_{i}\right) \rightarrow L\left(R_{i}\right) \cup\{\emptyset\}$ be a function for each $i=1,2, \ldots, n$. Let
$\phi:=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n}$ and let J be an ideal of R. Then J is a ϕ-quasi primary ideal of R if and only if J is in one of the following two forms:
(i) $J=I_{1} \times I_{2} \times \cdots \times I_{n}$ such that $\psi_{i}\left(I_{i}\right)=I_{i}$ for $i=1,2, \ldots, n$.
(ii) $J=R_{1} \times R_{2} \times \cdots \times R_{t-1} \times I_{t} \times R_{t+1} \times \cdots \times R_{n}$ for some $\psi_{t}-q u a s i$ primary ideal I_{t} of R_{t} which must be quasi primary if $\psi_{j}\left(R_{j}\right) \neq R_{j}$ for some $j \neq t$.

Proof. We use induction on n to prove the claim. If $n=1$, the claim is clear. If $n=2$, the claim follows from the previous theorem. Assume that the claim is true for all $n<k$ and put $n=k$. Put $R^{\prime}=R_{1} \times R_{2} \times \cdots \times$ $R_{k-1}, J^{\prime}=I_{1} \times I_{2} \times \cdots \times I_{k-1}$ and $\phi^{\prime}=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{k-1}$. Then note that $R=R^{\prime} \times R_{k}, J=J^{\prime} \times J_{k}$ and $\phi=\phi^{\prime} \times \psi_{k}$. Then by the previous theorem, J is a ϕ-quasi primary ideal of R if and only if one of the following conditions hold: (i) $J=J^{\prime} \times I_{k}$ such that $\phi^{\prime}\left(J^{\prime}\right)=J^{\prime}$ and $\psi_{k}\left(I_{k}\right)=I_{k}$ (ii) $J=J^{\prime} \times R_{k}$ for some ϕ^{\prime}-quasi primary ideal J^{\prime} of R^{\prime} which must be quasi primary if $\psi_{k}\left(R_{k}\right) \neq R_{k}$ (iii) $J=R^{\prime} \times I_{k}$ for some ψ_{k}-quasi primary ideal I_{k} of R_{k} which must be quasi primary if $\phi^{\prime}\left(R^{\prime}\right) \neq R^{\prime}$. The rest follows from the induction hypothesis and [16, Theorem 2.3].

Theorem 3.3. Let R_{1} and R_{2} be commutative rings with identity and let $R=R_{1} \times R_{2}$. Suppose that $\psi_{i}: L\left(R_{i}\right) \rightarrow L\left(R_{i}\right) \cup\{\emptyset\}(i=1,2)$ are functions such that $\psi_{2}\left(R_{2}\right) \neq R_{2}$ and $\phi=\psi_{1} \times \psi_{2}$. Then the following assertions are equivalent:
(i) $I_{1} \times R_{2}$ is a ϕ-2-absorbing quasi primary ideal of R.
(ii) $I_{1} \times R_{2}$ is a 2-absorbing quasi primary ideal of R.
(iii) I_{1} is a 2-absorbing quasi primary ideal of R_{1}.

Proof. Assume that $\psi_{1}\left(I_{1}\right)=\emptyset$ or $\psi_{2}\left(R_{2}\right)=\emptyset$. Then clearly $\phi\left(I_{1} \times R_{2}\right)=\emptyset$ so that $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$ follows from [16, Theorem 2.23]. Hence suppose that $\psi_{1}\left(I_{1}\right) \neq \emptyset$ and $\psi_{2}\left(R_{2}\right) \neq \emptyset$, so $\phi\left(I_{1} \times R_{2}\right) \neq \emptyset$.
$(i) \Rightarrow(i i)$: Suppose that $I_{1} \times R_{2}$ is a ϕ-2-absorbing quasi primary ideal of R. A similar argument to the one we made in the proof of Theorem 3.1 shows that I_{1} is a $\psi_{1}-2$-absorbing quasi primary ideal of R_{1}. If I_{1} is 2-absorbing quasi primary, then $I_{1} \times R_{2}$ is a 2-absorbing quasi primary ideal of R, by [16, Theorem 2.23]. If I_{1} is not 2 -absorbing quasi primary, then I_{1} has a strongly ψ_{1}-triple zero (x, y, z) for some $x, y, z \in R_{1}$ by Remark 1 . Then $(x, 1)(y, 1)(z, 1)=$ $(x y z, 1) \in I_{1} \times R_{2}-\psi_{1}\left(I_{1}\right) \times \psi_{2}\left(R_{2}\right)$ since $\psi_{2}\left(R_{2}\right) \neq R_{2}$. This implies that $x y \in \sqrt{I_{1}}$ or $y z \in \sqrt{I_{1}}$ or $x z \in \sqrt{I_{1}}$, a contradiction. Thus I_{1} is 2 -absorbing quasi primary. Consequently, $I_{1} \times R_{2}$ is a 2 -absorbing quasi primary ideal of R.
$(i i) \Rightarrow(i i i)$ and $(i i i) \Rightarrow(i)$: Follows from [16, Theorem 2.23].
Theorem 3.4. Let R_{1} and R_{2} be commutative rings with identity and let $R=R_{1} \times R_{2}$. Suppose that $\psi_{i}: S\left(R_{i}\right) \rightarrow S\left(R_{i}\right) \cup\{\emptyset\}(i=1,2)$ are functions and $\phi=\psi_{1} \times \psi_{2}$. The following statements are equivalent:
(i) $I_{1} \times R_{2}$ is a ϕ-2-absorbing quasi primary ideal of R that is not a 2absorbing quasi primary ideal of R.
(ii) $\phi\left(I_{1} \times R_{2}\right) \neq \emptyset, \psi_{2}\left(R_{2}\right)=R_{2}$ and I_{1} is a ψ_{1}-2-absorbing quasi primary ideal of R_{1} that is not a 2-absorbing quasi primary ideal of R_{1}.

Proof. $(i) \Rightarrow($ ii $)$: Let $I_{1} \times R_{2}$ be ϕ-2-absorbing quasi primary ideal that is not 2 -absorbing quasi primary. By Theorem 3.3, since $I_{1} \times R_{2}$ is not a 2-absorbing quasi primary ideal of R, one can see that $\phi\left(I_{1} \times R_{2}\right) \neq \emptyset$ and $\psi_{2}\left(R_{2}\right)=R_{2}$. As $I_{1} \times R_{2}$ is a ϕ-2-absorbing quasi primary ideal of R, it is clear that I_{1} is a $\psi_{1}-$ 2-absorbing quasi primary ideal of R_{1}. Also, since $I_{1} \times R_{2}$ is not a 2-absorbing quasi primary ideal of R, I_{1} is not a 2 -absorbing quasi primary ideal of R_{1} by [16, Theorem 2.3].
$($ ii $) \Rightarrow(i)$: Since $\phi\left(I_{1} \times R_{2}\right) \neq \emptyset$ and $\psi_{2}\left(R_{2}\right)=R_{2}$, we get $R / \phi\left(I_{1} \times R_{2}\right) \cong$ $R_{1} / \psi_{1}\left(R_{1}\right)$ and $I_{1} \times R_{2} / \phi\left(I_{1} \times R_{2}\right) \cong I_{1} / \psi_{1}\left(I_{1}\right)$. By Proposition 2.7(ii), since I_{1} is a $\psi_{1}-2$-absorbing quasi primary ideal of $R_{1}, I_{1} / \psi_{1}\left(I_{1}\right)$ is a weakly 2 absorbing quasi primary ideal of $R_{1} / \psi_{1}\left(R_{1}\right)$. Also, as I_{1} is not a 2-absorbing quasi primary ideal of R_{1}, then $I_{1} / \psi_{1}\left(I_{1}\right)$ is not a 2 -absorbing quasi primary ideal of $R_{1} / \psi_{1}\left(R_{1}\right)$, by Proposition 2.8 (ii). Thus, $I_{1} \times R_{2} / \phi\left(I_{1} \times R_{2}\right)$ is a weakly 2-absorbing quasi primary ideal of $R / \phi\left(I_{1} \times R_{2}\right)$ that is not a 2 -absorbing quasi primary. Consequently, again by Proposition 2.7 (ii) and Proposition 2.8(ii), we obtain that $I_{1} \times R_{2}$ is a ϕ-2-absorbing quasi primary ideal of R that is not a 2 -absorbing quasi primary ideal of R.

The following theorem is a consequence of Theorem 3.3
Theorem 3.5. Let R_{1} and R_{2} be commutative rings with a nonzero identity and let $R=R_{1} \times R_{2}$. Then the following assertions are equivalent:
(i) $I_{1} \times R_{2}$ is a weakly 2-absorbing quasi primary ideal of R.
(ii) $I_{1} \times R_{2}$ is a 2-absorbing quasi primary ideal of R.
(iii) I_{1} is a 2-absorbing quasi primary ideal of R_{1}.

Theorem 3.6. Let R_{1} and R_{2} be commutative rings with a nonzero identity and $R=R_{1} \times R_{2}$. Let $I_{1} \times I_{2}$ be a proper ideal of R, where I_{1}, I_{2} are nonzero ideals of R_{1} and R_{2}, respectively. Then the following assertions are equivalent:
(i) $I_{1} \times I_{2}$ is a weakly 2-absorbing quasi primary ideal of R.
(ii) $I_{1} \times I_{2}$ is a 2-absorbing quasi primary ideal of R.
(ii) $I_{1}=R_{1}$ and I_{2} is a 2-absorbing quasi primary ideal of R_{2} or $I_{2}=R_{2}$ and I_{1} is a 2-absorbing quasi primary ideal of R_{1} or I_{1}, I_{2} are quasi primary of R_{1}, R_{2}, respectively.

Proof. $(i) \Rightarrow($ iii $)$: Suppose that $I_{1} \times I_{2}$ is a weakly 2-absorbing quasi primary ideal of R. If $I_{1}=R_{1}$, by Theorem $3.5, I_{2}$ is a 2 -absorbing quasi primary ideal of R_{2}. Similarly, if $I_{2}=R_{2}, I_{1}$ is a 2 -absorbing quasi primary ideal of R_{1}. Thus we may assume that $I_{1} \neq R_{1}$ and $I_{2} \neq R_{2}$. Let us show I_{2} is a quasi primary ideal of R_{2}. Take $x, y \in R_{2}$ such that $x y \in I_{2}$. Choose $0 \neq a \in I_{1}$. Then $0 \neq(a, 1)(1, x)(1, y)=(a, x y) \in I_{1} \times I_{2}$. By our hypothesis, $(a, x) \in \sqrt{I_{1} \times I_{2}}=\sqrt{I_{1}} \times \sqrt{I_{2}}$ or $(1, x y) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$ or $(a, y) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$. If $(1, x y) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$, a contradiction $\left(\right.$ as $\left.I_{1} \neq R_{1}\right)$. Thus we obtain that $(a, x) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$ or $(a, y) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$. This implies that $x \in \sqrt{I_{2}}$ or $y \in \sqrt{I_{2}}$. Similarly, we can show that I_{1} is a quasi primary ideal of R_{1}.
$(i i) \Leftrightarrow(i i i):$ By [16, Theorem 2.23].
$(i i) \Rightarrow(i):$ It is clear.
Theorem 3.7. Let R_{1} and R_{2} be commutative rings with a nonzero identity and $R=R_{1} \times R_{2}$. Then a nonzero ideal $I_{1} \times I_{2}$ of R is weakly 2-absorbing quasi primary that is not 2-absorbing quasi primary if and only if one of the following assertions holds:
(i) $I_{1} \neq R_{1}$ is a nonzero weakly quasi primary ideal of R_{1} that is not quasi primary and $I_{2}=0$ is a quasi primary ideal of R_{2}.
(ii) $I_{2} \neq R_{2}$ is a nonzero weakly quasi primary ideal of R_{2} that is not quasi primary and $I_{1}=0$ is a quasi primary ideal of R_{1}.

Proof. Assume that $I_{1} \times I_{2}$ is a weakly 2-absorbing quasi primary ideal of R that is not 2 -absorbing quasi primary. Suppose that $I_{1} \neq 0$ and $I_{2} \neq 0$. By Theorem 3.6. $I_{1} \times I_{2}$ is 2-absorbing quasi primary, a contradiction. Thus $I_{1}=0$ or $I_{2}=0$. Without loss of generality, suppose that $I_{2}=0$. Let us prove that $I_{2}=0$ is a quasi primary ideal of R_{2}. Choose $x, y \in R_{2}$ such that $x y \in I_{2}$. Take $0 \neq a \in I_{1}$. Then $0 \neq(a, 1)(1, x)(1, y)=(a, x y) \in I_{1} \times I_{2}$. By our hypothesis, $(a, x) \in \sqrt{I_{1} \times I_{2}}=\sqrt{I_{1}} \times \sqrt{I_{2}}$ or $(1, x y) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$ or $(a, y) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$. Here $(1, x y) \notin \sqrt{I_{1}} \times \sqrt{I_{2}}$. Indeed, firstly observe that $I_{1} \neq R_{1}$. If $I_{1}=R_{1}$, then by Theorem 3.3, $I_{1} \times I_{2}=R_{1} \times 0$ is 2 -absorbing quasi primary, a contradiction. Thus we conclude that $(a, x) \in \sqrt{I_{1} \times I_{2}}=\sqrt{I_{1}} \times \sqrt{I_{2}}$ or $(a, y) \in \sqrt{I_{1}} \times \sqrt{I_{2}}$. This implies $x \in \sqrt{I_{2}}$ or $y \in \sqrt{I_{2}}$. Hence $I_{2}=0$ is quasi primary. Now, let us show that I_{1} is weakly quasi primary ideal of R_{1}. Choose $x, y \in R_{1}$ such that $0 \neq x y \in I_{1}$. Then $0 \neq(x, 1)(y, 1)(1,0)=(x y, 0) \in I_{1} \times 0=I_{1} \times I_{2}$. As $I_{1} \times I_{2}$ is weakly 2 -absorbing quasi primary and $(x y, 1) \notin \sqrt{I_{1} \times 0}$, we have $(y, 0) \in \sqrt{I_{1} \times 0}$ or $(x, 0) \in \sqrt{I_{1} \times 0}$. This implies that $x \in \sqrt{I_{1}}$ or $y \in \sqrt{I_{1}}$. Finally, we show that I_{1} is not quasi primary. Suppose that I_{1} is quasi primary. As $I_{2}=0$ is a quasi primary, we have that $I_{1} \times I_{2}$ is 2-absorbing quasi primary by [16, Theorem 2.3]. This contradicts with our assumption. Thus I_{1} is not quasi primary. Conversely, assume that (i) holds. Let us prove $I_{1} \times I_{2}$ is weakly 2 -absorbing quasi primary. Let $(0,0) \neq\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\left(c_{1}, c_{2}\right) \in I=$ $I_{1} \times I_{2}=I_{1} \times 0$. As $a_{2} b_{2} c_{2}=0$, we get $a_{1} b_{1} c_{1} \neq 0$. Since $a_{2} b_{2} c_{2} \in I_{2}$ and I_{2} is a quasi primary ideal of R_{2}, we get either $a_{2} \in \sqrt{I_{2}}$ or $b_{2} \in \sqrt{I_{2}}$ or $c_{2} \in \sqrt{I_{2}}$. Without loss of generality, we may assume that $a_{2} \in \sqrt{I_{2}}$. On the other hand, since $0 \neq a_{1} b_{1} c_{1}=b_{1}\left(a_{1} c_{1}\right) \in I_{1}$ and I_{1} is a weakly quasi primary ideal, we have either $b_{1} \in \sqrt{I_{1}}$ or $a_{1} c_{1} \in \sqrt{I_{1}}$. This implies that either $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in \sqrt{I_{1} \times I_{2}}$ or $\left(a_{1}, a_{2}\right)\left(c_{1}, c_{2}\right) \in \sqrt{I_{1} \times I_{2}}$. In other cases, one can similarly show that $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in \sqrt{I_{1} \times I_{2}}$ or $\left(a_{1}, a_{2}\right)\left(c_{1}, c_{2}\right) \in \sqrt{I_{1} \times I_{2}}$ or $\left(b_{1}, b_{2}\right)\left(c_{1}, c_{2}\right) \in \sqrt{I_{1} \times I_{2}}$. Hence, $I_{1} \times I_{2}$ is weakly 2 -absorbing quasi primary ideal of R. Also, since I_{1} is not a quasi primary ideal, $I_{1} \times I_{2}$ is not a 2 -absorbing quasi primary ideal by [16, Theorem 2.3].

Theorem 3.8. Let R_{1} and R_{2} be commutative rings with a nonzero identity and let $R=R_{1} \times R_{2}$. Suppose that $\psi_{i}: L\left(R_{i}\right) \rightarrow L\left(R_{i}\right) \cup\{\emptyset\}(i=1,2)$ are functions and $\phi=\psi_{1} \times \psi_{2}$. Let $I=I_{1} \times I_{2}$ be a nonzero ideal of R and $\phi(I) \neq I_{1} \times I_{2}$. Then $I_{1} \times I_{2}$ is ϕ-2-absorbing quasi primary that is not

2-absorbing quasi primary if and only if $\phi(I) \neq \emptyset$ and one of the following statements holds.
(i) $\psi_{2}\left(R_{2}\right)=R_{2}$ and I_{1} is a ψ_{1}-2-absorbing quasi primary ideal of R_{1} that is not a 2-absorbing quasi primary ideal of R_{1}.
(ii) $\psi_{1}\left(R_{1}\right)=R_{1}$ and I_{2} is a ψ_{2}-2-absorbing quasi primary ideal of R_{2} that is not a 2-absorbing quasi primary ideal of R_{2}.
(iii) $I_{2}=\psi_{2}\left(I_{2}\right)$ is a quasi primary ideal of R_{2} and $I_{1} \neq R_{1}$ is a ψ_{1}-quasi primary ideal of R_{1} that is not quasi primary such that $I_{1} \neq \psi_{1}\left(I_{1}\right)$ (note that if $I_{1}=0$, then $I_{2} \neq 0$)
(iv) $I_{1}=\psi_{1}\left(I_{1}\right)$ is a quasi primary ideal of R_{1} and $I_{2} \neq R_{2}$ is a ψ_{2}-quasi primary ideal of R_{2} that is not quasi primary such that $I_{2} \neq \psi_{2}\left(I_{2}\right)$ (note that if $I_{2}=0$, then $I_{1} \neq 0$)

Proof. Suppose that $I_{1} \times I_{2}$ is a ϕ-2-absorbing quasi primary ideal that is not 2 -absorbing quasi primary. Then $\phi(I) \neq \emptyset$. Let $I_{1}=R_{1}$. Then $\psi_{1}\left(R_{1}\right)=R_{1}$ and I_{2} is a ψ_{2}-2-absorbing quasi primary ideal of R_{2} that is not a 2 -absorbing quasi primary ideal of R_{2} by Theorem 3.4 Let $I_{2}=R_{2}$. Then $\psi_{2}\left(R_{2}\right)=R_{2}$ and I_{1} is a ψ_{1}-2-absorbing quasi primary ideal of R_{1} that is not a 2-absorbing quasi primary ideal of R_{1} by Theorem 3.4 Hence assume that $I_{1} \neq R_{1}$ and $I_{2} \neq R_{2}$. Since $\phi(I) \neq I_{1} \times I_{2}$, we obtain that $I / \phi(I)$ is a nonzero weakly 2absorbing quasi primary ideal of $R / \phi(I)$ that is not 2-absorbing quasi primary by Proposition 2.7 (ii). Thus $I_{1} / \psi_{1}\left(I_{1}\right) \times I_{2} / \psi_{2}\left(I_{2}\right)$ is a nonzero weakly 2 absorbing quasi primary ideal of $R_{1} / \psi_{1}\left(I_{1}\right) \times R_{2} / \psi_{2}\left(I_{2}\right)$ that is not 2-absorbing quasi primary. Then by Theorem 3.7, we know that one of the following cases holds:

Case 1: $I_{1} / \psi_{1}\left(I_{1}\right)=\psi_{1}\left(I_{1}\right) / \psi_{1}\left(I_{1}\right)$ is a quasi primary ideal of $R_{1} / \psi_{1}\left(I_{1}\right)$ and $I_{2} / \psi_{2}\left(I_{2}\right)$ is a non-zero weakly quasi primary ideal of $R_{2} / \psi_{2}\left(I_{2}\right)$ that is not quasi primary.

Case 2: $I_{2} / \psi_{2}\left(I_{2}\right)=\psi_{2}\left(I_{2}\right) / \psi_{2}\left(I_{2}\right)$ is a quasi primary ideal of $R_{2} / \psi_{2}\left(I_{2}\right)$ and $I_{1} / \psi_{1}\left(I_{1}\right)$ is a non-zero weakly quasi primary ideal of $R_{1} / \psi_{1}\left(I_{1}\right)$ that is not quasi primary.

Thus, (iii) or (iv) holds by Proposition 2.7 (i) and Proposition 2.8 (i).
Conversely, assume that $\phi(I) \neq \emptyset$. If (i) or (ii) holds, then $I_{1} \times I_{2}$ is $\phi-2-$ absorbing quasi primary that is not 2 -absorbing quasi primary by Theorem 3.4 . Assume that (iii) or (iv) holds, then $I / \phi(I)$ is a non-zero weakly 2 -absorbing quasi primary ideal of $R / \phi(I)$ that is not 2-absorbing quasi primary by Theorem 3.7. Thus $I_{1} \times I_{2}$ is ϕ-2-absorbing quasi primary that is not 2 -absorbing quasi primary of R by Proposition 2.7(ii) and Proposition 2.8(ii).

Theorem 3.9. Let R_{1} and R_{2} be commutative rings with a nonzero identity and I_{1}, I_{2} be nonzero ideals of R_{1} and R_{2}, respectively. Let $R=R_{1} \times R_{2}$ and $\psi_{i}: L\left(R_{i}\right) \rightarrow L\left(R_{i}\right) \cup\{\emptyset\}(i=1,2)$ be functions such that $\psi_{1}\left(I_{1}\right) \neq I_{1}$ and $\psi_{2}\left(I_{2}\right) \neq I_{2}$. Suppose that $\phi=\psi_{1} \times \psi_{2}$ and $I_{1} \times I_{2}$ is a proper ideal of R. Then the following assertions are equivalent:
(i) $I_{1} \times I_{2}$ is a ϕ-2-absorbing quasi primary ideal of R.
(ii) Either $I_{1}=R_{1}$ and I_{2} is a 2-absorbing quasi primary ideal of R_{2} or $I_{2}=R_{2}$ and I_{1} is a 2-absorbing quasi primary ideal of R_{1} or I_{1}, I_{2} are quasi
primary ideals of R_{1} and R_{2}, respectively.
(iii) $I_{1} \times I_{2}$ is a 2-absorbing quasi primary ideal of R.

Proof. Assume that $\psi_{1}\left(I_{1}\right)=\emptyset$ or $\psi_{2}\left(I_{2}\right)=\emptyset$. Then clearly $\phi\left(I_{1} \times I_{2}\right)=\emptyset$ so that $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$ follows from [16, Theorem 2.23]. Hence suppose that $\psi_{1}\left(I_{1}\right) \neq \emptyset$ and $\psi_{2}\left(I_{2}\right) \neq \emptyset$, so $\phi\left(I_{1} \times I_{2}\right) \neq \emptyset$.
$(i) \Rightarrow(i i)$: Let $I_{1} \times I_{2}$ be a ϕ-2-absorbing quasi primary ideal of R. Thus $I_{1} / \psi_{1}\left(I_{1}\right) \times I_{2} / \psi_{2}\left(I_{2}\right)$ is a non-zero weakly 2 -absorbing quasi primary ideal of $R_{1} / \psi_{1}\left(I_{1}\right) \times R_{2} / \psi_{2}\left(I_{2}\right)$ by Proposition 2.7 (ii). Then by Theorem 3.6, we know that one of the following cases holds:

Case 1: $I_{1} / \psi_{1}\left(I_{1}\right)=R_{1} / \psi_{1}\left(I_{1}\right)$ and $I_{2} / \psi_{2}\left(I_{2}\right)$ is a 2-absorbing quasi primary ideal of $R_{2} / \psi_{2}\left(I_{2}\right)$. Then we have $I_{1}=R_{1}$ and I_{2} is a 2-absorbing quasi primary ideal of R_{2}.

Case 2: $I_{2} / \psi_{2}\left(I_{2}\right)=R_{2} / \psi_{2}\left(I_{2}\right)$ and $I_{1} / \psi_{1}\left(I_{1}\right)$ is a 2-absorbing quasi primary ideal of $R_{1} / \psi_{1}\left(I_{1}\right)$. Similar to Case $1, I_{2}=R_{2}$ and I_{1} is a 2-absorbing quasi primary ideal of R_{1}.

Case 3: $I_{1} / \psi_{1}\left(I_{1}\right)$ and $I_{2} / \psi_{2}\left(I_{2}\right)$ are quasi primary of $R_{1} / \psi_{1}\left(I_{1}\right), R_{2} / \psi_{2}\left(I_{2}\right)$, respectively. Then I_{1}, I_{2} are quasi primary ideals of R_{1} and R_{2}, respectively by Proposition 2.8(ii).
(ii) $\Rightarrow($ iii $)$: Assume that $I_{1}=R_{1}$ and I_{2} is a 2 -absorbing quasi primary ideal of R_{2} or $I_{2}=R_{2}$ and I_{1} is a 2-absorbing quasi primary ideal of R_{1} or I_{1}, I_{2} are quasi primary ideals of R_{1} and R_{2}, respectively. Then by Theorem Theorem [16, Theorem 2.23], $I_{1} \times I_{2}$ is a 2 -absorbing quasi primary ideal of R. $(i i i) \Rightarrow(i)$: It is evident.

References

[1] Alkan, M., Nicholson, W. K., and Özcan, A. C. Comorphic rings. J. Algebra Appl. 17, 4 (2018), 1850075, 21.
[2] Anderson, D. D., and Bataineh, M. Generalizations of prime ideals. Comm. Algebra 36, 2 (2008), 686-696.
[3] Anderson, D. D., Chun, S., and Juett, J. R. Module-theoretic generalization of commutative von Neumann regular rings. Comm. Algebra 47, 11 (2019), 4713-4728.
[4] Anderson, D. D., And Smith, E. Weakly prime ideals. Houston J. Math. 29, 4 (2003), 831-840.
[5] Anderson, D. D., and Winders, M. Idealization of a module. J. Commut. Algebra 1, 1 (2009), 3-56.
[6] Anderson, D. F., and Badawi, A. On n-absorbing ideals of commutative rings. Comm. Algebra 39, 5 (2011), 1646-1672.
[7] Atiyah, M. F., and Macdonald, I. G. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[8] Badawi, A. On 2-absorbing ideals of commutative rings. Bull. Austral. Math. Soc. 75, 3 (2007), 417-429.
[9] Badawi, A., Tekir, U., Aslankarayığit Uğurlu, E., Ulucak, G., and Yetkin Çelikel, E. Generalizations of 2-absorbing primary ideals of commutative rings. Turkish J. Math. 40, 3 (2016), 703-717.
[10] Badawi, A., Tekir, U., and Yetkin, E. On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51, 4 (2014), 1163-1173.
[11] Bhatwadekar, S. M., and Sharma, P. K. Unique factorization and birth of almost primes. Comm. Algebra 33, 1 (2005), 43-49.
[12] Fuchs, L. On quasi-primary ideals. Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 174-183.
[13] Huckaba, J. A. Commutative rings with zero divisors, vol. 117 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1988.
[14] Jayaram, C., and Tekir, U. von Neumann regular modules. Comm. Algebra 46, 5 (2018), 2205-2217.
[15] Payrovi, S., and Babaei, S. On the 2-absorbing ideals. Int. Math. Forum 7, 5-8 (2012), 265-271.
[16] Tekir, U., Koç, S., Oral, K. H., and Shum, K. P. On 2-absorbing quasiprimary ideals in commutative rings. Commun. Math. Stat. 4, 1 (2016), 55-62.
[17] Von Neumann, J. On regular rings. Proceedings of the National Academy of Sciences of the United States of America 22, 12 (1936), 707-713.
[18] Yousefian Darani, A. On 2-absorbing and weakly 2-absorbing ideals of commutative semirings. Kyungpook Math. J. 52, 1 (2012), 91-97.
[19] Yousefian Darani, A., and Puczy乇 owski, E. R. On 2-absorbing commutative semigroups and their applications to rings. Semigroup Forum 86, 1 (2013), 83-91.
[20] Yousefian Darani, A., and Soheilnia, F. 2-absorbing and weakly 2absorbing submodules. Thai J. Math. 9, 3 (2011), 577-584.

Received by the editors September 28, 2020
First published online February 25, 2021

[^0]: ${ }^{1}$ Department of Mathematics, Marmara University, 34722, Istanbul, Turkey, e-mail: emel.aslankarayigit@marmara.edu.tr
 ${ }^{2}$ Corresponding author
 ${ }^{3}$ Department of Mathematics, Marmara University, 34722, Istanbul, Turkey, e-mail: suat.koc@marmara.edu.tr
 ${ }^{4}$ Department of Mathematics, Marmara University, 34722, Istanbul, Turkey, e-mail: utekir@marmara.edu.tr

