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An inverse free Broyden’s method for solving equations

Ioannis K. Argyros1 and Santhosh George23

Abstract. Based on a center-Lipschitz-type condition and our idea
of the restricted convergence domain, we present a new semi-local con-
vergence analysis for an inverse free Broyden’s method (BM) in order to
approximate a locally unique solution of an equation in a Hilbert space
setting. The operators involved have regularly continuous divided dif-
ferences. This way we provide weaker sufficient semi-local convergence
conditions, tighter error bounds, and a more precise information on the
location of the solution. Hence, our approach extends the applicability
of BM under the same hypotheses as before. Finally, we consider some
special cases.
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1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x⋆ of equation

(1.1) F (x) = 0,

where F is a continuous operator defined on a open convex subset Ω of a Hilbert
space B1 with values in a Hilbert space B2.

Broyden’s method BM is

(1.2) x+ = x−AF (x), y = F (x+)− F (x), A+ = A− AF (x+) < y, · >
< y, y >

,

where L(B2,B1) := {A : B2 −→ B1, bounded and linear}, and < ·, · > stands
for the inner product.

Numerous convergence results for this type of methods have appeared in the
literature [1, 3, 5, 8, 9, 10, 11] (see also, e.g. [4], and the references therein).
BM requires no inverse, so no linear subproblem needs to be solved at each
iteration.
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The convergence domain for such methods is small in general [12, 13, 14, 15].
In the present study, we extend the convergence domain for BM. To achieve
this goal, we first introduce the center-Lipschitz condition which determines
a subset of the original domain for the operator containing the iterates. The
scalar functions are then related to the subset instead of the original domain.
This way, the scalar functions are more precise than if they were depending on
the original domain. The new technique leads to : weaker sufficient convergence
conditions, tighter error bounds on the distances involved, and an at least
as precise information on the location of the solution. These advantages are
obtained under the same computational cost as in earlier studies [8, 9, 10, 11],
since in practice the new functions are special cases of the old functions. This
idea can be used to study other iterative methods requiring inverses of linear
mappings [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The study is structured as follows. Section 2 contains some preliminary
results for regularly continuous dd. In Section 3, we provide the semi-local
convergence analysis of BM. Finally, in Section 4, we provide special cases, as
applications.

2. Preliminaries: regularly continuous dd

In order to make the paper as self–contained as possible, we reintroduce
some definitions and some results on regularly continuous dd. The proofs are
omitted, and can be found in [4, 11]. In this section, B1 and B2 are Banach
spaces, equipped with the norm ∥ . ∥. We denote by U(z,R) = {x ∈ B1 : ∥
x− z ∥< R, } the open ball centered at z and of radius R > 0, whereas U(z,R)
denotes its closure. For x ∈ B1, denote by Kx the subspace of operators
vanishing at x Kx = {A ∈ L(B1,B2) : Ax = 0}. Let N be the class of
increasing concave functions v : R+ −→ R+, with v(0) = 0. Note that N
contains the functions in the form φ(t) = c tp, (c ≥ 0, and p ∈ (0, 1]).

Definition 2.1. [11] An operator [., .;F ] belonging in L(B1,B2) is called the
first order divided difference (briefly dd) of F at the points x and y in B1

(x ̸= y), if the following secant equation holds [x, y;F ] (y − x) = F (y)− F (x).
If F is Fréchet differentiable at x, then [x, x;F ] = F ′(x). Otherwise, the

following limit (if it exists) limt↘0[x, x + t h;F ]h = limt↘0
F (x+ t h)− F (x)

t
vary according to h, with ∥ h ∥= 1, and this limit is the Fréchet derivative (or
the directional derivative) F ′(x)h of F in the direction h (i.e., if we suppose that
F is Fréchet differentiable at x, then the Fréchet derivative is characterized as a
limit of dd in the uniform topology of the space of continuous linear mappings
of B1 into B2).

Remark 2.2. (a) Let (x, y) ∈ B1 × B2, the set {A ∈ L(B1,B2) : Ax = y}
constitutes an affine manifold in L(B1,B2).

(b) Let A and A0 in L(B1,B2), and (x, y) ∈ B1×B2, such that A0 x = Ax = y.
Then (A−A0)x = 0, and A ∈ A0 +Kx.
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The following result gives some properties of set–valued mapping Υx,y :
C(B1,B2) ⇒ L(B1,B2) given by Υx,y(F ) = [x, y;F ] for the pair (x, y) ∈ B2

1.

Proposition 2.3. (a) Υx,y(F ) = F if and only if F is linear.

(b) Υx,y is linear, i.e., for F1, F2 in C(B1,B2), and (α, β) ∈ K2 (K = R or
C), we have

Υx,y(αF1 + β F2) = αΥx,y(F1) + βΥx,y(F2).

(c) If F is a composition of operators F1 and F2 (i.e., F = F1 ◦ F2), then

Υx,y(F ) = ΥF2(x),F2(y)(F1)Υx,y(F2).

Definition 2.4. [11] The dd [x, y;F ] is said to be w1–regularly continuous on
Ω ⊆ B1 for w1 ∈ N (call it regularity modulus), if the following inequality
holds for each x, y, u, v ∈ Ω

(2.1)

w−1
1

(
min{∥ [x, y;F ] ∥, ∥ [u, v;F ] ∥}+ ∥ [x, y;F ]− [u, v;F ] ∥

)

−w−1
1

(
min{∥ [x, y;F ] ∥, ∥ [u, v;F ] ∥}

)
≤∥ x− u ∥ + ∥ y − v ∥ .

The dd [x, y;F ] is said to be regularly continuous on Ω if it has a regularity
modulus there.

We introduce a special notion (see also [5, 6, 7]).

Definition 2.5. The dd [x, y;F ] is said to be w0− center regularly continuous
on Ω ⊂ X for w0 ∈ N (call it center regularity modulus), if for fixed x−1, x0 ∈ Ω
the following inequality holds for each x, y in Ω
(2.2)

w−1
0

(
min{∥ [x, y;F ] ∥, ∥ [x0, x−1;F ] ∥}+ ∥ [x, y;F ]− [x0, x−1;F ] ∥

)

−w−1
0

(
min{∥ [x, y;F ] ∥, ∥ [x0, x−1;F ] ∥}

)
≤∥ x− x0 ∥ + ∥ y − x−1 ∥ .

Clearly, we have that Definition 2.5 is a special case of Definition 2.4,

(2.3) w0(t) ≤ w1(t) for each t ∈ [0,∞),

holds in general, and
w1

w0
can be arbitrarily large [2, 4]. If w0, w1 are linear func-

tions (w1(t) = c1 t and w0(t) = c0 t), then (2.2), and (2.3) become Lipschitz,
and center–Lipschitz continuous conditions, respectively, i.e., the following hold
respectively for each (x, y, u, v) ∈ Ω4:

(2.4) ∥ [x, y;F ]− [u, v;F ] ∥≤ c1 (∥ x− u ∥ + ∥ y − v ∥)
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and

(2.5) ∥ [x, y;F ]− [x0, x−1;F ] ∥≤ c0 (∥ x− x0 ∥ + ∥ y − x−1 ∥).

Then, estimate (2.3) gives

(2.6) c0 ≤ c1.

We need the following auxiliary result.

Lemma 2.6. [9] If dd [x, y;F ] is w–regularly continuous on Ω, then we have

|w−1
1 (∥ [x, y;F ] ∥)− w−1

1 (∥ [u, v;F ] ∥)| ≤∥ x− u ∥ + ∥ y − v ∥,

for each (x, y, u, v) ∈ Ω4.
Then, the following holds for all (x, y, u, v) ∈ Ω4:

(2.7) w−1
1 (∥ [x, y;F ] ∥) ≥ (w−1

1 (∥ [u, v;F ] ∥)− ∥ x− u ∥ − ∥ y − v ∥)+,

where ρ+ (ρ ∈ R) denotes the nonnegative part of ρ: ρ+ = max{ρ, 0}.
In particular, if dd [x, y;F ] is w0–regularly continuous on Ω (i.e., condition

(2.2) holds), then, (2.7) holds, with w0, x0, and x−1 replacing w, u, and v,
respectively.

Suppose that the equation

(2.8) w0(t) = 1

has at least one positive solution. Denote by r0 the smallest such solution.
Moreover, define

(2.9) Ω0 = Ω ∩ U(x0, r0).

Notice also that we have a similar estimate for the function w on Ω4.

Definition 2.7. The dd [x, y;F ] is said to be restricted w−regularly continuous
on Ω0 ⊂ Ω for w ∈ N , if the following inequality holds for each x, y, u, v ∈ Ω0

(2.10)

w−1

(
min{∥ [x, y;F ] ∥, ∥ [u, v;F ] ∥}+ ∥ [x, y;F ]− [u, v;F ] ∥

)

−w−1

(
min{∥ [x, y;F ] ∥, ∥ [u, v;F ] ∥}

)
≤∥ x− u ∥ + ∥ y − v ∥ .

Notice that

(2.11) w(t) ≤ w1(t) for each t ∈ [0, r0)

holds, since Ω0 ⊆ Ω. The function w depends on the function w0. Construction
of function w was not possible in the earlier studies using only the function
w1[11]. Clearly, in those studies w can simply replace w1, since the iterates lie
in Ω0 related to w, which is a more precise location than Ω used in [11] related to
w1. This modification leads to the already stated advantages, if strict inequality
holds in (2.3) or (2.11). We suppose from now on until Remark 4.5 (b) that

(2.12) w0(t) ≤ w(t) for each t ∈ [0, r0).
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3. Semi-local convergence analysis of BM

We present a semi-local convergence result for BM. The proofs are the
proper modifications of the ones in [11], where, we use the more precise (2.2),
(2.10) instead of (2.1). First, we denote

(3.1) A0 = [x0, x−1;F ]
−1.

As in [11], for the selected dd [x, y;F ], such that (2.1) holds with w modulus,
we associate the current iteration (x,A), and we consider q = (t, γ, δ), where

t =∥ x− x0 ∥, γ =∥ x− x− ∥, δ =∥ x+ − x ∥=∥ AF (x) ∥ .

Finally, let q+, and ψw : R+2 −→ R+ be given by

q+ = (t+, γ+, δ+),

and

ψw(u, t) = w((u− t)+ + t)− w((u− t)+), for each (u, t) ∈ R+2
,

respectively. Note that ψw is not increasing in the first argument, and not
decreasing in the second, since w is concave, and increasing.

We provide now a result on q+ using w and w0–regularity.

Lemma 3.1. Under the hypotheses (2.2), and (2.10), the following estimates
hold:

(3.2) t+ :=∥ x+ − x0 ∥≤ t+ δ,

(3.3) γ+ :=∥ x+ − x ∥= δ,

and

(3.4) δ+ ≤ δ ew0,w(q),

where

ew0,w(q) =
ψw(w

−1(∥ A−1
0 ∥ −γ0 − 2 t− − γ)+, γ + δ)

w0(w
−1
0 (∥ A−1

0 ∥ −γ0 − 2 t− δ))
.

Proof. Estimates (3.2), and (3.3) follow from ∥ x+ − x0 ∥≤∥ x+ − x ∥ + ∥
x− x0 ∥= t+ δ, and the expression of δ, respectively.

We must show (3.4). We have

δ+ ≤∥ A+ ∥ ∥ F (x+) ∥ .

By the Banach lemma on invertible operators [4], and (3.1), we obtain
(3.5)
∥ A−1

+ ∥≥∥ A−1
0 ∥ − ∥ A−1

+ −A−1
0 ∥=∥ A−1

0 ∥−1 − ∥ [x+, x;F ]− [x0, x−1;F ] ∥ .
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Using (2.1), we get that
(3.6)

∥ [x, y;F ]− [u, v;F ] ∥≤
w(w−1(min{∥ [x, y;F ] ∥, ∥ [u, v;F ] ∥})+ ∥ [x, y;F ]− [u, v;F ] ∥)
−min{∥ [x, y;F ] ∥, ∥ [u, v;F ] ∥} =
w(min{w−1(∥ [x, y;F ] ∥), w−1(∥ [u, v;F ] ∥)}+ ∥ [x, y;F ]− [u, v;F ] ∥)
−w(min{w−1(∥ [x, y;F ] ∥), w−1(∥ [u, v;F ] ∥)}).

By Lemma 2.6, we have

w−1(∥ [u, v;F ] ∥) ≥ (w−1(∥ [x, y;F ] ∥)− ∥ x− u ∥ − ∥ y − v ∥)+.

By (3.6), and the concavity of w, we get
(3.7)

∥ [x, y;F ]− [u, v;F ] ∥≤
w(w−1(∥ [x, y;F ] ∥ − ∥ x− u ∥ − ∥ y − v ∥)++ ∥ x− u ∥ + ∥ y − v ∥)
−w(w−1(∥ [x, y;F ] ∥ − ∥ x− u ∥ − ∥ y − v ∥)+) =
ψw(w

−1(∥ [x, y;F ] ∥, ∥ x− u ∥ + ∥ y − v ∥)).

Clearly, estimate (3.7) holds with w0, x+, x0, and x−1 replacing w, y, u,
and v, respectively. Consequently,
(3.8)
∥ [x+, x;F ]− [x0, x−1;F ] ∥ ≤ ψw0

(w−1
0 (∥ [x0, x−1;F ] ∥), ∥ x+ − x0 ∥ + ∥ x− x−1 ∥)

≤ ψw0(w
−1
0 (∥ A−1

0 ∥, ∥ x+ − x0 ∥ + ∥ x− x0 ∥ + ∥ x0 − x−1 ∥))
= ψw0

(w−1
0 (∥ A−1

0 ∥, t+ + t+ γ0)),

so,
(3.9)
∥ A+ ∥≤ (∥ A0 ∥−1 −ψw0(w

−1
0 (∥ A−1

0 ∥), γ0+t++t))−1 =⇒ γ0+t++t < w−1
0 (∥ A−1

0 ∥)

since, otherwise

ψw0
(w−1

0 (∥ A−1
0 ∥), t+ + t+ γ0) = w0(γ0 + t+ + t) ≥∥ A−1

0 ∥≥∥ A0 ∥−1

and
∥ A0 ∥−1 −ψw0

(w−1
0 (∥ A−1

0 ∥), t+ + t+ γ0) ≤ 0.

We also have

(3.10) ∥ A+ ∥≤ 1

w0(w
−1
0 (∥ A0 ∥−1 −δ − 2 t− γ0))

.

Using (3.10), and since w0 is concave and increasing, we deduce

ψw0(w
−1
0 (∥ A−1

0 ∥, t+ + t+ γ0)) = ∥ A0 ∥−1 −w0(w
−1
0 (∥ A0 ∥−1 −t+ − t− γ0))

≤ ∥ A0 ∥−1 −w0(w
−1
0 (∥ A0 ∥−1 −δ − 2 t− γ0)).

By BM, we can have the identity

(3.11)
F (x+) = F (x+)− F (x) + F (x)

= [x+, x;F ] (x+ − x)−A−1 (x+ − x)
= ([x+, x;F ]− [x, x−;F ]) (x+ − x).
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Using (3.7), and (3.11), we obtain

∥ F (x+) ∥ ≤ δ ∥ [x+, x;F ]− [x, x−;F ] ∥
≤ ψw(w

−1(∥ A−1 ∥), γ + δ).

By (2.10), we get

w−1(∥ A−1 ∥) = w−1([x, x−;F ])
≥ (w−1([x0, x−1;F ]− ∥ x− x0 ∥ − ∥ x− − x−1 ∥)+)
≥ (w−1(∥ A0 ∥−1 − ∥ x− x0 ∥ − ∥ x− − x0 ∥ − ∥ x0 − x−1 ∥)+)
≥ (w−1(∥ A0 ∥−1 −t− t− − γ0)

+)
≥ (w−1(∥ A0 ∥−1 −γ − 2 t− − γ0)

+).

Consequently,

ψw(w
−1(∥ A ∥−1), γ + δ) ≤ ψw(w

−1(∥ A0 ∥−1 −γ − 2 t− − γ0)
+, γ + δ),

(3.12) ∥ F (x+) ∥≤ δ ψw(w
−1(∥ A0 ∥−1 −γ − 2 t− − γ0)

+, γ + δ),

and
δ+ ≤ δ ew,w0

(q).

⊠

We define the function χw,w0
for all q = (t, γ, δ) by χw,w0

(q) = q+ =
(t+, γ+, δ+),

(3.13) t+ = t+ δ, γ+ = δ, δ+ = δ
ψw((a− 2 t+ γ)+, γ + δ)

w0(a0 − 2 t− δ)
,

where

a ≤ w−1(∥ A0 ∥−1)− ∥ x0−x−1 ∥ and a0 ≤ w−1
0 (∥ A0 ∥−1)− ∥ x0−x−1 ∥ .

In view of the definitions of a0 and a, we can certainly assume a ≤ a0.

Remark 3.2. (a) Since 2 t− γ ≤ 2 t+ δ < a, then

ψw((a−2 t+γ)+, γ+δ) = ψw(a−2 t+γ, γ+δ) = w(a−2 t+γ)−w(a−2 t−δ).

Consequently, we can simplify the third component δ+ in the expression
of χw,w0

by:

δ+ = δ
w(a− 2 t+ γ)− w(a− 2 t− δ)

w0(a0 − 2 t− δ)
.

(b) As t0 = 0, we can take t0 = 0.

Consider the relation order ”≺” for q = (t, γ, δ) and q′ = (t′, γ′, δ′). We say
that q′ majorizes q, if

q ≺ q′ ⇐⇒ t ≤ t′, γ ≤ γ′ and δ ≤ δ′.
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Lemma 3.3. Let q = (t, γ, δ) and q′ = (t′, γ′, δ′). Then

0 ≺ q ≺ q′ =⇒ 0 ≺ χw,w0
(q) ≺ χw,w0

(q′).

Proof. We suppose q ≺ q′. Then, we obtain

t ≤ t′ and δ ≤ δ′ =⇒ t+ := t+ δ ≤ t′ + δ′ =: t′+ and γ+ := δ ≤ δ′ =: γ′+.

We show now δ+ ≤ δ′+. Functions w, w0 are concave and increasing, and
by using Remark 3.2, we have

δ+ = δ
w(a− 2 t+ γ)− w(a− 2 t− δ)

w0(a0 − 2 t− δ)

≤ δ′
w(a− 2 t− δ + (δ + γ))− w(a− 2 t− δ)

w0(a0 − 2 t′ − δ′)

≤ δ′
w(a− 2 t′ − δ′ + (δ + γ))− w(a− 2 t′ − δ′)

w0(a0 − 2 t′ − δ′)

≤ δ′
w(a− 2 t′ − δ′ + (δ′ + γ′))− w(a− 2 t′ − δ′)

w0(a0 − 2 t′ − δ′)
= δ′+.

⊠

Consider the sequence qn with the initial iterate q0 = (t0, γ0, δ0) by

(3.14) qn+1 = χw,w0(qn).

Then, qn is a majorizing sequence, if qn ≺ qn for each n ≥ 0, where qn is
produced by the n–th iteration (xn, An) of BM.

Lemma 3.4. Let q0 be an initial iterate for sequence qn = (tn, γn, δn) given by
(3.14), such that q0 ≺ q0, and 2 tn+δn < a for each n ≥ 0. Then, the following
hold for each n ≥ 0:

(a)
qn ≺ qn;

(b)

γ∞ = δ∞ = 0 and tn =

k=n−1∑
k=0

δk ≤ 0.5 (a− δn),

where

γ∞ = lim
n−→∞

γn, δ∞ = lim
n−→∞

δn and t∞ = lim
n−→∞

tn;

(c) The sequence (xn, An) generated by BM from the initial iterate (x0, A0)
converges to a solution (x⋆, A∞) of the system

F (x) = 0 and A [x, x;F ] = I;
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(d) The solution x⋆ is unique in U(x0, a0 − t∞);

(e)

∥ F (xn+1) ∥≤ δn (w(a− 2 tn + γn)− w(a− 2 tn − δn)),

∥ xn − x0 ∥≤ tn < t∞ ≤ 0.5 a,

∆n :=∥ x⋆ − xn ∥≤ t∞ − tn,

∥ I −An [x
⋆, x⋆;F ] ∥≤ w(a− 2 tn + γn)− w(a− 2 t∞)

w0(a0 − 2 tn + γn)
,

and
∆n+1

∆n
≤ w(a− 2 tn + γn)− w(a− tn − t∞)

w0(a0 − 2 tn + γn)
.

Proof.

(a) We show (a) using induction on n. We suppose that q ≺ q. By Lemma
3.1, we have

(3.15) q+ = (t+, γ+, δ+) ≺ (t+ δ, δ, δ ew0,w(q)),

where

w(w−1(∥ A0 ∥−1)− γ0 − 2t− δ) ≥ w(a− 2 t− δ),

and

ψw((w
−1(∥ A−1

0 ∥ −γ0 − 2 t− − γ)+, γ + δ)) ≤ ψw((a− 2 t− − γ)+, γ + δ)
≤ ψw((a− 2 t− − γ)+, γ + δ)
= ψw(a− 2 t+ γ, γ + δ)
= w(a− 2 t+ γ)− w(a− 2 t− δ).

Then, we get the estimate

(3.16) δ ew0,w(q) ≤ δ
w(a− 2 t+ γ)− w(a− 2 t− δ)

w0(a0 − 2 t− δ)
.

By (3.15), and (3.16), we deduce

q+ ≺ χw,w0
(q) = q+.

The induction is completed.

(b) By hypotheses of Lemma 2, 2tn+ δn < a for all n ≥ 0, so we deduce that
tn < 0.5 (a − δn) for each n ≥ 0. Then, {tn} is increasing and bounded.
Thus, {tn} converges to a finite limit t∞. Since tn+1 = tn + δn and
γn+1 = δn, for each n ≥ 0, we obtain γ∞ = δ∞ = 0, and t∞ ≤ 0.5 a.
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(c) to (e) First, by (a), we have for n,m ≥ 0
(3.17)

∥ xn+m − xn ∥ ≤
k=n+m−1∑

k=n

∥ xk+1 − xk ∥

=

k=n+m−1∑
k=n

δk ≤
k=n+m−1∑

k=n

δk <

∞∑
k=n

δk = t∞ − tn.

Hence, {xn} is a complete sequence in a Banach space, and as such it
converges to x⋆. By letting m −→ ∞ in (3.17), we deduce for n ≥ 0 the
following estimate ∆n =∥ x⋆ − xn ∥≤ t∞ − tn. Moreover, by (3.12), we
get

∥ F (xn+1) ∥ ≤ δn ψw((w
−1(∥ A0 ∥−1 −γ0 − tn − tn−1)

+, γn + δn)
≤ δn ψw(a− 2 tn + γn, γn + δn)
= δn (w(a− 2 tn + γn)− w(a− 2 tn − δn)),

where δn −→ ∞, so, F (x⋆) = 0. By letting n −→ ∞ in equality
An [xn, xn−1;F ] = I, we get A∞ [x⋆, x⋆;F ] = 0, and (c) is completed.

Substituting A+ by An in (3.10), we have

(3.18)
∥ An ∥ ≤ 1

w0(w
−1
0 (∥ A0 ∥−1 −γ0 − tn − tn−1)+)

≤ 1

w0(a0 − tn − tn−1)
=

1

w0(a0 − 2 tn + γn)
.

Using (3.7), we have
(3.19)

∥ I −An [x
⋆, x⋆;F ] ∥

≤∥ An ∥ ∥ [xn, xn−1;F ]− [x⋆, x⋆;F ] ∥
≤∥ An ∥ ψw(w

−1(∥ [xn, xn−1;F ] ∥), ∥ xn − x⋆ ∥ + ∥ xn−1 − x⋆ ∥).

By Lemma 2.6, we get
(3.20)
w−1(∥ [xn, xn−1;F ] ∥) ≥ (w−1(∥ [x0, x−1;F ] ∥ − ∥ xn − x0 ∥ − ∥ xn−1 − x−1 ∥)+)

≥ (w−1(∥ A0 ∥ −tn − tn−1 − γ0)
+)

≥ a− 2 tn + γn.

Using (3.18)–(3.20), we obtain

(3.21) ∥ I −An [x
⋆, x⋆;F ] ∥ ≤ w(a− 2 tn + γn)− w(a− 2 t∞)

w0(a0 − 2 tn + γn)
.

By the identity

xn+1 − x⋆ = xn − x⋆ −An F (xn)
= An ([xn, xn−1;F ]− [xn, x

⋆;F ]) (xn − x⋆),
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we get, similarly as in (3.21),

(3.22)

∆n+1 ≤ ∆n ∥ An ∥ ∥ [xn, xn−1;F ]− [xn, x
⋆;F ] ∥

≤ ∆n
ψw(a− 2 tn + γn,∆n−1)

w0(a0 − 2 tn + γn)

≤ ∆n
ψw(a− 2 tn + γn, t∞ − tn + γn)

w0(a0 − 2 tn + γn)

= ∆n
w(a− 2 tn + γn)− w(a− tn − t∞)

w0(a0 − 2 tn + γn)
.

The proof of (e) is completed.

Now we prove (d). Let y⋆ be a solution of F (x) = 0. Then, F0(y
⋆) = 0,

where F0 = A0 F , and F0(y
⋆) − F0(x

⋆) = 0 = [y⋆, x⋆;F0] (y
⋆ − x⋆).

Then, we deduce by the Banach lemma on invertible operators [2, 4],
and Proposition 2.3 that [y⋆, x⋆;F0] = A0 [y

⋆, x⋆;F ] is not invertible, and
∥ I −A0 [y

⋆, x⋆;F ] ∥≥ 1.

Using (3.19), we have

1 ≤ ∥ I −A0 [x
⋆, x⋆;F ] ∥

≤ ∥ A0 ∥ ∥ [x0, x−1;F ]− [y⋆, x⋆;F ] ∥
≤ ∥ A0 ∥ ψw0(w

−1
0 (∥ [x0, x−1;F ] ∥), ∥ y⋆ − x0 ∥ + ∥ x−1 − x⋆ ∥)

≤ ∥ A0 ∥ ψw0
(w−1

0 (∥ A−1
0 ∥), ∥ y⋆ − x0 ∥ + ∥ x⋆ − x0 ∥ + ∥ x0 − x−1 ∥),

and

∥ A−1
0 ∥ ≤ ψw0

(w−1
0 (∥ A0 ∥−1,Λ))

=

{
∥ A0 ∥−1 −w0(w

−1
0 (∥ A0 ∥−1,Λ)), if Λ ≤ w−1

0 (∥ A0 ∥−1)
w0(Λ), if Λ ≥ w−1

0 (∥ A0 ∥−1),

where
Λ = γ0 + t∞+ ∥ y⋆ − x0 ∥ .

It follows that

∥ y⋆ − x0 ∥≥ w−1
0 (∥ A0 ∥−1 −γ0 − t∞) ≥ a0 − t∞ ≥ 0.5 a.

⊠

4. Applications

In the special cases 1 and 2 that follow, we provide more precise estimates
than [11, Section 4].

Case 1: Semi-local convergence under (2.4) and (2.5)

Let x0, x−1, A0, a, a0, and q0 given, such that

(4.1) q0 ≺ q0 and 2 tn + δn < a for each n ≥ 0.
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Condition (4.1) guarantee the convergence of sequence (xn, An). We denote by
Qc the set

Qc = {(q0, tn, δn) : (4.1) holds}.

In this subsection w(t) = c t, w0(t) = c0 t with c0 ≤ c and w1(t) = c1t.
The function χw,w0 defined in (3.13) by χw,w0(q) = q+ = (t+, γ+, δ+) for all
q = (t, γ, δ), is simplified in the following form

(4.2) t+ = t+ δ, γ+ = δ, δ+ = δ
c (γ + δ)

1− c0 (∥ x0 − x−1 ∥ −2 t− δ)
,

where
c = c ∥ A0 ∥, c0 = c0 ∥ A0 ∥ and c1 = c1 ∥ A0 ∥ .

If in the denominator of δ+, the function w and a replace w0 and a0, re-
spectively, then (4.2) becomes

(4.3) t+ = t+ δ, γ+ = δ, δ+ = δ
γ + δ

a− 2 t− δ
.

Define function Γ for q = (t, γ, δ) by

(4.4) Γ(q) = (0.5 a− t)2 − δ (a− 2 t+ γ).

We present now two results on simplified generator χw,w0
given by (4.3).

Lemma 4.1. [3, 9, 11]

(a) The function Γ given by (4.4) is an invariant of the generator (4.3):

Γ(q) = Γ(q+).

(b) For all n ≥ 0,

2 tn + δn < a ⇐⇒ Γ(0, γ0, δ0) ≥ 0 ⇐⇒ 4 δ0 (a+ γ0) ≤ a2

⇐⇒ tn = 0.5 a− δn −
√
δn (γn + δn) + Γ(0, γ0, δ0).

Theorem 4.2. Suppose that (2.4), and (2.5) hold. Let x−1, x0, A0, a0, a, γ0,
δ0, be such that

∥ A0 ∥−1

c0
− ∥ x0 − x−1 ∥≥ a0,

∥ A0 ∥−1

c
− ∥ x0 − x−1 ∥≥ a,

∥ x0 − x−1 ∥≤ γ0, ∥ A0 F (x0) ∥≤ δ0,

and

(4.5) 4 δ0 (a+ γ0) ≤ a2.

Then, the following hold
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(a) (tn, γn, δn) generated by (4.3) started at (0, γ0, δ0) is well defined, and
converges to (t∞, 0, 0), where,

t∞ = 0.5 (a−
√
a2 − 4 δ0 (a+ γ0));

(b) The sequence (xn, An) generated by BM started at (x−1, x0, A0) converges
to a solution (x⋆, A∞) of the system

F (x) = 0 and A [x, x;F ] = I;

(c) x⋆ is the unique solution of (1.1) in U(x0, r), where,

r = 0.5 (a+
√
a2 − 4 δ0 (a+ γ0));

(d) For each n ≥ 1,

∥ F (xn+1) ∥≤ c δn (γn + δn), ∆n ≤ t̃∞ − t̃n,

∥ xn − x0 ∥≤ t̃n − t̃0,

∥ I −An [x
⋆, x⋆;F ] ∥≤ pn,

and
∆n+1

∆n
≤ qn,

where

t̃−1 = 0, t̃0 =∥ x0 − x−1 ∥, t̃1 = t̃0+ ∥ A0 F (x0) ∥,

t̃n = t̃n−1 +
c (t̃n−1 − t̃n−3) (t̃n−1 − t̃n−2)

1− c0 (−t̃n−1 − t̃n−2 + t̃0)
, (n ≥ 2),

pn =
c (γn + 2 (t̃∞ − t̃n))

c0 (a0 − 2 t̃n + γn)
,

and

qn =
c (γn + t̃∞ − t̃n)

c0 (a0 − 2 t̃n + γn)
,

with

t̃∞ = lim
n−→∞

t̃n ≤ t∞.

The estimates in Theorem 4.2 reduce to the corresponding ones in [11]
for c0 = c = c1. Otherwise, the new estimates are more precise.
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Case 2: Semi-local convergence under regular continuity of dd

Suppose that w is nonlinear, and let q0 = (t0, γ0, δ0). Define the scalar
function F (·/q0) on the sequence {tn} (n ≥ 0) as follows

(4.6) F (tn/q0) = δn w(a− 2 tn + γn).

The sequence F (tn) is decreasing, and consequently, the function F is in-
vertible on {tn}, i.e., for each n ≥ 0:

(4.7) tn = F−1(δn w(a− 2 tn + γn)/q0) [11].

We present now two results on the generator χw,w0
given by (3.13).

Lemma 4.3. [11]

(a) The function F−1(0/q) with initial iterate q = (t, γ, δ) is an invariant of
the generator (3.13).

(b) For all n ≥ 0, and q0 = (t0, γ0, δ0), we have the following equivalence

2 tn + δn < a⇐⇒ F−1(0/q0) ≤ 0.5 a.

Theorem 4.4. Suppose that (2.1), and (2.2) hold. Let x−1, x0, A0, a0, a, γ0,
δ0, such that

w−1
0 (∥ A0 ∥−1)− ∥ x0 − x−1 ∥≥ a0, w−1(∥ A0 ∥−1)− ∥ x0 − x−1 ∥≥ a,

∥ x0 − x−1 ∥≤ γ0, ∥ A0 F (x0) ∥≤ δ0,

and
F−1(0/(0, γ0, δ0)) ≤ 0.5 a.

Then, the following hold

(a) (tn, γn, δn) generated by (3.13) started at (0, γ0, δ0) is well defined, and
converges to (t∞, 0, 0), where

t∞ = F−1(0/(0, γ0, δ0));

(b) The sequence (xn, An) generated by BM started at (x−1, x0, A0) converges
to a solution (x⋆, A∞) of the system

F (x) = 0 and A [x, x;F ] = I;

(c) x⋆ is the unique solution of (1.1) in U(x0, a0 − t∞);

(d) For each n ≥ 1,

∥ F (xn+1) ∥≤ δn (w(a− 2 tn + γn)− w(a− 2 tn − δn)),

∥ I −An [x
⋆, x⋆;F ] ∥≤ w(a− 2 tn + γn)− w(a− 2 t∞)

w0(a0 − 2 tn + γn)
,

and
∆n+1

∆n
≤ w(a− 2 tn + γn)− w(a− tn − t∞)

w0(a0 − 2 tn + γn)
.
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Remark 4.5. (a) The results obtained in this study reduce to the correspond-
ing ones in [11], if equality holds in (2.3) and (2.12). Otherwise, our re-
sults provide weaker sufficient convergence conditions, error bounds than
in [11] (see also the definition of a and a0). Moreover, the information on
the uniqueness of the solution x⋆ is more precise, since a0 − t∞ > a− t∞
(see also Lemma 3.4–(b)).

As an example instead of studying the iteration in [11] corresponding to
(4.3) and defined by

s−1 = 0, s0 =∥ x0 − x−1 ∥, s1 = s0+ ∥ A0 F (x0) ∥

sn+1 = sn +
c1 (sn − sn−1) (sn − sn−2)

1− c1 (s0 − sn − sn−1)
,

we study the more precise sequence defined by

α−1 = 0, α0 =∥ x0 − x−1 ∥, α1 = α0+ ∥ A0 F (x0) ∥

αn+1 = αn +
c (αn − αn−1) (αn − αn−2)

1− c2 (α0 − αn − αn−1)
,

where c2 = c or c2 = c0. Using (2.1), (2.2) and our idea of recur-
rent functions but not (2.10), we have already obtained weaker suffi-
cient convergence conditions for many iterative methods such as New-
ton’s, Secant, and Newton–type methods (under very general conditions
[1, 2, 3, 4, 5, 6, 7]). In particular, our work using regularly continuous
divided differences can be found in [5].

(b) If w(t) ≤ w0(t) for all t ∈ [0, r0) holds instead of (2.12), then clearly the
function w0 (still at least as small as the function w1) can replace w in
the preceding results.

(c) If Ω0 is replaced by Ω∗
0 =

⋃
(x1, r − ∥A0F (x0)∥) then in Definition 2.7 a

function even tighter than w can be used, so, the results can be weakened
even further, since Ω∗

0 ⊆ Ω0, and x1 still depends on the initial data.

Conclusion

We presented the convergence analysis of BM in order to approximate a
locally unique solution of a nonlinear equation in a Hilbert space setting. Us-
ing a combination of w–regular continuous and w0–center–regular continuous
conditions and our new idea of restricted convergence domains, we provided
a tighter semi-local convergence analysis than before [5, 8, 9, 10, 11]. Special
cases are also given in this study. It is worth noticing that the new advantages
are obtained under the same computational effort as before, since in practice
the computation of the old function w1 requires the computation of new func-
tions w0 and w as special cases.
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