On n-absorbing primary submodules

Mohammad Hamoda ${ }^{1 / 2}$

Abstract

Let R be a commutative ring with $1 \neq 0, N$ a proper submodule of an R-module M, and n a positive integer. In this paper, we define N to be an n-absorbing primary submodule of M if whenever $a_{1} \ldots a_{n} x \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $x \in M$, then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there are $(n-1)$ of the a_{i} 's whose product with x is in $M-\operatorname{rad}(N)$. A number of results concerning n-absorbing primary submodules are given.

AMS Mathematics Subject Classification (2010): 13C05; 13C13; 13F05
Key words and phrases: $2-$ absorbing submodule; n-absorbing submodule; multiplication module; Dedekind module; divided module; $2-$ absorbing primary submodule

1. Introduction

Throughout this paper all rings are commutative with $1 \neq 0$ and all modules are considered to be unitary.
Recently, extensive researches have been done on prime and primary ideals and submodules. Let R be a commutative ring with identity. Of course a proper ideal I of R is said to be a prime ideal if $a b \in I$ implies that $a \in I$ or $b \in I$ where $a, b \in R$. There are several ways to generalize the notion of prime ideals and submodules, see for example [3, 5, 14, 15, 11, 22, 30, 32, Badawi in [7] generalized the concept of prime ideals in a different way. He defined a proper ideal I of R to be $a 2$-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. In [9], Badawi and Darani generalized the concept of 2 -absorbing ideals to the concept of weakly 2 -absorbing ideals. They defined a proper ideal I of R to be a weakly $2-a b s o r b i n g ~ i d e a l ~ o f ~ R ~ i f ~ w h e n e v e r ~ a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Later in [4], Anderson and Badawi introduced the concept of n-absorbing ideals of R. According to their definition, a proper ideal I of the ring R is said to be an n-absorbing (resp., strongly n-absorbing) ideal if whenever $x_{1} \ldots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$ (resp., $I_{1} \ldots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R), then there are n of the $x_{i}{ }^{\prime} s$ (resp., n of the $I_{i}{ }^{\prime} s$) whose product is in I. In [33], the concepts of 2 -absorbing and weakly 2 -absorbing ideals of the ring R generalized to that of submodules of an R-module M as follows: A proper submodule N of an R-module M is called a 2 -absorbing (resp., weakly 2-absorbing) submodule of M if whenever $a, b \in R, m \in M$

[^0]and $a b m \in N($ resp., $0 \neq a b m \in N)$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. In [34, Darani and Soheilnia generalized the concept of n-absorbing ideals of the ring R to that of submodules of an R-module M. They defined a proper submodule N of an R-module M to be an n-absorbing (resp., strongly n-absorbing) submodule if whenever $a_{1} \ldots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ (resp., $I_{1} \ldots I_{n} L \subseteq N$ for ideals I_{1}, \ldots, I_{n} of R and submodule L of $M)$, then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ (resp., $I_{1} \ldots I_{n} \subseteq\left(N:_{R} M\right)$) or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ (resp., $I_{i}{ }^{\prime} s$) whose product with m (resp., with L) is in N. In [8], the concept of primary ideals of the ring R generalized to the concept of 2 -absorbing primary ideals. A proper ideal I of R is called a 2 -absorbing primary ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$, where $\sqrt{I}=\left\{x \in R: x^{k} \in I\right.$ for some positive integer $\left.k\right\}$ is the radical ideal of I in R. In [24], Mostafanasab et.al. generalized the concept of 2 -absorbing primary ideal of the ring R to that of submodules of an R-module M. They defined a proper submodule N of an R-module M to be $a 2$-absorbing primary submodule of M if whenever $a, b \in R, m \in M$ and $a b m \in N$, then $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$. In [35], Darani et.al. generalized the concept of 2 -absorbing primary submodule to weakly 2 -absorbing primary submodule. They defined a proper submodule N of an R-module M to be a weakly 2 -absorbing primary submodule of M if whenever $a, b \in R, m \in M$ and $0 \neq a b m \in N$, then $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$. Most of the concepts concerning prime and primary ideals and submodules have been studied and generalized to graded ring theory, see for example [13, 17, 19, 26, 28. The motivation of this paper is to continue the study of the family of n-absorbing ideals and submodules, also to identify new properties in that subject. The remainder of this paper is organized as follows:
In Section 2, we give some basic definitions and results that are used in the sequel of this paper. Section 3 includes the results and theorems concerning n-absorbing primary submodules. We give a useful characterization of an n-absorbing primary submodule, (see Theorem 3.6). The first main result of this section is (Theorem 3.11). We show that if N is a submodule of a finitely generated multiplication $R-\operatorname{module} M$ with $M-\operatorname{rad}(N)$ a primary submodule of M, then N is an n-absorbing primary submodule of M. One important part of this section is in the case when R is a Noetherian domain and M a torsion-free multiplication R-module (see Theorem 3.20). Section 4 includes the conclusion.

2. Preliminary notes

As usual, if N is a proper submodule of an R-module M, then the residual of N by M is the set $\left(N:_{R} M\right)=\{r \in R: r M \subseteq N\}$ which is an ideal of R. In particular, if $m \in M$, then $\left(0:_{R} m\right)=\{r \in R: r m=0\}$ is called the annihilator of m. Also, the set $\left(0:_{R} M\right)$ is an ideal of R called the annihilator of M.
The radical $M-\operatorname{rad}(N)$ is defined to be the intersection of all prime submodules
of M containing N. If M has no prime submodule containing N, then we say $M-\operatorname{rad}(N)=M$. The radical of the module M is defined to be $M-\operatorname{rad}(0)$. Recall that a proper submodule N of an R-module M is prime (resp., primary) submodule of M if for $r \in R$ and $m \in M$ with $r m \in N$, then either $m \in N$ or $r \in\left(N:_{R} M\right)$ (resp., $r^{k} \in\left(N:_{R} M\right)$ for some positive integer $\left.k\right)$. In this case, one can easily verify that $p=\left(N:_{R} M\right)$ (resp., $\left.p=\sqrt{\left(N:_{R} M\right)}\right)$ is a prime ideal of R and we say N is a p-prime (resp., p-primary) submodule. An R-module M is called faithful if its annihilator is $0 . M$ is called a multiplication module if for each submodule N of M, we have $N=P M$ for some ideal P of R. In this case we can take $P=\left(N:_{R} M\right)$, see [16]. For more details on multiplication modules, one can consult [10] and [2].
An R-module M is called a cancellation module if $P M=I M$ (for ideals P and I of R) implies $P=I$. Finitely generated faithful multiplication modules are cancellation modules (29 , Corollary to Theorem 9). If M is a finitely generated faithful multiplication R-module hence (a cancellation module), then it is easy to see that $\left(P N:_{R} M\right)=P\left(N:_{R} M\right)$ for each submodule N of M and each ideal P of R.
Let M be an R-module, and I a prime ideal of R. We say that I is an associated prime of M (or that I is associated to M) if I is the annihilator of some $x \in M$. The set of associated primes of M is denoted by $\operatorname{Ass}_{R}(M)$.

3. Results and discussion

Definition 3.1. Let n be a positive integer. A proper ideal I of a commutative ring R is said to be an n-absorbing primary ideal of R if whenever $a_{1} \ldots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in R$, then either $a_{1} \ldots a_{n} \in I$ or a product of n of the a_{i} 's (other than $a_{1} \ldots a_{n}$) is in \sqrt{I}.

Equivalently, one can define n-absorbing primary ideals in the following way:
A proper ideal I of a commutative ring R is said to be an n-absorbing primary ideal of R if whenever $a_{1} \ldots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in R$, then either $a_{1} \ldots a_{n} \in I$ or there exists $1 \leq i \leq n$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in \sqrt{I}$. From the definition, one can see that any n-absorbing ideal of R is an n-absorbing primary ideal of R. However, the converse is not true in general.

Example 3.2. Let $R=\mathbb{Z}$ and $I=(50)$ be an ideal of R. We have 5.5.2 $\in I$, $5.5 \notin I$ and $5.2 \notin I$. Thus, I is not a 2 -absorbing ideal of R. However, we have that $5.2 \in \sqrt{I}$ and hence I is a 2 -absorbing primary ideal of R.

Definition 3.3. Let n be a positive integer. A proper submodule N of an R-module M is said to be an n-absorbing primary submodule of M if whenever $a_{1} \ldots a_{n} x \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $x \in M$, then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $M-\operatorname{rad}(N)$.

Equivalently, a proper submodule N of an $R-$ module M is called an n-absorbing primary submodule of M if whenever $a_{1} \ldots a_{n} x \in N$ for
$a_{1}, \ldots, a_{n} \in R$ and $x \in M$, then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there exists $1 \leq i \leq n$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} x \in M-\operatorname{rad}(N)$.

Definition 3.4. Let n be a positive integer. A proper submodule N of an R-module M is said to be a weakly n-absorbing primary submodule of M if whenever $0 \neq a_{1} \ldots a_{n} x \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $x \in M$, then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $M-\operatorname{rad}(N)$.
Theorem 3.5. If N is an n-absorbing primary submodule of an R-module M, then it's an m-absorbing primary submodule of M for every positive integer $m>n$.

Proof. Let N be an n-absorbing primary submodule of M. We need to show that N is an $(n+1)$-absorbing primary submodule of M. Let $a_{1} a_{2} \ldots a_{n+1} x \in N$ for $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $x \in M$. Now set $a_{1} a_{2}=\bar{a}$. Then $\bar{a} \ldots a_{n+1} x \in N$ implies $\bar{a} \ldots a_{n+1} \in\left(N \quad:_{R} \quad M\right)$ or $\bar{a} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} x \in M-\operatorname{rad}(N)$ or $a_{3} a_{4} \ldots a_{n+1} x \in M-\operatorname{rad}(N)$ for some $3 \leq i \leq n+1$. Hence, N is an m-absorbing primary submodule of M for $m>n$.

Now, we give a characterization of an n-absorbing primary submodule:
Theorem 3.6. Let N be a proper submodule of an R-module M. Then the following statements are equivalent:
(i) N is an n-absorbing primary submodule of M;
(ii) If $a_{1} \ldots a_{n} \notin\left(N:_{R} M\right)$, where $a_{1}, \ldots, a_{n} \in R$, then $\left(N:_{M} a_{1} \ldots a_{n}\right) \subseteq$ $\bigcup_{i=1}^{n}\left(M-\operatorname{rad}(N):_{M} a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n}\right)$.
Proof. $(i) \Longrightarrow$ (ii) Assume that $a_{1}, \ldots, a_{n} \in R$ are such that $a_{1} \ldots a_{n} \notin$ $\left(N:_{R} M\right)$. Let $x \in\left(N:_{M} a_{1} \ldots a_{n}\right)$. Then $a_{1} \ldots a_{n} x \in N$, and so there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $M-\operatorname{rad}(N)$. Then there exists $k \in\{1,2, \ldots, n\}$ such that $a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n} x \in M-\operatorname{rad}(N)$, which implies that $x \in\left(M-\operatorname{rad}(N):_{M} a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n}\right) \subseteq \bigcup_{i=1}^{n}\left(M-\operatorname{rad}(N):_{M}\right.$ $\left.a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n}\right)$.
(ii) $\Longrightarrow(i)$ Let $a_{1} a_{2} \ldots a_{n} x \in N$ for some $a_{1}, a_{2}, \ldots, a_{n} \in R$ and $x \in M$. Assume that $a_{1} a_{2} \ldots a_{n} \notin(N: M)$. This implies that $x \in\left(N:_{M} a_{1} a_{2} \ldots a_{n}\right) \subseteq$ $\bigcup_{i=1}^{n}\left(M-\operatorname{rad}(N) \quad:_{M} \quad a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n}\right)$. Thus, we have $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n} x \in M-\operatorname{rad}(N)$ for some $i \in\{1,2, \ldots, n\}$. Therefore, N is an n-absorbing primary submodule of M.

Recall from [27] that a ring R is said to be a u-ring if $I \subseteq \bigcup_{i=1}^{n} I_{i}$ for some ideals $I, I_{1}, I_{2}, \ldots, I_{n}$ of R implies that $I \subseteq I_{k}$ for some $k \in\{1,2, \ldots, n\}$.

Similar to the concept of a u-ring, define the concept of a u-module as follows:
Definition 3.7. An R-module M is said to be a u-module if $N \subseteq \bigcup_{i=1}^{n} N_{i}$ for some submodules $N, N_{1}, N_{2}, \ldots, N_{n}$ of M implies that $N \subseteq N_{k}$ for some $k \in\{1,2, \ldots, n\}$.

Theorem 3.8. Let M be a finitely generated multiplication u-module over the ring R. If N is an n-absorbing primary submodule of M, then $\left(N:_{R} M\right)$ is an n-absorbing primary ideal of R.

Proof. Let $a_{1}, \ldots, a_{n+1} \in R$ be such that $a_{1} \ldots a_{n+1} \in\left(N:_{R} M\right)$. This implies that $a_{n+1} M \subseteq\left(N:_{M} a_{1} a_{2} \ldots a_{n}\right)$. Now assume that $a_{1} a_{2} \ldots a_{n} \notin$ $\left(N:_{R} M\right)$. Then by Theorem 3.6 , we have $a_{n+1} M \subseteq \bigcup_{i=1}^{n}\left(M-\operatorname{rad}(N):_{N}\right.$ $\left.a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n}\right)$. Since \bar{M} is a u-module, we conclude that $a_{n+1} M \subseteq$ $\left(M-\operatorname{rad}(N):_{M} a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n}\right)$ for some $k \in\{1,2, \ldots, n\}$. Thus, we have $a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n+1} \in\left(M-\operatorname{rad}(N):_{R} M\right)=\sqrt{\left(N:_{R} M\right)}$. Therefore, $\left(N:_{R} M\right)$ is an n-absorbing primary ideal of R.
Theorem 3.9. Let N be a submodule of an $R-\operatorname{module} M$. If $M-\operatorname{rad}(N)$ is prime submodule of M, then N is an n-absorbing primary submodule of M.

Proof. Let $a_{1} a_{2} \ldots a_{n} x=a_{1}\left(a_{2} \ldots a_{n} x\right) \in N \subseteq M-\operatorname{rad}(N)$ for some $a_{1}, a_{2}, \ldots, a_{n} \in R$ and $x \in M$. Assume that $a_{2} \ldots a_{n} x \notin M-\operatorname{rad}(N)$. Since $M-\operatorname{rad}(N)$ is prime, we conclude that $a_{1} \in\left(M-\operatorname{rad}(N):_{R} M\right)$, which implies that $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n} x \in M-\operatorname{rad}(N)$. Therefore, N is an n-absorbing primary submodule of M.

Proposition 3.10. (24], Proposition 2.5.) Let M be a finitely generated multiplication R-module and N be a submodule of M. Then the following statements are equivalent:
(i) $M-\operatorname{rad}(N)$ is a primary submodule of M.
(ii) $M-\operatorname{rad}(N)$ is a prime submodule of M.

Theorem 3.11. Let M be a finitely generated multiplication R-module and N be a submodule of M. If $M-\operatorname{rad}(N)$ is primary submodule of M, then N is an n-absorbing primary submodule of M.

Proof. Assume that M is a finitely generated multiplication R-module and $M-\operatorname{rad}(N)$ is a primary submodule of M, then by Proposition 3.10, $M-$ $\operatorname{rad}(N)$ is a prime submodule of M and therefore N is an n-absorbing primary submodule of M by Theorem 3.9 .

Theorem 3.12. Let M be a faithful (resp., finitely generated faithful) multiplication $R-$ module. If $M-\operatorname{rad}(N)$ is a prime (resp., primary) submodule of M, then N^{n} is an n-absorbing primary submodule of M for every positive integer n.

Proof. Assume that M is a faithful (resp., finitely generated faithful) multiplication $R-$ module and $M-\operatorname{rad}(N)$ is a prime (resp., primary) submodule of M. Then there exists an ideal P of R such that $N=P M$. Since for any faithful multiplication module M, we have $M-\operatorname{rad}(I M)=\sqrt{I} M$ for any ideal I of R by (1], Theorem $1(3))$. Then $M-\operatorname{rad}\left(N^{n}\right)=\sqrt{P^{n}} M=M-\operatorname{rad}(N)$ which is a prime (resp., primary) submodule of M. Therefore, N^{n} is an n-absorbing primary submodule of M for every positive integer n by Theorem 3.9 and Theorem 3.11.

Proposition 3.13. (24), Proposition 2.14.) Let M be a multiplication R-module and K, N be submodules of M. Then we have the following:
(i) $\sqrt{\left(K N:_{R} M\right)}=\sqrt{\left(K:_{R} M\right)} \cap \sqrt{\left(N:_{R} M\right)}$.
(ii) $M-\operatorname{rad}(K N)=M-\operatorname{rad}(K) \cap M-\operatorname{rad}(N)$.
(iii) $M-\operatorname{rad}(K \cap N)=M-\operatorname{rad}(K) \cap M-\operatorname{rad}(N)$.

Theorem 3.14. Let M be a multiplication R-module and N_{1}, \ldots, N_{m} are n-absorbing primary submodules of M with the same M-radical. Then $N_{1} \bigcap \ldots \bigcap N_{m}$ is an n-absorbing primary submodule of M.

Proof. $M-\operatorname{rad}\left(N_{1} \bigcap \ldots \bigcap N_{m}\right)=\bigcap_{i=1}^{m} M-\operatorname{rad}\left(N_{i}\right)$ (by Proposition 3.13). Assume that $a_{1} \ldots a_{n} x \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $x \in M$ and $a_{1} \ldots a_{n} \notin$ $\left(N_{1} \bigcap \ldots \bigcap N_{m}:_{R} M\right)$. Then $a_{1} \ldots a_{n} \notin\left(N_{i}:_{R} M\right)$ for some $i \in\{1,2, \ldots, m\}$. Hence there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $M-\operatorname{rad}\left(N_{i}\right)$. But N_{i} ' s have the same M-radical, so $N_{1} \bigcap \ldots \bigcap N_{m}$ is an n-absorbing primary submodule of M.

Theorem 3.15. Let M be a multiplication R-module. If N_{j} is an $n_{j}-$ absorbing primary submodule with the same radical of M for all $j \in\{1, \ldots, m\}$, then $N_{1} \cap \ldots \cap N_{m}$ is an n-absorbing primary submodule of M with $n=$ $n_{1}+\ldots+n_{m}$.

Proof. Since N_{j} is n_{j}-absorbing primary submodule with $n_{j} \leq n$, then by Theorem 3.5. N_{j} is an n-absorbing primary submodule of M. By Theorem $3.14 N_{1} \cap \ldots \cap N_{m}$ is an n-absorbing primary submodule of M.

Recall that a commutative ring R with nonzero identity is said to be a divided ring if for every prime ideal I of R, we have $I \subseteq a R$ for all $a \in R \backslash I$, see [12]. Also the reader can consult [6] and [21] for more information on divided rings. Also, in 31, Tekir et.al. extended the concept of divided rings to modules as follows:

Definition 3.16. An R-module M is said to be a divided module if every prime submodule P of M is comparable with $R m$ for each $m \in M$, or equivalently, $P \subseteq R m$ for each $m \in M-P$.

Theorem 3.17. Every proper submodule N of a divided R-module M is an n-absorbing primary submodule of M.

Proof. Suppose that N is a proper submodule of the $R-$ module M. By (31), Proposition 1), prime submodules of a divided module are linearly ordered. So $M-\operatorname{rad}(N)$ is a prime submodule of M. Hence, we are done by definition.

Remark 3.18. Assume that $I=\left(0:_{R} M\right)$ and $A=R / I$. It is easy to see that:
(i) N is an n-absorbing primary R-submodule of M if and only if N is an n-absorbing primary A-submodule of M.
(ii) $\left(N:_{R} M\right)$ is an n-absorbing primary ideal of R if and only if $\left(N:_{A} M\right)$ is an n-absorbing primary ideal of A.

Theorem 3.19. Let M be an R-module and S be a multiplicatively closed subset of R. If N is an n-absorbing primary submodule of M and $S^{-1} N \neq S^{-1} M$, then $S^{-1} N$ is an n-absorbing primary submodule of $S^{-1} M$.

Proof. Let $a_{1}, \ldots, a_{n} \in R, s_{1}, \ldots, s_{n} \in S$ and $\frac{x}{s} \in S^{-1} M$ be such that $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \ldots \frac{a_{n}}{s_{n}} \frac{x}{s} \in S^{-1} N$. Then there exists $m \in S$ such that $m a_{1} a_{2} \ldots a_{n} x \in N$. As N is an n-absorbing primary submodule of M, we get either $a_{1} a_{2} \ldots a_{n} \in$ $\left(N:_{R} M\right)$ or $m a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} x \in M-\operatorname{rad}(N)$ for some $1 \leq i \leq n$. The first case implies that $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \ldots \frac{a_{n}}{s_{n}}=\frac{a_{1} a_{2} \ldots a_{n}}{s_{1} s_{2} \ldots s_{n}} \in S^{-1}\left(N:_{R} M\right) \subseteq\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)$.
The second case implies that
$\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \ldots \frac{a_{i-1} a_{i+1}}{s_{i-1} s_{i+1}} \ldots \frac{a_{n} x}{s_{n} s} \in S^{-1}(M-\operatorname{rad}(N)) \subseteq S^{-1} M-\operatorname{rad}\left(S^{-1} N\right)$.
Hence $S^{-1} N$ is an n-absorbing primary submodule of $S^{-1} M$.
Let $T(R)$ be the total quotient ring of the commutative ring R. A non zero ideal I of R is called an invertible ideal of R if $I I^{-1}=R$, where $I^{-1}=$ $\{x \in T(R): x I \subseteq R\}$. In [25], Naoum and Al-Alwan generalized the concept of an invertible ideal to the concept of an invertible submodule:
Let M be an R-module and let $S=R \backslash\{0\}$. Then $G=\{g \in S: g x=$ 0 for some $x \in M$ implies $x=0\}$ is a multiplicatively closed subset of R. Let N_{1} be a submodule of M and let $N_{2}=\left\{m \in R_{G}: m N_{1} \subseteq M\right\}$. A submodule N_{1} is said to be invertible in M if $N_{2} N_{1}=M$. A nonzero R-module M is said to be a Dedekind module if each nonzero submodule of M is invertible. For more information on Dedekind and generalized Dedekind modules, the reader can consult [1].

Theorem 3.20. Let R be a Noetherian domain, M a torsion-free multiplication u-module over R. Then the following statements are equivalent:
(i) M is a Dedekind module;
(ii) If N is a nonzero n-absorbing primary submodule of M, then either $N=A^{n}$ for some maximal submodule A of M and some positive integer n or $N=A_{1}^{n} A_{2}^{m}$ for some maximal submodules A_{1} and A_{2} of M and some positive integers n, m;
(iii) If N is a nonzero n-absorbing primary submodule of M, then either $N=P^{n}$ for some prime submodule P of M and some positive integer n or $N=N_{1}^{n} N_{2}^{m}$ for some prime submodules N_{1} and N_{2} of M and some positive integers n, m.

Proof. (i) \Longrightarrow (ii) Since every multiplication module over a Noetheian ring is a Noetherian module, so M is Noetherian and hence finitely generated. As N is an n-absorbing primary submodule of M, so by Theorem $3.8,\left(N:_{R} M\right)$ is an n-absorbing primary ideal of R. Now, $N=I M=\left(N:_{R} M\right) M$ for some proper ideal I of R. Since a finitely generated torsion free multiplication
module M over a domain R is a Dedekind module iff R is a Dedekind domain by ([20], Theorem 2.13). Then, we have either $I=L^{n}$ for some maximal ideal L of R and some positive integer n or $I=L_{1}^{n} L_{2}^{m}$ for some maximal ideals L_{1} and L_{2} of R and some positive integers n, m by ([7], Theorem 2.11.). Hence, either $N=L^{n} M=(L M)^{n}=A^{n}$ where $A=L M$ or $N=\left(L_{1} M\right)^{n}\left(L_{2} M\right)^{m}=A_{1}^{n} A_{2}^{m}$ where $A_{1}=L_{1} M$ and $A_{2}=L_{2} M$.
(ii) \Longrightarrow (iii) It is clear.
$($ iii $) \Longrightarrow(i)$ We need to show that R is a Dedekind domain. Let I be an ideal of R and L be a maximal ideal of R be such that $L^{2} \subset I \subset L$. Then $\sqrt{I}=L$ and so that $M-\operatorname{rad}(I M)=L M$, since M is a faithful multiplication R-module. Then by Theorem 3.11, $I M$ is an n-absorbing primary submodule of M. Now by (iii), either $I M=P^{n}$ for some prime submodule P of M and some positive integer n or $I M=N_{1}^{n} N_{2}^{m}$ for some prime submodules N_{1} and N_{2} of M and some positive integers n, m. Since M is a cancellation module, then $I=J^{n}$ for some prime ideal J of R and some positive integer n or $I=J_{1}^{n} J_{2}^{m}$ for some prime ideals J_{1} and J_{2} of R and some positive integers n, m in which any of the two cases make a contradiction. Thus there are no ideals properly between L^{2} and L. Therefore, R is a Dedekind domain by (18], Theorem 39.2).

Lemma 3.21. ([23], Corollary 1.3) Let M and \bar{M} be R-modules with f : $M \longrightarrow \bar{M}$ an R-module epimorphism. If N is a submodule of M containing $\operatorname{Ker}(f)$, then $f(M-\operatorname{rad}(N))=\bar{M}-\operatorname{rad}(f(N))$.

Theorem 3.22. Let M and \bar{M} be R-modules and let $f: M \longrightarrow \bar{M}$ be an R-module homomorphism. Then we have the following:
(i) If \bar{N} is an n-absorbing primary submodule of \bar{M}, then $f^{-1}(\bar{N})$ is an n-absorbing primary submodule of M.
(ii) If f is epimorphism and N is an n-absorbing primary submodule of M containing $\operatorname{Ker}(f)$, then $f(N)$ is an n-absorbing primary submodule of \bar{M}.

Proof. (i) Let $a_{1}, \ldots, a_{n} \in R$ and $x \in M$ such that $a_{1} \ldots a_{n} x \in f^{-1}(\bar{N})$. Then $a_{1} \ldots a_{n} f(x) \in \bar{N}$. Thus, either $a_{1} \ldots a_{n} \in\left(\bar{N}:_{R} \bar{M}\right)$ or there are $(n-1)$ of the a_{i} 's whose product with $f(x)$ is in $\bar{M}-\operatorname{rad}(\bar{N})$ and hence, either $a_{1} \ldots a_{n} \in\left(f^{-1}(\bar{N}):_{R} M\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $f^{-1}(\bar{M}-\operatorname{rad}(\bar{N}))$. Now, by using the inclusion $f^{-1}(\bar{M}-\operatorname{rad}(\bar{N})) \subseteq M-$ $\operatorname{rad}\left(f^{-1}(\bar{N})\right.$), we have $f^{-1}(\bar{N})$ is an n-absorbing primary submodule of M.
(ii) Let $a_{1}, \ldots, a_{n} \in R$ and $\bar{y} \in \bar{M}$ be such that $a_{1} \ldots a_{n} \bar{y} \in f(N)$. By assumption there exists $x \in M$ such that $\bar{y}=f(x)$ and so $f\left(a_{1} \ldots a_{n} x\right) \in f(N)$. Since, $\operatorname{Ker}(f) \subseteq N$, we have $a_{1} \ldots a_{n} x \in N$. Then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $M-\operatorname{rad}(N)$. Thus, either $a_{1} \ldots a_{n} \in\left(f(N):_{R} \bar{M}\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with \bar{y} is in $f(M-\operatorname{rad}(N))=\bar{M}-\operatorname{rad}(f(N))$. Therefore, $f(N)$ is an n-absorbing primary submodule of \bar{M}.

Corollary 3.23. Let L and N be submodules of an R-module M such that $L \subseteq N$. If N is an n-absorbing primary submodule of M, then N / L is an n-absorbing primary submodule of M / L.

Proof. Follows directly from Theorem 3.22 (ii).
Theorem 3.24. Let L and N be submodules of an R-module M such that $L \subset N \subset M$. If L is an n-absorbing primary submodule of M and N / L is a weakly n-absorbing primary submodule of M / L, then N is an n-absorbing primary submodule of M.

Proof. Let $a_{1}, \ldots, a_{n} \in R$ and $x \in M$ such that $a_{1} \ldots a_{n} x \in N$. If $a_{1} \ldots a_{n} x \in L$, then either $a_{1} \ldots a_{n} \in\left(L:_{R} M\right) \subseteq\left(N:_{R} M\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $M-\operatorname{rad}(L) \subseteq M-\operatorname{rad}(N)$. So assume that $a_{1} \ldots a_{n} x \notin L$. Then $0 \neq a_{1} \ldots a_{n}(x+L) \in N / L$ implies that either $a_{1} \ldots a_{n} \in\left(N / L:_{R} M / L\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with $(x+L)$ is in $M / L-\operatorname{rad}(N / L)=\frac{M-\operatorname{rad}(N)}{L}$. It means that either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there are $(n-1)$ of the $a_{i}{ }^{\prime} s$ whose product with x is in $M-\operatorname{rad}(N)$. Therefore, N is an n-absorbing primary submodule of M.

According to [24:
Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is of the form $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}. In addition, if M_{i} is a multiplication R_{i}-module, for $i=1,2$, then M is a multiplication $R-$ module. In this case, for each submodule $N=N_{1} \times N_{2}$ of M we have $M-\operatorname{rad}(N)=M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$.

Theorem 3.25. Let M_{1} be a multiplication R_{1} - module and M_{2} be a multiplication R_{2}-module and let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$. Then the following hold:
(i) A proper submodule L_{1} of M_{1} is an n-absorbing primary submodule if and only if $N=L_{1} \times M_{2}$ is an $n-a b s o r b i n g$ primary submodule of M.
(ii) A proper submodule L_{2} of M_{2} is an n-absorbing primary submodule if and only if $N=M_{1} \times L_{2}$ is an n-absorbing primary submodule of M.

Proof. (i) Assume that $N=L_{1} \times M_{2}$ is an n-absorbing primary submodule of M. Since N is a proper submodule of M, so $L_{1} \neq M_{1}$. Let $\bar{M}=\frac{M}{\{0\} \times M_{2}}$. Then $\bar{N}=\frac{N}{\{0\} \times M_{2}}$ is an n-absorbing primary submodule of \bar{M} by Corollary 3.23. Since \bar{M} is module-isomorphic to M_{1} and \bar{N} is module-isomorphic to L_{1}, so L_{1} is an n-absorbing primary submodule of M_{1}.
Conversely, assume that L_{1} is an n-absorbing primary submodule of M_{1}, then it is easy to see that $N=L_{1} \times M_{2}$ is an n-absorbing primary submodule of M.
(ii) Proceed similarly to (i).

Lemma 3.26. If I is an n-absorbing primary ideal of R, then \sqrt{I} is an n-absorbing ideal of R
Proof. Let $a_{1}, \ldots, a_{n+1} \in R$ be such that $a_{1} \ldots a_{n+1} \in \sqrt{I}$ and the product of a_{n+1} with $(n-1)$ of $a_{1}, \ldots, a_{n} \notin \sqrt{I}$. Since $a_{1} \ldots a_{n+1} \in \sqrt{I}$, then $\left(a_{1} \ldots a_{n+1}\right)^{k}=a_{1}^{k} \ldots a_{n+1}^{k} \in I$ for some positive integer k. Since I is an n-absorbing primary ideal of R and the product of a_{n+1} with $(n-1)$ of a_{1}, \ldots, a_{n} is not in \sqrt{I}, we conclude that $a_{1}^{k} \ldots a_{n}^{k}=\left(a_{1} \ldots a_{n}\right)^{k} \in I$, and thus $a_{1} \ldots a_{n} \in \sqrt{I}$. Therefore, \sqrt{I} is an n-absorbing ideal of R.

Theorem 3.27. Let I be an n-absorbing primary ideal of the ring R and let M be a faithful multiplication R-module with $A s s_{R}(M / \sqrt{I} M)$ a totally ordered set. Then $a_{1} \ldots a_{n} x \in I M$ implies that $a_{1} \ldots a_{n-1} x \in \sqrt{I} M$ or $a_{n} x \in \sqrt{I} M$ or $a_{1} \ldots a_{n} \in I$, whenever $a_{1}, \ldots, a_{n} \in R$ and $x \in M$.
Proof. Assume that $a_{1}, \ldots, a_{n} \in R, x \in M$ and $a_{1} \ldots a_{n} x \in I M$. If $\left(\sqrt{I} M:_{R}\right.$ $\left.a_{j} x\right)=R$ for some $1 \leq j \leq n$, then we are done. Now, suppose that $\left(\sqrt{I} M:_{R} a_{j} x\right)$ are proper ideals of R for all $1 \leq j \leq n$. Since $A s s_{R}(M / \sqrt{I} M)$ is a totally ordered set, then $\bigcup_{j=1}^{n}\left(\sqrt{I} M:_{R} a_{j} x\right)$ is an ideal of R and so there exists a maximal ideal P such that $\bigcup_{j=1}^{n}\left(\sqrt{I} M:_{R} a_{j} x\right) \subseteq P$. We claim that $a_{1} x \notin T_{P}(M)=\{\bar{x} \in M:(1-y) \bar{x}=0$ for some $y \in P\}$. To prove the claim, assume on the contrary that $a_{1} x \in T_{P}(M)$. This implies that $(1-y) a_{1} x=0$ for some $y \in P$, thus $(1-y) a_{1} x \in \sqrt{I} M$ and so $1-y \in\left(\sqrt{I} M:_{R} a_{1} x\right) \subseteq P$, a contradiction.
Now by ([16], Theorem 1.2), there are $y \in P$ and $\bar{x} \in M$ such that (1$y) M \subseteq R \bar{x}$. Thus, $(1-y) x=s \bar{x}$ for some $s \in R$. As $a_{1} \ldots a_{n} x \in I M$, so $(1-y)\left(a_{1} \ldots a_{n} x\right)=b \bar{x}$ for some $b \in I$. Thus $\left(a_{1} \ldots a_{n} s-b\right) \bar{x}=0$ and so $(1-y)\left(a_{1} \ldots a_{n} s-b\right) M \subseteq\left(a_{1} \ldots a_{n} s-b\right) R \bar{x}=0$. But M is faithful, so $(1-y)\left(a_{1} \ldots a_{n} s-b\right)=0$. Therefore, $(1-y)\left(a_{1} \ldots a_{n} s\right)=(1-y) b \in I$. Then $(1-y)\left(a_{1} \ldots a_{n-1}\right) s \in \sqrt{I}$ or $(1-y) a_{n} \in \sqrt{I}$ or $a_{1} \ldots a_{n} s \in I$, because I is an n-absorbing primary ideal of R. If $(1-y)\left(a_{1} \ldots a_{n-1}\right) s \in \sqrt{I}$, then $(1-y)\left(a_{1} \ldots a_{n-1}\right) \in \sqrt{I}$ or $(1-y) s \in \sqrt{I}$ or $\left(a_{1} \ldots a_{n-1}\right) s \in \sqrt{I}$, because \sqrt{I} is an n-absorbing ideal of R by Lemma 3.26. If $(1-y)\left(a_{1} \ldots a_{n-1}\right) \in \sqrt{I}$, then $(1-y)\left(a_{1} \ldots a_{n-1} x\right) \in \sqrt{I} M$ and so $1-y \in\left(\sqrt{I} M:_{R} a_{1} \ldots a_{n-1} x\right) \subseteq P$, a contradiction. If $(1-y) s \in \sqrt{I}$, then $(1-y)^{2} x=(1-y) s \bar{x} \in \sqrt{I} M$ which implies that $(1-y)^{2} \in\left(\sqrt{I} M:_{R} x\right) \subseteq\left(\sqrt{I} M:_{R} a_{1} \ldots a_{n-1} x\right) \subseteq P$, a contradiction. Similarly, we can get that $(1-y) a_{n} \notin \sqrt{I}$. Now $a_{1} \ldots a_{n-1} s \in \sqrt{I}$ implies that $(1-y) a_{1} \ldots a_{n-1} x=a_{1} \ldots a_{n-1} s \bar{x} \in \sqrt{I} M$ and so $1-y \in\left(\sqrt{I} M:_{R}\right.$ $\left.a_{1} \ldots a_{n-1} x\right) \subseteq P$, a contradiction. If $a_{1} \ldots a_{n} s \in I$, then $a_{1} \ldots a_{n-1} s \in \sqrt{I}$ or $a_{n} s \in \sqrt{I}$ or $a_{1} \ldots a_{n} \in I$ of which the first two cases are impossible, thus $a_{1} \ldots a_{n} \in P$.

4. Conclusion

In this paper, we considered n-absorbing primary submodules. Weakly n-absorbing primary submodules have been defined and have not been studied in depth. Future research on weakly n-absorbing primary submodules over commutative rings can therefore be constructed.

Acknowledgement

I would like to thank the referee for his/her great efforts in proofreading the manuscript and for helpful and valuable suggestions.

References

[1] Ali, M. M. Invertibility of multiplication modules III. New Zealand J. Math. 39 (2009), 193-213.
[2] Anderson, D. D., Arabaci, T., Tekir, U., and Koç, S. On S-multiplication modules. Comm. Algebra 48, 8 (2020), 3398-3407.
[3] Anderson, D. D., And Smith, E. Weakly prime ideals. Houston J. Math. 29, 4 (2003), 831-840.
[4] Anderson, D. F., and Badawi, A. On n-absorbing ideals of commutative rings. Comm. Algebra 39, 5 (2011), 1646-1672.
[5] Ashour, A. E., and Hamoda, M. Weakly primary submodules over noncommutative rings. J. Progressive Research Math. 7, 1 (2016), 917-927.
[6] Badawi, A. On divided commutative rings. Comm. Algebra 27, 3 (1999), 14651474.
[7] Badawi, A. On 2-absorbing ideals of commutative rings. Bull. Austral. Math. Soc. 75, 3 (2007), 417-429.
[8] Badawi, A., Tekir, U., and Yetkin, E. On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51, 4 (2014), 1163-1173.
[9] Badawi, A., and Yousefian Darani, A. On weakly 2-absorbing ideals of commutative rings. Houston J. Math. 39, 2 (2013), 441-452.
[10] Barnard, A. Multiplication modules. J. Algebra 71, 1 (1981), 174-178.
[11] Behboodi, M., and Koohy, H. Weakly prime modules. Vietnam J. Math. 32, 2 (2004), 185-195.
[12] Dobbs, D. E. Divided rings and going-down. Pacific J. Math. 67, 2 (1976), 353-363.
[13] Ebrahimi Atani, S. On graded weakly prime ideals. Turkish J. Math. 30, 4 (2006), 351-358.
[14] Ebrahimi Atani, S., and Farzalipour, F. On weakly primary ideals. Georgian Math. J. 12, 3 (2005), 423-429.
[15] Ebrahimi Atani, S., and Farzalipour, F. On weakly prime submodules. Tamkang J. Math. 38, 3 (2007), 247-252.
[16] El-Bast, Z. A., and Smith, P. F. Multiplication modules. Comm. Algebra 16, 4 (1988), 755-779.
[17] Farzalipour, F., and Ghiasvand, P. On graded semiprime and graded weakly semiprime ideals. Int. Electron. J. Algebra 13 (2013), 15-22.
[18] Gilmer, R. W. Multiplicative ideal theory. Queen's Papers in Pure and Applied Mathematics, No. 12. Queen's University, Kingston, Ont., 1968.
[19] Hamoda, M., and Ashour, A. E. On graded n-absorbing submodules. Matematiche (Catania) 70, 2 (2015), 243-254.
[20] Khoramdel, M., and Hesari, S. D. P. Some notes on Dedekind modules. Hacet. J. Math. Stat. 40, 5 (2011), 627-634.
[21] Koc, S., Tekir, U., and Ulucak, G. On strongly quasi primary ideals. Bull. Korean Math. Soc. 56, 3 (2019), 729-743.
[22] Koc, S., Uregen, R. N., and Tekir, U. On 2-absorbing quasi primary submodules. Filomat 31, 10 (2017), 2943-2950.
[23] McCasland, R. L., and Moore, M. E. On radicals of submodules. Comm. Algebra 19, 5 (1991), 1327-1341.
[24] Mostafanasab, H., Yetkin, E., Tekir, U., and Yousefian Darani, A. On 2 -absorbing primary submodules of modules over commutative rings. An. Ştiint. Univ. "Ovidius" Constanţa Ser. Mat. 24, 1 (2016), 335-351.
[25] Naoum, A. G., and Al-Alwan, F. H. Dedekind modules. Comm. Algebra 24, 2 (1996), 397-412.
[26] Oral, K. H., Tekir, U., and AĞargün, A. G. On graded prime and primary submodules. Turkish J. Math. 35, 2 (2011), 159-167.
[27] Quartararo, Jr., P., and Butts, H. S. Finite unions of ideals and modules. Proc. Amer. Math. Soc. 52 (1975), 91-96.
[28] Refai, M., and Al-Zoubi, K. On graded primary ideals. Turkish J. Math. 28, 3 (2004), 217-229.
[29] Smith, P. F. Some remarks on multiplication modules. Arch. Math. (Basel) 50, 3 (1988), 223-235.
[30] Tekir, U., Koç, S., Oral, K. H., and Shum, K. P. On 2-absorbing quasiprimary ideals in commutative rings. Commun. Math. Stat. 4, 1 (2016), 55-62.
[31] Tekir, U., Ulucak, G., and Koç, S. On divided modules. Iran. J. Sci. Technol. Trans. A Sci. 44, 1 (2020), 265-272.
[32] Uregen, R. N., Tekir, U., Shum, K. P., and Koc, S. On graded 2-absorbing quasi primary ideals. Southeast Asian Bull. Math. 43, 4 (2019), 601-613.
[33] Yousefian Darani, A., and Soheilnia, F. 2-absorbing and weakly 2absorbing submodules. Thai J. Math. 9, 3 (2011), 577-584.
[34] Yousefian Darani, A., and Soheilnia, F. On n-absorbing submodules. Math. Commun. 17, 2 (2012), 547-557.
[35] Yousefian Darani, A., Soheilnia, F., Tekir, U., and Ulucak, G. On weakly 2 -absorbing primary submodules of modules over commutative rings. J. Korean Math. Soc. 54, 5 (2017), 1505-1519.

Received by the editors April 30, 2020
First published online February 11, 2021

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Applied Science, Al-Aqsa University, Gaza, Palestine, e-mail: ma.hmodeh@alaqsa.edu.ps
 ${ }^{2}$ Corresponding author

