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On the inclusion submodule graph of a module

Lotf Ali Mahdavi1 2 and Yahya Talebi3

Abstract. Let R be a ring with identity and M be a unitary left R-
module. The inclusion submodule graph of a module M , denoted by
In(M), is an undirected simple graph whose vertex set V (In(M)) is a
set of all nontrivial submodules of M and there is an edge between two
distinct vertices X and Y if and only if X ⊂ Y or Y ⊂ X. In this pa-
per, we investigate connections between the graph-theoretic properties
of In(M) and some algebraic properties of modules. In particular, we
consider several properties of the graph In(M), such as connectivity, di-
ameter and girth. Also we obtain some independent sets and universal
vertices of this graph. We characterize some modules for which the in-
clusion submodule graphs are connected, complete and null. Finally, we
study the clique number and the chromatic number of In(M).
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1. Introduction

The investigation of graphs associated with algebraic structures is an inter-
esting subject and very important for mathematicians. Their aim is to translate
the properties of the graphs into algebraic properties and then, using the results
and methods of algebra, to deduce theorems about the graphs, which is written
in the preface of the book Algebraic Graph Theory, see [8]. Many fundamental
papers devoted to graphs assigned to rings and modules have appeared recently,
see for example [1, 2, 3, 6, 9, 11] in the ring theory and [4, 5, 12, 13, 14, 17] in
the module theory. Most properties of a ring and a module are connected to a
behavior of its ideals and its submodules, respectively. In 2015, the inclusion
ideal graph of a ring R, denoted by In(R), was introduced in [2]. By studying
on the sketched idea in this work, we define the inclusion submodule graph of
a module. Our main goal is to search for the connection between the algebraic
properties of a module and the graph theoretic properties of the graph asso-
ciated with it. Throughout this paper R denotes a ring with identity and all
modules are unitary left R-modules and all graphs are simple. The inclusion
submodule graph of an R-module M , denoted by In(M) is defined as the graph
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with the vertex set V (In(M)) whose vertices are in one to one correspondence
with all nontrivial submodules of M and two distinct vertices X and Y are
adjacent if and only if X ⊂ Y or Y ⊂ X. By a nontrivial submodule of M we
mean a nonzero proper left submodule of M . Two distinct submodules N and
K of an R-module M are comparable if N ⊂ K or K ⊂ N . An R-module M is
called uniserial if any two submodules are comparable. A submodule N of an
R-module M is called small in M (we write N ≪ M) if, for every submodule
X ⊆ M , N +X = M implies that X = M . A nonzero R-module M is called
hollow if every proper submodule of M is small. If X is a maximal (minimal)
submodule of M , we write X ≤max M (X ≤min M). For a module M , we use
Max(M) and Min(M) to denote the set of all the maximal submodules and
the set of all the minimal submodules of M , respectively. The radical of an R-
module M , denoted by Rad(M), is the intersection of all maximal submodules
of M . A submodule K of nonzero R-module M is said to be essential in M (we
write K �M) if K ∩ L ̸= (0) for every nonzero proper submodule L of M . If
every nonzero submodule of M is essential, then M is called a uniform module.
A nonzero R-module M is called local if it has a unique maximal submodule
that contains all other proper submodules. The socle of an R-module M , de-
noted by Soc(M), is the sum of all simple submodules of M . An R-module
M is said to be semisimple if Soc(M) = M . A nonzero R-module M is called
indecomposable if it is not a direct sum of two nonzero submodules. For an
R-module M , the length of M is the length of composition series of M , denoted
by lR(M). An R-module M has finite length if lR(M) < ∞. For a ring R, we
denote the Jacobson radical of R by J(R). The ring of all endomorphisms of
an R-module M is denoted by EndR(M).

Let G=(V (G),E(G)) be a graph with the vertex set V (G) and the edge set
E(G), where an edge is an unordered pair of distinct vertices of G. By the order
of G we mean the number of vertices of G and we denote it by |G|. If x and
y are two adjacent vertices of G, then we write x − y. The degree of a vertex
v in a graph G, denoted by deg(v), is the number of edges incident with v.
The maximum degree and the minimum degree of G are denoted by ∆(G) and
δ(G), respectively. A vertex u is called universal if it is adjacent to all other
vertices. A vertex v is called isolated if it is adjacent to no other vertices of the
graph. A vertex w is called an ending vertex if deg(w) = 1. Let x and y be two
distinct vertices of G. An x, y-path is a path with starting vertex x and ending
vertex y. A path of n vertices is denoted by Pn. For distinct vertices x and y,
d(x, y) is the least length of an x, y-path. If G has no such path, then we define
d(x, y) = ∞. The diameter of G, is diam(G)=sup {d(x, y): x and y are distinct
vertices of G}. A cycle in a graph is a path of length at least 3 through distinct
vertices which begins and ends at the same vertex. By (x, y, z) we denote a
cycle of length 3. A cycle of n vertices is denoted by Cn and is called an n-cycle.
The girth of a graph is the length of its shortest cycle. A graph with no cycles
has infinite girth. By the null graph, we mean a graph with no edges. A graph
is said to be connected if there is a path between every pair of vertices. A tree
is a connected graph which does not contain a cycle. A star graph is a tree
consisting of one vertex adjacent to all others. A caterpillar is a tree for which
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removing the leaves and incident edges produces a path graph. An r-partite
graph is one whose vertex set can be partitioned into r subsets so that an edge
has both ends in no subset. The complete graph of order n, is denoted by
Kn. By a clique in a graph G, we mean a complete subgraph of G. The clique
number of G is ω(G)=sup{n : Kn is a subgraph of G}. An independent set in
a graph is a set of pairwise non-adjacent vertices. An independence number of
G, written α(G), is the maximum size of an independent set. For a graph G,
the chromatic number of G, denoted by χ(G), is defined to be the minimum
number of colors which can be assigned to the vertices of G such a way that
every two adjacent vertices have different colors.

2. Connectivity of the inclusion submodule graphs

In this section, we provide some conditions under which the inclusion sub-
module graphs are connected, complete and null. Moreover, we introduce some
independent sets and universal vertices of this graph.

Theorem 2.1. Let M be an R-module. Then the graph In(M) is not connected
if and only if M is a direct sum of two simple R-modules.

Proof. Suppose that In(M) is not connected. Assume that G1 and G2 are
two components of In(M). Let X and Y be two distinct nontrivial submodules
of M such that X ∈ G1 and Y ∈ G2. Since there is no X, Y -path, X is not
contained in Y and Y is not contained in X. If X ∩ Y ̸= (0), then there is an
X, Y -path of the form X −X ∩ Y − Y , a contradiction. Hence, assume that
X ∩ Y = (0). Now, if M ̸= X + Y , then there is an X, Y -path of the form
X − X + Y − Y , a contradiction. Therefore, M = X ⊕ Y . We show that X
and Y are minimal submodules of M . To see this, let Z be a submodule of M
such that (0) ̸= Z ⊆ X. If Z ⊂ X, then Z and X are adjacent vertices, which
implies that Z ∈ G1. Hence there is no Z, Y -path and by arguing as above,
they are not comparable. If M ̸= Z +Y , then there is a Z, Y -path of the form
Z−Z+Y −Y , a contradiction. Otherwise, M = Z+Y and by the modularity
condition, we have X = X ∩ (Z + Y ) = Z +X ∩ Y = Z, a contradiction. Thus
X is a minimal submodule of M . A similar argument shows that Y is also a
minimal submodule of M . But, the minimality of X and Y imply that they
are simple R-modules and sine M = X ⊕ Y , we are done.

Conversely, assume that M is a direct sum of two simple R-modules. Let
N and K be two arbitrary distinct vertices of In(M) and N −K be an edge
in In(M). Then N ⊂ K or K ⊂ N . This implies that N ∩ K ̸= (0). Thus
N − K is an edge in the intersection graph G(M) of an R-module M , which
is studied in [4]. Hence In(M) is a subgraph of G(M). Thus by [[4], Theorem
2.1], G(M) is not connected and consequently In(M) is not connected. This
completes the proof.

Corollary 2.2. Let M be an R-module. If In(M) is not connected, then
In(M) is a null graph, and as any null graph is not connected, so the converse
is correct.
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Example 2.3. Consider the inclusion submodule graphs of Zpq, Zp2 and
Zp⊕Zp as Z-modules such that p and q are two distinct prime numbers. Since
Zpq

∼= Zp ⊕ Zq, by Theorem 2.1, In(Zpq) and In(Zp ⊕ Zq) are not connected
and In(Zpq) = In(Zp ⊕ Zq) ∼= K2. In particular for p = q, we have that the
only nontrivial submodule of the Z-module Zp2 is pZp2 and thus In(Zp2) ∼= K1.
Also, we can see easily that Zp⊕Zp as a Z-module has exactly p+1 nontrivial
submodules of order p which are isolated vertices of In(Zp⊕Zp). Consequently,
In(Zp ⊕ Zp) ∼= Kp+1.

Corollary 2.4. Let M be an R-module which is not simple. Then In(M) is
connected if and only if either M is not semisimple or M = ⊕i=n

i=1Mi, where
n ≥ 3 and Mi is a simple R-module, for 1 ≤ i ≤ n.

Example 2.5. (1) Consider the Z-module Z2 ⊕ Z4 which is not semisimple.
The nontrivial submodules of Z2 ⊕ Z4 are < (0, 1) >, < (0, 2) >, < (1, 0) >,
< (1, 1) >, < (1, 2) > and N = Z2 × {0, 2}, which is not cyclic. The graph
In(Z2 ⊕ Z4) is a tree with four end vertices. (See Fig. 1).

Fig. 1. In(Z2 ⊕ Z4)

(2) Let p and q are two distinct prime numbers. The Z-modules Zpq2 and Zp2q2

are not semisimple. We have:
(a) In(Zpq2) is a tree with two end vertices and also it is isomorphic to the
2-partite graph P4.
(b) In(Zp2q2) is connected. Also it is an Eulerian graph and has a Hamiltonian
cycle of the length 7. (See Fig. 2).

Fig. 2. In(Zp2q2)
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Example 2.6. Consider Zp1p2p3 as a Z-module such that pi is a prime number,
for i = 1, 2, 3. Since Zp1p2p3

=< p1p2 > ⊕ < p1p3 > ⊕ < p2p3 >, by
Corollary 2.4, the inclusion submodule graph of Zp1p2p3

is connected. Moreover,
In(Zp1p2p3

) ∼= C6.

Proposition 2.7. Let M be an R-module. If In(M) is a connected graph,
then the following statements hold:
(1) Every pair of maximal submodules of M are not adjacent vertices of In(M)
and they have nontrivial intersection and also there exists a path between them.
(2) Every pair of minimal submodules of M are not adjacent vertices of In(M)
and they have nontrivial sum and also there exists a path between them.

Proof. Let Max(M) = {X|X ≤max M} and Min(M) = {Y |Y ≤min M}.
(1) Suppose that X1, X2 ∈ Max(M). If X1 ⊂ X2, then the maximality of X1

implies that M = X2, a contradiction. Similarly, if X2 ⊂ X1, then M = X1

which again yields a contradiction. Hence X1 and X2 are not comparable.
Thus every pair of maximal submodules of M are not two adjacent vertices.
Now, we show that X1∩X2 is a vertex of In(M). Clearly, X1∩X2 ̸= M . Since
Xi ⊂ X1+X2 ⊆ M for i = 1, 2, the maximality ofXi implies thatM = X1+X2.
Let X1∩X2 = (0). So M = X1⊕X2. However, M/X1

∼= X2 and M/X2
∼= X1,

hence X1 and X2 are two simple R-modules. Now, by Theorem 2.1, In(M) is
not connected, a contradiction. Therefore, X1 ∩X2 ̸= (0) and there exists an
X1, X2-path of the form X1 −X1 ∩X2 −X2.
(2) Assume that Y1, Y2 ∈ Min(M). If Y1 ⊂ Y2, then the minimality of Y2

implies that Y1 = (0), a contradiction. A similar argument shows that if
Y2 ⊂ Y1, then Y2 = (0), which again yields a contradiction. Hence Y1 and Y2

are not comparable. Thus every pair of minimal submodules of M are not two
adjacent vertices. Now, we show that Y1 + Y2 is a vertex of In(M). Clearly,
Y1 + Y2 ̸= (0). If Y1 ∩ Y2 ̸= (0), since (0) ⊂ Y1 ∩ Y2 ⊂ Yi ⊂ M for i = 1, 2, the
minimality of Yi implies that Y1 ∩ Y2 = Y1 = Y2, a contradiction with Y1 ̸= Y2.
Hence, Y1 ∩ Y2 = (0). Let us get M = Y1 + Y2. Then M = Y1 ⊕ Y2 such that
Y1 and Y2 are two simple R-modules. Hence by Theorem 2.1, In(M) is not
connected, a contradiction. Therefore, Y1 + Y2 ̸= M and there is a Y1, Y2-path
of the form Y1 − Y1 + Y2 − Y2.

The following corollary is an immediate consequence of Proposition 2.7.

Corollary 2.8. Let M be an R-module. Then we have:
(1) Max(M) and Min(M) are two independent sets of In(M).
(2) α(In(M)) ≥ max{card(Max(M)), card(Min(M))}.

Example 2.9. Consider Z, Zp ⊕ Zp and Zp1p2p3 as Z-modules, where p and
pi are primes, for i = 1, 2, 3. We know that Max(Z) = {< p >: p ∈ Z and
p is prime} is an independent set of the graph In(Z) and α(In(Z)) = ∞.
Also, we can see two Examples 2.3 and 2.6 that α(In(Zp ⊕ Zp)) ≥ p + 1 and
α(In(Zp1p2p3

)) = 3.

Proposition 2.10. Let M be an R-module and N be a nontrivial submodule
of M . Then the following statements hold:
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(1) For any nontrivial submodule K of M , if N and K are not comparable,
then N is an isolated vertex.
(2) If N is a direct summand of M and for every nonzero submodule K of M ,
Rad(K) ̸= (0), then there is a path of length 2 in In(M).
(3) If N is a small submodule of M and Rad(M) ̸= N , then for any nontrivial
submodule K of M , which is not comparable with N , there is a path of length
2 in In(M) and d(N,Rad(M)) = 1.
(4) If N is an essential submodule of M such that Soc(M) ̸= N and |In(M)| ≥
3, then there is a cycle of length 3 in In(M) and d(N,Soc(M)) = 1.

Proof. (1) Obvious.
(2) Assume that N is a nonzero proper submodule of M which is a direct
summand of M and for every nonzero submodule K of M , Rad(K) ̸= (0).
Then there exists a submodule L of M such that N⊕L = M . Hence Rad(N)⊕
Rad(L) = Rad(M). Since Rad(N) ⊂ N and L∩Rad(N) ⊂ L∩N = (0), by the
modularity condition, we obtain N ∩ Rad(M) = Rad(N) ⊂ Rad(M). Hence,
there is an N , Rad(M)-path of the form N −Rad(N)−Rad(M) of length 2.
(3) Since N is a nontrivial small submodule of M , for any nontrivial submodule
K of M , N + K ̸= M . As N and K are not comparable, there is a path of
the form N − N + K − K of length 2 in In(M). Moreover, by Proposition
9.13 of [[7], p. 120], Rad(M) is the sum of all small submodules of M , then
N ⊂ Rad(M) and d(N,Rad(M)) = 1.
(4) Since N is an essential submodule of M and since by Proposition 9.7 of
[[7], p. 118], Soc(M) is the intersection of all essential submodules of M , then
Soc(M) ⊂ N . Also, by Corollary 9.9 of [[7], p. 119], Soc(N) = N ∩ Soc(M) ⊂
N,Soc(M). Then there is a cycle of the form (N,Soc(N), Soc(M)) of length 3
in In(M). Moreover, d(N,Soc(M)) = 1.

Corollary 2.11. Let M be an R-module. Then In(M) is a connected graph if
one of the following holds:
(1) The module M is hollow and Rad(M) ̸= M .
(2) The module M is uniform.
(3) The module M is indecomposable.
(4) The module M is finitely generated and Rad(M) ̸= (0).
(5) The module M is finitely cogenerated with Rad(M) ̸= (0) and Soc(M) ̸=
(0).
(6) The module M is self-injective and indecomposable.
(7) The module M is self-projective with Rad(M) ̸= M and EndR(M) is a
local ring.

Proof. It is clear that each of the conditions in the corollary implies that M is
not a direct sum of two simple R-modules. Hence, the corollary is an immediate
consequence of Theorem 2.1.

Theorem 2.12. Let M be an R-module and In(M) be a graph with |In(M)| ≥
3. Then In(M) is connected with at least one cycle, if one of the following
holds:
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(1) The module M is Noetherian and contains a unique maximal submodule.
(2) The module M is Artinian and contains a unique minimal submodule.

Proof. (1) Suppose that M is a Noetherian R-module. Then M has at least one
maximal submodule. Moreover, every nonzero submodule of M is contained in
a maximal submodule. Therefore, if M possesses a unique maximal submodule,
say U , then U contains every nonzero submodule of M . Let N and K be two
distinct vertices of In(M). Hence N ⊂ U and K ⊂ U and thus U is an
adjacent vertex to both N and K. Then there is a N , K-path of the form
N − U − K, and this implies that the graph In(M) is connected. However,
since N,K ⊆ N+K ⊂ U ̸= M , if N+K = N or N+K = K, then N andK are
two adjacent vertices and (N,U,K) is a cycle. Otherwise, there are three cycles
of the forms (N,U,N+K) and (K,U,N+K) and also N−U−K−N+K−N .
Therefore, In(M) is a connected graph with at least one cycle.
(2) Assume that M is an Artinian R-module. Then M has at least one minimal
submodule. Moreover, every nonzero submodule of M contains a minimal
submodule. Therefore, ifM possesses a unique minimal submodule, say L, then
L is contained in every nonzero submodule of M . Let A and B be two distinct
vertices of In(M). Hence L ⊂ A and L ⊂ B and thus L is an adjacent vertex to
both A and B. Then there is an A,B-path, of the form A−L−B. Therefore,
In(M) is a connected graph. However, since L ⊂ A ∩ B ⊆ A,B ̸= M , if
A∩B = A or A∩B = B, then A and B are two adjacent vertices and (A,L,B)
is a cycle. Otherwise, there are three cycles of the forms (A,L,A ∩ B) and
(B,L,A ∩ B) and also A − L − B − A ∩ B − A. Consequently, In(M) is a
connected graph with at least one cycle.

Lemma 2.13. Let R be a ring and M be an R-module. Then the following
hold:
(1) The graph In(M) is complete if and only if the module M is uniserial.
(2) If R has the only one left maximal ideal and every finitely generated sub-
module of M is cyclic, then the graph In(M) is complete.

Proof. Part 1 is obvious and Part 2 follows from the proof of Part 1 of [[14],
Theorem 2.4].

Proposition 2.14. Let M be an R-module and In(M) be a complete graph.
Then every nontrivial submodule of M is small and essential.

Proof. Suppose that N is an arbitrary nontrivial submodule of M and In(M)
is a complete graph. Assume that for every submodule X of M , N +X = M .
If X ⊆ N , then M = N , which is a contradiction. However, if N ⊆ X, then
N + X = X. Thus M = X, hence N ≪ M . Now, we claim that N is an
essential submodule in M . To see this, if for every nonzero submodule X of
M , X ⊆ N , then X ∩N = X ̸= (0) and also if N ⊆ X, then N ∩X = N ̸= (0).
Hence, N �M . Consequently, every nontrivial submodule of M is small and
essential.

Proposition 2.15. Let M be an R-module such that Rad(M) and Soc(M) are
two distinct vertices of In(M). Then the following statements hold:
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(1) If M is hollow, then Rad(M) is a universal vertex.
(2) If M is uniform, then Soc(M) is a universal vertex.

Proof. (1) Suppose that M is a hollow R-module. Then every nontrivial sub-
module of M is small in M . Since, by Proposition 9.13 of [[7], p. 120], Rad(M)
is the sum of all small submodules of M , then every nontrivial small submod-
ule is contained in Rad(M). Thus every nontrivial small submodule in M is
an adjacent vertex to Rad(M). Therefore, Rad(M) is a universal vertex in
In(M).
(2) Assume that M is a uniform R-module. Then every nontrivial submodule
of M is essential in M . Since, by Proposition 9.7 of [[7], p. 118], Soc(M) is
the intersection of all essential submodules of M , then Soc(M) is contained
in every nontrivial essential submodule of M , thus it is an adjacent vertex to
every nontrivial essential submodule in M . Therefore, Soc(M) is a universal
vertex in In(M).

3. Diameter and girth of the inclusion submodule graphs

In this section, we determine the diameter and the girth of the inclusion
submodule graphs. Also, we prove that, if the graph In(M) is a tree, then
In(M) is a caterpillar with diam(In(M)) ≤ 3 and if the module M is local,
then In(M) is a star graph.

Theorem 3.1. Let M be an R-module with the connected graph In(M). Then
diam(In(M)) ≤ 3.

Proof. Let A and B be two nontrivial distinct submodules of M . If A and B
are comparable, then there is an edge between A and B and we are done. Thus
suppose that A and B are not comparable. Now, we consider three cases.
Case 1. Let A + B ̸= M . Then there exists an A, B- path of the form
A − A + B − B of length 2, so d(A,B) = 2. Case 2. Let A ∩ B ̸= (0).
Then there exists an A, B-path of the form A − A ∩ B − B of length 2, so
d(A,B) = 2. Case 3. Let A + B = M and A ∩ B = (0). Then M = A ⊕ B
and since In(M) is connected, we conclude that at least one of A and B
should be non-maximal. To see this, let both A and B are maximal. Since
A ∼= M/B, A is simple and similarity B is simple and by Theorem 2.1, In(M)
is not connected, a contradiction. So assume that B is not maximal. Hence
there exists a submodule C of M such that B ⊂ C ⊂ M . Then B and C
are two adjacent vertices of In(M). Now, if A and C are comparable, then
there exists an A, B-path of the form A− C − B of length 2, so d(A,B) = 2.
But if A and C are not comparable, by the modularity condition, we have
C = C ∩M = C ∩ (A⊕B) = (C ∩A)⊕B. Now, if C ∩A = (0), then C = B,
a contradiction with the existence of C. Also, if C ∩A ̸= (0), then there exists
an A, B-path of the form A − C ∩ A − C − B of length 3, so d(A,B) ≤ 3.
Therefore, diam(In(M)) ≤ 3.

Example 3.2. By Example 2.5, diam(In(Z2⊕Z4)) = diam(In(Z36)) = 3 and
by Example 2.6, diam(In(Z70)) = 3.
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Remark 3.3. Let R be a ring with the graph In(R) and M2(R) be the set of
2 by 2 matrices over the ring R. Then the following statements hold:
(1) If R is not isomorphic to M2(D), nor to D1 ×D2, where D, D1 and D2 are
division rings, then In(R) is connected with diam(In(R)) ≤ 3.
(2) If R is an integral domain and |In(R)| > 2, then In(R) is connected with
diam(In(R)) ≤ 2.

Proof. (1) It is an immediate consequence of [[2], Theorem 1].
(2) Suppose that I and J are two distinct ideals of integral domain R. If I ⊂ J
or J ⊂ I, then they are two adjacent vertices of In(R), so d(I, J) = 1. We
know that I ∩ J ⊆ I, J ⊆ I + J . Now, if I is not contained in J and J is not
contained in I, then there exist three cases.
Case 1. I+J ̸= R imply that there exists an I, J-path of the form I−I+J−J ,
so d(I, J) = 2. Case 2. I ∩ J ̸= (0) imply that there is an I, J-path of the
form I − I ∩ J − J , so d(I, J) = 2. Case 3. I + J = R and I ∩ J = (0) imply
that R = I ⊕ J . Hence there is an idempotent e in R, such that I = Re and
J = R(1 − e). Since the integral domain R has no zero divisor, then e = 0
or e = 1, thus I = (0) and J = R or I = R and J = (0), a contradiction.
Therefore, by the above arguments, d(I, J) ≤ 2. Consequently, In(R) is a
connected graph and diam(In(R)) ≤ 2.

Proposition 3.4. Let M be an R-module such that In(M) be a tree. Then
the following statements hold:
(1) The graph In(M) is a caterpillar with diam(In(M)) ≤ 3.
(2) If M is a local R-module, then In(M) is a star graph.

Proof. (1) It follows form Theorem 2.1.
(2) Suppose that M is a local R-module. Then by 41.4 Part 2 of [[16], p.
352], M is hollow and by Corollary 2.11 Part 1, In(M) is connected. But, by
Proposition 2.15 Part 1, Rad(M) is a universal vertex of the graph In(M). Let
X and Y be two distinct vertices of In(M) and different from Rad(M). Since
In(M) is a tree, it has no cycles, thus X and Y are not comparable. Therefore,
In(M) is a star graph.

Example 3.5. Suppose that R = F [x, y]/(x, y)2, where F is an infinite field
and x and y are indeterminates. Then I = (x, y), Ix = (x), Iy = (y), and

Ia = {(ax+ y)| 0 ̸= a ∈ F} are all nontrivial ideals of R. Also, I is the only
maximal ideal of R, and for every proper ideal J of R, we have J ⊆ I. Since
every pair of nontrivial ideals except I are not comparable, J(R) = I is the
only universal vertex of infinite degree of the graph In(R). Hence, In(R) is an
infinite star graph.

In the following theorem we show that for anyR-moduleM , girth(In(M)) ∈
{3, 6,∞}.

Theorem 3.6. For any module M , exactly one of the following three claims
holds: Either the graph In(M) is acyclic, or the girth of In(M) is 3, or the
girth of In(M) is 6.
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Proof. First we prove that if the graph In(M) has an isolated vertex A, then
In(M) is a null graph. Assume the opposite, let B − C be an edge in In(M),
while A is an isolated vertex in the same graph. Then A is incomparable
to both B and C, so A ∩ B = A ∩ C = (0) and A + B = A + C = M .
Therefore, (0), A,B,C,M form a sublattice of the submodule lattice of M , and
this sublattice is isomorphic to the pentagon lattice N5. This would imply
that the submodule lattice of M is not modular, and that is a contradiction,
as the modularity of the submodule lattices was proved by Dedekind in the
1800s. The contradiction proves our claim, that either all vertices of In(M)
are isolated, or none are.

Assume from now on that In(M) is not acyclic. Hence each vertex of In(M)
is adjacent to at least one other vertex. If there are three distinct vertices A,
B and C in In(M) such that A ⊂ B ⊂ C, then these three form a 3-cycle and
girth(In(M)) = 3. From now on, assume such three vertices do not exist in
In(M). Together with the assumption that In(M) has no isolated vertices,
we obtain that the submodules in In(M) can be partitioned into two disjoint
levels: Level 1 and Level 2. Each submodule in Level 1 is a subset of some
submodule on Level 2 and each submodule on Level 2 contains some submodule
on Level 1. It means that the graph In(M) is bipartite, so it has no odd cycles.
Next we claim that for any two distinct A,B ∈ In(M) such that both A and
B are on Level 1, the sum A+B ̸= M . Assume the opposite, that A+B = M .
Let C ∈ In(M) be on Level 2 such that B ⊂ C. As A + B = M , thus
A+C = M , and hence C and A are incomparable. Therefore, A∩C = (0) and
hence also A∩B = (0). Again, we obtain that (0), A,B,C,M form a sublattice
of the submodule lattice of M isomorphic to the pentagon N5, a contradiction.
The contradiction proves the claim. By a dual argument, with reversing all
inclusions, and transposing + and ∩, we prove the dual claim, that for any two
distinct A,B ∈ In(M) such that both A and B are on Level 2, the intersection
A∩B ̸= (0). Putting the two claims together, we know that for any two distinct
A,B ∈ In(M), if A and B are both on Level 1, then A+B is on Level 2, while
if A and B are both on Level 2, then A ∩B is on Level 1.

Now, assume that the graph In(M) has an n-cycle. We claim that it
is impossible that In(M) has a 4-cycle or 5-cycle. To prove this claim, let
M1,M2,M3,M4,M5 be a 5-cycle of In(M). We can see easily that there exists
a chain Mi ⊂ Mj ⊂ Mk in M , where 1 ≤ i, j, k ≤ 5. Thus, In(M) contains
a 3-cycle. Now, let M1,M2,M3,M4 is a 4-cycle of In(M). If M1 and M3 are
incomparable, also M2 and M4 are incomparable, then M1 +M3 ⊆ M2,M4 or
M2,M4 ⊆ M1 ∩M3. Hence, M1 ∩M3 ̸= Mi and M1 +M3 ̸= Mi for 1 ≤ i ≤ 4.
Therefore, (M1,M1+M3,M2) or (M1,M1∩M3,M2) is a 3-cycle. Consequently,
girth(In(M)) = 3.

Now we are ready to complete the proof of this theorem. In the case when
the graph In(M) contains an n-cycle of length greater than 6, the case when n
is odd produces a 3-cycle similarly as the case when n = 5 which is mentioned
in the argument above. Finally, suppose that A1, A2, . . . , A2n is a cycle in
In(M). If 2n = 6, we are finished, as the girth of In(M) must be 6. So assume
that 2n > 6, and without loss of generality, we assume that A1 is on Level
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1. Thus A3 and A5 are also on Level 1, while A2 and A4 are on Level 2. By
the previous argument, A1 + A5 is on Level 2. We claim that A1 + A5 ̸= A2.
Assume the opposite, A1 + A5 = A2, thus A5 ⊂ A2 and A3, A4, A5, A2 form
a 4-cycle in In(M), which is a contradiction. An analogous argument proves
that A1 + A5 ̸= A4. Therefore, A1, A2, A3, A4, A5, A1 + A5 form a 6-cycle in
In(M), and hence girth(In(M)) = 6.

Example 3.7. Consider the Z-modules Z, Z20, Z30, Z36 and Z5 ⊕ Z5. By
Theorem 2.1, we know that In(Z) and In(Z36) are two connected graphs and
they contain 3-cycles of the forms (2Z, 4Z, 8Z) and (2Z36, 4Z36, 12Z36),
respectively. Also, by Examples 2.3, 2.5 and 2.6, In(Z20) ∼= P4 and In(Z30) ∼=
C6 and also In(Z5⊕Z5) is a null graph. Then by Theorem 3.6, girth(In(Z)) =
girth(In(Z36)) = 3 and girth(In(Z30)) = 6 and also

girth(In(Z20)) = girth(In(Z5 ⊕ Z5)) = ∞.

4. Clique number and chromatic number of the inclusion
submodule graphs

Let M be an R-module. In this section, we obtain some results on the clique
number and the chromatic number of In(M). We study the condition under
which the chromatic number of In(M) is finite. It is proved that χ(In(M))
is finite, provided ω(In(M)) is finite and also if δ = δ(In(M)) ≥ 1 and ∆ =
∆(In(M)) < ∞, then both ω(In(M)) and χ(In(M)) are finite.

Lemma 4.1. Let M be an R-module. Suppose that S(M) and E(M) are the
set of all nontrivial small submodules and the set of all nontrivial essential sub-
modules of M , respectively. Then the following statements hold:
(1) ω(In(M)) = 1 if and only if either |In(M)| = 1 or |In(M)| ≥ 2 and M is
a direct sum of two simple R-modules.
(2) If ω(In(M)) < ∞, then lR(M) < ∞.
(3) If card(S(M)) < ∞ or card(E(M)) < ∞, then for every nontrivial sub-
module N of M , ω(In(N)) < ∞ and ω(In(M/N)) < ∞.

Proof. (1) Suppose that ω(In(M)) = 1 and |In(M)| ≥ 2. This implies that
In(M) is not connected. Hence, by Theorem 2.1, M is a direct sum of two
simple R-modules. The converse is straightforward.
(2) Clearly, lR(M) ≤ ω(In(M)) + 1 and since ω(In(M)) < ∞, lR(M) < ∞.
(3) In order to establish this part, first we claim that ω(In(M)) < ∞. To
see this, let ω(In(M)) = ∞. Then In(M) has an infinite maximal clique H.
Hence by Proposition 2.14, every vertex of the maximal clique H is a small
and essential submodule in M . Then card(S(M)) = card(E(M)) = ∞, a
contradiction. Hence, ω(In(M)) < ∞. Now, suppose that N is a nontrivial
submodule ofM . Since ω(In(N)) ≤ ω(In(M)) and ω(In(M/N)) ≤ ω(In(M)),
thus ω(In(N)) < ∞ and ω(In(M/N)) < ∞.

Lemma 4.2. Let M be an R-module. If N is a vertex of the graph In(M)
such that deg(N) < ∞, then lR(M) < ∞.
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Proof. Suppose that N contains an infinite strictly increasing sequence of
submodules N0 ⊂ N1 ⊂ N2 ⊂ . . . . Then Ni ⊂ N , for all i ∈ I, which con-
tradicts deg(N) < ∞. Similarly, the assumption that N contains an infinite
strictly decreasing sequence of submodules, again yields a contradiction. Also
assume that M/N contains an infinite strictly increasing sequence of submod-
ules M0/N ⊂ M1/N ⊂ M2/N ⊂ . . . . Since N ⊂ M0 ⊂ M1 ⊂ M2 ⊂ . . . . Then
Mi ⊃ N , for all i ∈ I, a contradiction. Similarly, if M/N contains an infi-
nite strictly decreasing sequence of submodules, again yields a contradiction.
Hence, N and M/N cannot contain an infinite strictly increasing or decreas-
ing sequence of submodules. Thus, they are Noetherian R-module as well as
Artinian R-module. Hence, M is Noetherian R-module as well as Artinian
R-module. Therefore, lR(M) < ∞.

Proposition 4.3. Let M be an R-module and In(M) be a connected graph. If
M has at least one minimal and one maximal submodule, both of finite degrees,
then card(Min(M)) < ∞ and card(Max(M)) < ∞.

Proof. Let N ∈ Min(M) and K ∈ Max(M) be such that deg(N) < ∞ and
deg(K) < ∞. We consider four cases.
Case 1. If N ∩ K = (0) and N + K ̸= M , since K ⊆ N + K ̸= M , the
maximality of K implies that K = N + K, then N ⊂ K and so N = (0), a
contradiction. Case 2. If N ∩ K ̸= (0) and N + K = M , since N ∩ K ⊆ N ,
the minimality of N implies that N ∩K = N , thus N ⊂ K and so K = M , a
contradiction. Case 3. Let N ∩K = (0) and N +K = M , then M = N ⊕K. If
N and K are comparable, then M = K and N = (0), which is a contradiction.
However, if N and K are not comparable, since In(M) is a connected graph,
there exists a path between them. So with no loss of generality we can suppose
that there exists a vertex X of In(M) such that N −X −K is an N,K-path.
Since N is a minimal submodule, N ⊂ X and since K is a maximal submodule,
X ⊂ K. Then N ⊂ K, which is again a contradiction. Case 4. If N ∩K ̸= (0)
and N + K ̸= M , the above argument shows that N ⊂ K. Therefore, N is
adjacent to any Kj ∈ Max(M), j ∈ J and K is adjacent to any Ni ∈ Min(M),
i ∈ I and since deg(N) < ∞ and deg(K) < ∞, we have card(Min(M)) < ∞
and card(Max(M)) < ∞.

Corollary 4.4. Let M be an R-module and In(M) be a connected graph. If
M has at least a minimal and maximal submodule N such that deg(N) < ∞,
then the following statements hold:
(1) card(Min(M)) = card(Max(M)) = 1.
(2) α(In(M)) ≥ 1.
(3) χ(In(M)) ≤ 1 + deg(N).

Proof. (1) Suppose that Min(M) = {L|L ≤min M}. Clearly, Min(M) ̸= ∅.
Since In(M) is connected, by Proposition 2.7 Part 2, L + N ̸= M for all
L ∈ Min(M). As N is a maximal submodule of M and N ⊆ L + N ̸= M ,
then the maximality of N implies that N = L + N , so L ⊆ N and since
N is a minimal submodule of M , the minimality of N implies that N = L.
Hence Min(M) = {N}. Now, assume that Max(M) = {U |U ≤max M}.
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Clearly, Max(M) ̸= ∅. Since In(M) is connected, by Proposition 2.7 Part 1,
U ∩ N ̸= (0) for all U ∈ Max(M). As N is a minimal submodule of M and
(0) ̸= U ∩N ⊆ N , then the minimality of N implies that N = U ∩N , so N ⊆ U
and since N is a maximal submodule of M , the maximality of N implies that
N = U . Hence Max(M) = {N}.
(2) This is an immediate consequence of the first part and Corollary 2.8.
(3) In order to establish this part, let {Xi}i∈I be a family of nontrivial submod-
ules which are not adjacent to N . Since N is both a minimal and a maximal
submodule of M and since N ⊂ Xi+N ⊆ M and (0) ⊆ N ∩Xi ⊂ N , the max-
imality and the minimality of N implies that Xi +N = M and Xi ∩N = (0),
for all i ∈ I, respectively. Hence by [[4], Lemma 3.7] and [[12], Lemma 3.5],
Xi is both a minimal and a maximal submodule of M , for all i ∈ I. Thus
Xi + Xj = M and Xi ∩ Xj = (0), for i ̸= j. So Xi ⊕ Xj = M and also
Xi and Xj are two simple R-modules. Then by Theorem 2.1, In(M) is not
connected, a contradiction. Hence, the family {Xi}i∈I is empty. Now, we
use a color for N and new colors for the other vertices which are a finite
numbers of adjacent vertices to N . We can color these vertices by at most
1+deg(N) new colors to obtain a proper vertex coloring of In(M). Therefore,
χ(In(M)) ≤ 1 + deg(N).

Corollary 4.5. Let M be an R-module with the graph In(M). Then the fol-
lowing statements hold:
(1) If M has no maximal or no minimal submodule, then In(M) is infinite.
(2) If M contains at least two distinct minimal and maximal submodules of
M which every minimal and maximal submodule of M has finite degree, then
In(M) is either null or finite.

Proof. (1) If M has no maximal submodule, since (0) ⊂ M and (0) is not
maximal, there exists a submodule M0 of M such that (0) ⊂ M0 ⊂ M .
Since M0 is not maximal, then there exists a submodule M1 of M such that
(0) ⊂ M0 ⊂ M1 ⊂ M . Consequently, there exists (0) ⊂ M0 ⊂ M1 ⊂ · · · ⊂ M
and for i < j, Mi ⊂ Mj . Thus M contains an infinite strictly increasing se-
quence of submodules. Therefore, In(M) is infinite. Also, if M has no minimal
submodule, since M ⊃ (0) and M is not minimal, there exists a submodule
N0 such that M ⊃ N0 ⊃ (0). since N0 is not minimal, then there exists a
submodule N1 such that M ⊃ N0 ⊃ N1 ⊃ (0). Consequently, there exists
M ⊃ N0 ⊃ N1 ⊃ · · · ⊃ (0) and for i < j, Ni ⊃ Nj . Thus M contains an infi-
nite strictly decreasing sequence of submodules. Therefore, In(M) is infinite.
(2) Suppose that In(M) is not null and by contrary assume that In(M) is in-
finite. Since In(M) is not null, by Corollary 2.2, In(M) is connected and also
by Lemma 4.2, lR(M) < ∞. So M is both Artinian and Noetherian R-module.
However, by Proposition 4.3, the number of minimal and maximal submodules
is finite. Since In(M) is infinite, there exist two distinct submodules, a minimal
submodule N and a maximal N⋆ such that N is contained in an infinite num-
ber of submodules and N⋆ contains an infinite number of submodules. This
contradicts with deg(N) < ∞ and deg(N⋆) < ∞. Hence, In(M) is a finite
graph.
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In the following theorem we consider the condition under which the chro-
matic number of In(M) is finite but the independence number of In(M) is
infinity.

Theorem 4.6. Let M be an R-module. If In(M) is an infinite graph and
ω(In(M)) < ∞, then the following statements hold:
(1) The number of minimal and maximal submodules of M is infinite.
(2) The number of non-minimal and non-maximal submodules of M is finite.
(3) χ(In(M)) < ∞.
(4) α(In(M)) = ∞.

Proof. (1) On the contrary, assume that the number of minimal and maximal
submodules of M is finite. Since In(M) is infinite, In(M) has an infinite clique
which contradicts the finiteness of ω(In(M)).
(2) Suppose that ω(In(M)) < ∞, then by Part 2 of Lemma 4.1, lR(M) < ∞.
Also for each U ≤ M , lR(M/U) ≤ lR(M), lR(M/U) < ∞. We claim that the
number of non-minimal and non-maximal submodules of M is finite. To see
this, assume that Sm = {X ⊂ M |lR(X) = m} and Tn = {Y ⊂ M |lR(M/Y ) =
n} such that m0 = max{m|card(Sm) = ∞} and n0 = max{n|card(Tn) = ∞}.
Since S1 = {X ⊂ M |lR(X) = 1} and T1 = {Y ⊂ M |lR(M/Y ) = 1}, X and
M/Y are simpleR-modules, thusX is a minimal submodule and Y is a maximal
submodule of M . Hence, S1 = {X|X ≤min M} and T1 = {Y |Y ≤max M}. By
Part 1, S1 and T1 are infinite, then there exist m0 and n0, where m0, n0 ≥ 1.
Since lR(X) < lR(M) and lR(M/Y ) < lR(M) and also lR(M) ≤ ω(In(M))+1,
clearly 1 ≤ m0, n0 ≤ ω(In(M)). However, since lR(M) < ∞, Theorem 5 of
[[15], p. 19] implies that every proper submodule of length m0 is contained in
a submodule of length m0 + 1 and n0 is also so. Moreover, by the definition
of m0 and n0, we have that the numbers of submodules of length m0 + 1
and n0 + 1 are finite. Hence there exists a submodule Z of M such that
lR(Z) = m0 + 1 and Z contains an infinite number of submodules {Xi}i∈I

of M , where lR(Xi) = m0, for all i ∈ I. Since ω(In(M)) < ∞, there exist
submodules K1 and L1 of M with K1, L1 ⊆ Z and lR(K1) = lR(L1) = m0 such
that K1 ∩ L1 = (0). Since K1

⋂
L1 ⊆ Z, m0 + 1 = lR(Z) ≥ lR(K1 + L1) ≥

lR(K1 ⊕ L1)) = lR(K1) + lR(L1) = 2m0. Then m0 = 1. Also, there exists a
submodule N of M such that lR(M/N) = n0 + 1 and N contains an infinite
number of submodules {Ni}i∈I of M , where lR(M/Ni)) = n0, for all i ∈ I.
Now, ω(In(M)) < ∞ implies that there exist submodules K and L of M
with K,L ⊆ N and lR(M/K) = lR(M/L) = n0 such that K + L = M .
Since K

⋂
L ⊆ N and M/(K

⋂
L) ∼= M/K

⊕
M/L, n0 + 1 = lR(M/N) ≥

lR(M/(K
⋂
L)) = lR(M/K

⊕
M/L) = lR(M/K) + lR(M/L) = 2n0. Then

n0 = 1. Therefore, only S1 and T1 are infinite and thus the number of non-
minimal and non-maximal submodules of M is finite.
(3) In order to establish this part, if ω(In(M)) = 1, then there is nothing to
prove. Let ω(In(M)) > 1. By Proposition 2.7, each two distinct maximal
submodules and each two distinct minimal submodules are not two adjacent
vertices of In(M). Now, by Part 1, the number of minimal and maximal
submodules of M is infinite. Hence, we can color all maximal submodules by a
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color and all the minimal submodules by another color and also other vertices,
which are a finite number, by a new color but different from them, to obtain a
proper vertex coloring of In(M). Therefore, χ(In(M)) < ∞.
(4) This is an immediate consequence of the first part and Corollary 2.8.

Theorem 4.7. Let M be an R-module. If δ = δ(In(M)) ≥ 1 and ∆ =
∆(In(M)) < ∞, then the following statements hold:
(1) ω(In(M)) < ∞ and χ(In(M)) < ∞.
(2) Every nontrivial submodule of M contains finitely many submodules of M
and is contained in finitely many submodules of M .

Proof. (1) In order to establish this part, first we discuss the connectivity of the
graph In(M). Let S and T be two non-adjacent vertices of the graph In(M).
Since δ ≥ 1, there exists at least a nontrivial submodule X of M such that
S −X − T is a path in In(M). However, if there exist two distinct nontrivial
submodules S⋆ and T ⋆ of M such that S ⊂ S⋆ or S⋆ ⊂ S and T ⊂ T ⋆ or
T ⋆ ⊂ T , then we consider four cases.
Case 1. Let S ⊂ S⋆ and T ⊂ T ⋆. If S⋆ ∩ T ⋆ ̸= (0), then there exists a
path of the form S − S⋆ − S⋆ ∩ T ⋆ − T ⋆ − T . But, if S⋆ ∩ T ⋆ = (0), clearly
S ∩ T = (0), S⋆ ∩ T = (0) and S ∩ T ⋆ = (0), but S + T ̸= M , otherwise by
the modularity condition, S⋆ = S⋆ ∩ M = S⋆ ∩ (S + T ) = S + S⋆ ∩ T = S,
a contradiction. Similarly S + T ⋆ ̸= M and S⋆ + T ̸= M . Hence we obtain
three paths of the forms S − S + T − T , S − S + T ⋆ − T and S − S⋆ + T − T .
Case 2. Let S ⊂ S⋆ and T ⋆ ⊂ T . If S⋆ ∩ T ̸= (0), then there exists a path of
the form S − S⋆ − S⋆ ∩ T − T , otherwise there exist three paths of the forms
S − S + T − T , S − S + T ⋆ − T ⋆ − T and S − S⋆ − S⋆ + T ⋆ − T ⋆ − T . Case
3. Let S⋆ ⊂ S and T ⊂ T ⋆. If S ∩ T ⋆ ̸= (0), then there exist a path of
the form S − S ∩ T ⋆ − T ⋆ − T , otherwise there exist three paths of the forms
S − S + T − T , S − S⋆ − S⋆ + T − T and S − S⋆ − S⋆ + T ⋆ − T ⋆ − T . Case 4.
Let S⋆ ⊂ S and T ⋆ ⊂ T . If S ∩ T ̸= (0), then there exists a path of the form
S−S∩T−T , otherwise there exist three paths of the forms S−S+T ⋆−T ⋆−T ,
S − S⋆ − S⋆ + T − T and S − S⋆ − S⋆ + T ⋆ − T ⋆ − T . Consequently, In(M)
is a connected graph. Hence, by Part 1 of Theorem 10.3 of [[10], p. 289],
ω(In(M)) ≤ χ(In(M)) ≤ ∆ + 1 and since ∆ < ∞, we have ω(In(M)) < ∞
and χ(In(M)) < ∞.
(2) It is clear.
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