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General iterative methods for common fixed points of
asymptotically nonexpansive mappings

Godwin Chidi Ugwunnadi]

Abstract. In this paper, we study an iterative process for approx-
imating a common fixed point of afamily of uniformly asymptotically
regular asymptotically nonexpansive mappings with variational inequal-
ity problem in uniformly convex Banach space with uniformly Gateaux
differentiable norm. We prove a strong convergence theorem under some
suitable conditions. Our result is applicable in L,(¢,) spaces, 1 < p < oo
(and consequently in Sobolev spaces). Our results improve and general-
ize some well-known results in the literature.
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1. Introduction

Let K be a nonempty closed and convex subset of a real Banach space E
and E* the dual space of E. The normalized duality mapping J : F — 277 is
defined by

(L.1) Jo={a" € B": (x,27) = [l [|="]] = =]},

where (.,.) denotes the pairing between the elements of E and those of E*.

Let T : E — E be a nonlinear mapping, a point « € E is called a fixed point
of T if Tx = x. We denote by F(T) the set of all fixed points of T (i.e.,
F(T)={x € E:Tx = z}). The mapping T is said to be L-Lipschitz if there
exists a constant L > 0 such that

(1.2) [Tz —Ty|| < Lllz —y|| forallz,y € E.

If in this case, (L.2)) is satisfied with L € [0,1) (respectively, L € [0,1]), then
the mapping T is called a contraction (respectively, nonexpansive). The map
T is said to be uniformly L — Lipschitzian if there exists L > 0 such that

(1.3) [ T"2x — T™y|| < L||z — yl|,
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for all z,y € E, n € N and T is called asymptotically nonexpansive if there
exists a sequence v, € [0,00), lim v, = 0 such that for all z,y € K
n—oo

(1.4) [Tz — T"y|| < (1 +vy)|lz —y|| forall neNl.

It is clear that every asymptotically nonexpansive mapping is uniformly L- Lip-
schitzian with L = sup,,~, {14 v, }. It is well known (see for example [I0]) that
the class of nonexpansive mappings is a proper subclass of the class of asymp-
totically nonexpansive mappings. The class of asymptotically nonexpansive
mappings was introduced by Goebel and Kirk [I0] as an important generaliza-
tion of the class of nonexpansive mappings. Goebel and Kirk [I0] proved that if
K is a nonempty, bounded, closed and convex subset of a real uniformly convex
Banach space and T is a self asymptotically nonexpansive mapping of K, then
T has a fixed point. Related problems have been extensively investigated in
the literature (see [9) [T11 25| 26} 27, (I8, 19]).
Let K be a nonempty closed and convex subset of a real Banach space E. A
mapping 7T is said to be asymptotically regular if

lim |[T" T2 — T"z|| = 0

n—oo
for all x € K. It is said to be uniformly asymptotically regular if for any
bounded subset D of K,

lim sup||7" 'z — T"z|| = 0.

Fixed point theory has played very crucial roles in many different fields of
science, which can be witnessed in game theory and optimization problems,
approximation problems, differential equations, variational inequalities, com-
plementary problems, equilibrium theory, control theory and economics.

The approximation of fixed points of mappings is exceptionally significant
because of its importance in proving the existence of fixed points of mappings.
It can be used to prove the solvability of optimization problems, differential
equations, variational inequalities, and equilibrium problems. In most cases
the basic tool has been the sequence of successive approximations used in the
study of fixed point theory. A good deal of work has been associated with
the nonexpansive mappings. As the sequence of iterates for a nonexpansive
mapping need not always converge therefore several researchers have tried to
give techniques for convergence of the sequence of iterates.

Definition 1.1. Let G : E — FE be a nonlinear mapping. Then, a variational
inequality problem with respect to K and G is to find x* € K such that

(1.5) (Gz*,jly—a")) >0, forally e K, jly—a*)e J(y—a*).

For some positive real numbers § and A, the mapping G : E — F is said to be
d-strongly accretive, if for any x,y € E, there exists j(z — y) € J(x — y) such
that

(1.6) (Gz — Gy, j(z —y)) = 0|z -yl
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and it is called A-strictly pseudocontractive if
(1.7) (Gz—Gy,jz—y)) < |lz —yll* = A - G)z — (I - G)yl*.

Definition 1.2. Let 4, A and 8 be positive real numbers satisfying § + A >
1 and 8 € (0,1). Then G : E — FE is d-strongly accretive and A-strictly
pseudocontractive (see [24]) if, for all z,y € E,

I =Gz — (I -Gyl < (VA =68)/Nz—yll
and
(I =BGz — (I =BGyl < [1 =B — (1 =8)/N]lz—yll,

that is, (I — G) and (I — BG) are contractive mappings.

Variational inequality has developed into a crucial mechanism in study-
ing many problems originating in certain areas of pure and applied sciences.
Numerous methods have been developed by many researchers for solving vari-
ational inequality problems and related optimization and control problems via
approximation of fixed point of mappings, see [0} 12} [14] [36].

Many a problem in pure and applied sciences can be reframed as a problem of
finding a fixed point of a nonexpansive mapping. In 1953, Mann [2I] introduced
an iterative method that converges weakly to a fixed point of a nonexpansive
mapping. However, even in a Hilbert space, Mann’s iteration may fail to con-
verge strongly. Several attempts have been made to construct an iteration
method that guarantees the strong convergence. Halpern [I3] proposed the
so-called Halpern iteration method which converges strongly to a fixed point
of a nonexpansive mapping. Later in 2000, Moudafi [23] introduced the viscos-
ity approximation method to generalize the ideas of Halpern, for nonexpansive
mappings in a Hilbert space H, as follows:

Let H be a real Hilbert space and T': H — H a nonexpansive mapping such
that F'(T) is nonempty, let f be a contraction on H, starting with an arbitrary
xo € H, define a sequence {x,} recursively by

(1.8) Tyl = anf(ay) + (1 — ay)T2,, n>0,

where {a,} is a sequence in (0,1). He proved that under certain appropriate
conditions on {a,}, the sequence {z,} generated by (1.8]) strongly converges
to the unique solution z* in F(T') of the variational inequality

(I = fla*,x—x*) >0, for all e F(T).

Xu [34] in 2003, proved, under some condition on the real sequence {a,,}, that
the sequence {z,} defined by 2p € H chosen arbitrarily and for any fixed b € H,

(1.9) Tpt1 = @b+ (I — a,A)Tx,, n>0,

converges strongly to x* € F(T) which is the unique solution of the minimiza-
tion problem

1
%1%15@4.1,.1‘) - <I,b>7
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where A is a strongly positive bounded linear operator (i.e. 3 4 > 0 such that
(Az,x) > 722, Vz € H).

Combining the iterative method (1.8) and (1.9), Marino and Xu [22] studied
the following general iterative method:

(1.10) Tni1 = anf(xn) + (I — anA)Tx,, n>0.

They proved that if the sequence {a,} of parameters satisfies appropriate
conditions, then the sequence {x,} generated by (1.10) converges strongly to
x* € F(T) which solves the variational inequality problem

(vf = A",z —2") <0 Ve F(T),

which is the optimality condition for the minimization problem

1
in = (Az,z)—h
£%%2<%@ (2),

where h is a potential function for vf (i.e. h'(x) = vf(z) for x € H).

On the other hand, Yamada [35] in 2001 introduced the following hybrid iter-
ative method in Hilbert space H:

(1.11) Tpy1 = Txy — ApGTx,, n >0,

where G is a k-Lipschitzian and n-strongly monotone operator on H with x >
0,7 > 0and 0 < pu < 2n/k? and T is a nonexpansive mapping on H. Under
some appropriate conditions, he proved that the sequence {x,} generated by
converges strongly to the unique solution of the variational inequality
problem

(Gz™,x —z*) >0, Ve F(T).

Recently, combining (1.10) and (1.11)), Tian [3I] considered the following gen-
eral iterative method:

(1.12) Tpy1 = Y f(2n) + (I — anpG)T(xy),

and proved that the sequence {z,} generated by (1.12) converges strongly to
the unique solution z* € F(T") of the variational inequality problem

((vf = pG)a*,x — a*) <0, Vo e F(T).

In 2007, Maingé [20] studied the Halpern-type scheme for approximation of
a common fixed point of countable in finite family of nonexpansive mappings
in a real Hilbert space. Define N := {i € N : T; # I} (I being the identity
mapping on H). He proved the following theorems.

Theorem 1.3. (Maingé [20]) Let K be a nonempty closed convex subset of
a real Hilbert space H. Let {T;} be countable family of monexpansive self-
mappings of K, {t,} and {o;.,} be sequences in (0,1) satisfying the following
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conditions: (i) limt, =0, (i) > .~ i, = 1—t,, (i) Vi € N, lim -t = 0.
= n—

00 Tistn

Define a fized point sequence {z;, } by
(1.13) 21, = tnCa, + 01y, Tiwr,, n>1,
i>1

where C' : K — K s a strict contraction. Assume F := N2, F(T;) # 0, then
{zs, } converges strongly to a unique fized point of the contraction ProC, where
Pr is a metric projection from H onto F.

Theorem 1.4. (Maingé [20]) Let K be a nonempty closed convex subset of
a real Hilbert space H. Let {T;} be countable family of nonexpansive self-
mappings of K, {a,} and {0, ,} be sequences in (0,1) satisfying the following
conditions:

(i) >_ oy = oo, 2121 Oin = 1 —am,
(ii)

1

An—1
n

=0, or >, -

Oi,n

Qp—1 — Q| < 00

Cin

1)1 1
Qn | O4,n Oi,n—1

P > k>0 |0k = Okn—1| = 0, or # > k>0 Tk — Tk n—1] < 00

—0, or >, |z ———|<

Oi,n Oi,n—1

(iii) Vi € N, lim 2 0.

oo Ti,n

Then, the sequence {x,} defined iteratively by x1 € K,

(1.14) Tpy1 = @, Cay + Zai’nTZ-xn, n>1,

i>1

where C : K — K is a strict contraction. Assume F := N2, F(T;) # 0, then
{zn} converges strongly to a unique fized point of the contraction ProC, where
Pr is a metric projection from H onto F.

In 2009, Ali [2] studied a modified scheme for approximation of a common
fixed point of family of nonexpansive mappings in a real g-uniformly smooth
Banach space which is also uniformly convex. He proved the following theorem.

Theorem 1.5. (Ali [2]) Let E be a real g-uniformly smooth Banach space which
s also uniformly convex. Let K be a closed, convex and monempty subset of
E. Fora>0,1letT,: K - Kie€NandA: K — E be a family of
nonexpansive maps and an a-inverse strongly accretive map, respectively. Let
Pg be a nonexpansive projection of E onto K. For some real numbers § € (0,1)

and X € (0, (%)ﬁ) define a sequence {x,} iteratively by x1,u € K,

(1251 = apu+ (1 —0)(1 — an)xp + 520mTiPK(xn —Muz,),n>1

i>1
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where {ay} and {04} are real sequences in (0,1) satisfying the following con-
ditions: (i) lima,, =0, (ii) > o, = 00, (iii) Y~ O =1 — ap and

Jim Y is1 1Oing1 — 0in| = 0. Let F := [N, F(T;)|NVI(K,A) # 0. If either
the duality map j of E admits weak sequential continuity or for at least one
i € N, T;Px(I — M) is demicompact, then {x,} converges strongly to some
element in F.

Later, Ali et al. [4], extended the result of Tian [3I] to g-uniformly smooth
Banach space whose duality mapping is weakly sequentially continuous. Under
some assumption on {a,},v, s and G, they proved that the sequence {z,}
generated by converges strongly to the unique solution z* € F(T) of the
variational inequality problem

(vf = pG)a”, j(x —a*)) <0, Vo F(T).

In 2015, Yolacan [37] studied a hybrid iteration scheme for approximating
fixed points of asymptotically nonexpansive mappings and proved convergence
theorem for a fixed point of asymptotically nonexpansive mapping in uniformly
convex Banach spaces.

In 2017, Jung [15] introduced a modified algorithm of for the implicit
and the explicit case. Under some control conditions, he established strong con-
vergence of the proposed algorithm to a fixed point of a nonexpansive mapping,
which solves certain variational inequality in a reflexive and strictly convex Ba-
nach space with a uniformly Gateaux differentiable norm.

Recently, variational inequality and fixed point problem has attracted the
attention of many researchers and has been studied mostly in Hilbert spaces
(see [0, 12| 14, [36]).

Motivated by the above results, in this paper we study modified iterative
scheme for approximating a common fixed point of a family of uniformly asymp-
totically regular asymptotically nonexpansive mappings with the variational
inequality problem in real uniformly convex Banach space with a uniformly
Gateaux differentiable norm. Under some mild conditions on the parameters,
we prove a strong convergence theorem. Our result is applicable in L,(¢,)
spaces, 1 < p < oo (and consequently in Sobolev spaces). Our result extends
and improves some recent important results in literature.

2. Preliminaries

Let K be a nonempty, closed, convex and bounded subset of a Banach space
E and S(E) := {x € E : ||z|| = 1} be the unit sphere of E. The space F is
said to have Gateaux differentiable norm if for any x € S(E) the limit

e+ Ayl = ||
2.1 1 B ——
(2.1) Jiany A

exists Vy € S(E). The norm of E is said to be uniformly Géteaux differentiable
if for each y € S(F), the limit (2.1) is attained uniformly for « € S(F).
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Let the diameter of K be defined by d(K) := sup{||x —y|| : z,y € K}. For
eachz € K, let r(z, K) :=sup{[|lr—y|| : y € K} and let r(K) := inf{r(z, K) :
z € K} denote the Chebyshev radius of K relative to itself. The normal
structure coefficient N (E) of E (introduced in 1980 by Bynum [5], see also Lim
[16] and the references contained therein) is defined by N (E)::inf{%: K is
a closed convex and bounded subset of E with d(K) > 0}. A space E such
that N(E) > 1 is said to have uniform normal structure. It is known that
every space with a uniform normal structure is reflexive, and that all uniformly

convex and uniformly smooth Banach spaces have uniform normal structure
(see e.g.,[7, [17])).

The following lemmas are used for our main result.

Lemma 2.1. [7] Let E be a real normed space and J, : E — E, 1 < p < 00 be
the generalized duality map. Then, for any x,y € E, the following inequality
holds:

|z +yll” < [l2]l” + p{y, jp(x +v)),
for all jp(z +vy) € Jp(xz +y). In particular, if p =2, then

lz + yl* < llz]]* + 2(y, j(z + ).

Lemma 2.2. (Suzuki [28]) Let {z,} and {y,} be bounded sequences in a
Banach space E and let {$,} be a sequence in [0,1] with 0 < liminf 3, <
limsup B, < 1. Suppose that x,+1 = Buyn + (1 — Bn)xn for all integers n > 1
and lirllsup(|\yn+1 = Ynll = l|Znt1 — xn||) < 0. Then, nlgrgoﬂyn —xz,|| = 0.
Lemma 2.3. (See Lemma 16.7 of Chidume [7]) Let E be a real uniformly
convexr Banach space. For arbitrary r > 0, let B-(0) :== {x € E : ||z|| < r}.
Then, there exists a continuous strictly increasing function g : [0,00) — [0, 00)
with g(0) = 0 such that for every x,y € B,(0) and p € (1,00), the following
inequality holds:

1 :
(2.2) 4-2%g(Slle +yll) < (p- 27 = lle|lP +p - 2°{y, jp(2)) + 4lly[]”-

Lemma 2.4. (Lim and Xu, [I7], Theorem 1) Suppose E is a Banach space
with uniformly normal structure, K is a nonempty bounded subset of E, and
T : K — K is uniformly k— Lipschitzian mapping with k < N(E)%, Suppose
also there exists a monempty bounded closed conver subset C of K with the
following property (P) :

(P) z € C implies w,(x) C C,
where wy,(x) is the w-limit set of T at x, that is, the set

{y € E:y=weak—1limT™zx for some n; — oo}.
J

Then, T has a fized point in C.
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Let 4 be a linear continuous functional on I*° and let a = (a1, ag,---) € [*°.
We will sometimes write u,,(a,) in place of the value u(a). A linear continuous
functional g such that ||u|| = 1 = p(1) and pn(an) = pn(any1) for every
a = (a1,az,---) € 1> is called a Banach limit. It is known that if p is a
Banach limit, then

liminfa, < p(ay,) < limsupa,

n—0o0 n—00

for every a = (a1,az,--+) €1 (see, for example, [7} [§])

Lemma 2.5. (Xu [33]) Let {a,} be a sequence of nonegative real numbers
satisfying the following relation:

Ap+41 S (]- - an)an + QnOp + Yn, M Z 07

where (i) {an} C [0,1], > a, = o0; (it) imsupo, < 0; (#i) v, > 0; (n >
0), > vn <oo. Then, a, — 0 as n — 0.

3. Main results

In the sequel we assume for the sequences {a,},{oin} C (0,1), that
> 0ini=1—q, for each n € N.
i>1
Theorem 3.1. Let E be a real uniformly convex Banach space with a uniformly
Gateauz differentiable norm. Let G : E — E be an n-strongly accretive and p-
strictly pseudocontractive mapping with n+u > 1 and f : E — E a contraction
with coefficient B € (0,1). Let {T;}32, be a family of uniformly asymptotically
reqular asymptotically nonexpansive mappings of E into itself with sequences
{vin} such that vy, — 0 as n — oo for each i > 1 and F := ﬂfil F(T;) # 0.
Assume that 0 <y < g5, where 7 := (1 — ,/1%”). Let {an}52 1 and {Bn}52,
be sequences in (0,1), and suppose that the following conditions are satisfied:

(C1) nh_)rréoﬁn =0 and X328, = c©

(C2) lim 2= =0 and ¥V i € N7, lim 2= = 0 where v, := sup{vin }

n—oo Fn wn i>1

(C3) lim a,, = 0.

n—r00
For some fized 6 € (0,1), let {x,}22, be a sequence defined for xo € E chosen
arbitrarily, by

{ Tp = [1—0(1 —an)lzn + 035, 0in T Yn,

(3'1) Yn = 5n7f(xn) + (I - BnG)fEna n > 0.

Then {x,}52, converges strongly to p € F, which also solves the following
variational inequality:

(3.2) (vf(p) — Gp,j(g—p)) <0, forall qeF.
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Proof. First, we show that {z,} defined by (3.1)) is well defined. For all n € N,
let

T/ :=[1-06(1—ay,)z+ 520mTi"[ﬁn7f(x) + (I — BnG)x].

i>1
Then for all x,y € E, we get
1Tz — Tyl
< =81 —an)lllz =yl +8D_ ol T [Buvf (@) + (I — BpG)a]
i>1

=T By f(y) + (L = Bn)GY]l|

< =601 —an)llle =yl +6(1 —an)(1+vm)
X[Bur[If (@) = FWI + (I = BnG)z — (I = BnG)y]
< D=6 —an)llle—yl[+ (1 —an)(l+vm)

x[BayBlle = yll + (1 = 78wl = ol
= (1=80 = an) + (1 = an)(1 + va)[1 = Bulr = 98)]) Iz — |

= (1601 = ) [Ba(l + )7 = 48) = va] )| — gl

Since lim [B,,(1 + v,)(T — vB) — v,] = 0, then there exists ng € N such that
n—oo
[Brn(14+v,) (T —78) —v,] < € € (0,1) for all n > ng. Thus, for n > ng, we have

01— an)[Bn(l+vp) (T —8) —vn] < 0(1 —ay)e < 1,
therefore, for n > ng, we obtain
1- 6(1 - an)[ﬁn(l + Un)(T - ’Yﬁ) - 'Un] <1

Hence,
1Tz =TIyl < ||z — yll-

That is, {z,,} defined by (3.1)) is well defined.
Therefore, by the contraction mapping principle, there exists a unique fixed
point z,, € E of T} which satisfies (3.1)).

Furthermore, using the same method that was used in Bashir [3], from the
choice of the parameter 7, it is easy to see that the mapping (G—~f): E - E
is strongly accretive and so the variational inequality (3.2 has a unique solution
in F.

Next, let p € F, since 2= — 0 as n — oo, then 0

Un
B m—)oasn—)()o7so

there exists ng € N such that (HZW < #, for all n > ng. Thus
llyn =pll = |IBu(vf(zn) = Gp) + (I = BuG)(zn — p)|
< Bn'l’Yf(mn) - Gp” + (1 - BnT)Hxn _p”
(3.3) < (1= Bulr = 18))llzn — pll + Bullyf () — G,
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and by (3.1)), we obtain
len —pll = [T =6(1—an)(@n =) +6>_ oI}y —p)||

i>1
< =01 —an)lllzn —pll +6(1 — an)(1 + va)llyn — pl|

< 100 0n) +60 — @)1+ v {1 = fulr = 18)]] [ — pl
"_’—6(1 - an)(l + Un)ﬂn'l’Yf(p) - Gp”

= _1 + 5(1 — an)vn - ﬁn(s(l - an)(l + 'Un)(T - 7/8)]} ||$n - p||
4_»5(1 - an)(l + vn)5n||7f(p) - Gp”

< 1= 6000 = )+ ) (=98 = )l — 2l

+B0(1 = an)(1 + va) (7 = 98) - I +U;n)ﬁn> 2I|w;(zi)7—ﬁGpll .

Therefore

lzm — p|| < 2f®) = Gl
n —_ T—’}//B )

Hence {z,} is bounded. Also {f(zn)}, {G(zn)}, {yn}, {T]'z,} and {T"y, } are
all bounded for each 7 > 1.

Vn > ng.

Also by ,
B4)  Mlyn — x|l = Bullvf(zn) = Gan)|| =0 as 1 — oo

Using Lemma by letting z* € F and 1+ v,0, := (1 4 v,)P, where 6, is
some quantity in terms of v,, and p, we obtain the following estimate

mn 1 * *
4.2 (*IIT Yn = ynll) = 4-2°9(S|ITyn — 2" + 2" — ynl])

< (p 2P —df|lz" —ynll’ +p- 2P<T”yn—rc Ip(@" = yn)) + 4[| T yn — =[P

< (p- 2P =D|z" —ynll’ +p - 2°(T yn — Yn + yn — 2%, Jp(2" — yn))
F4(1 4 )P |[yn — 2™

< (p 22 = d|z" = yull? + 0 22T Y — Yy Jp (2™ — yn))

—p - 2%(yn — 2", Jp(yn — 7)) + 41 + vnbn)|lyn — 2"
35 p-2%(yn — T Yn, Jp(yn — 7)) + dvnbn|lyn — =77
Therefore, by (3.1)), we obtain

5 oGl v~ all) < 8 ol — Tyl — 7))
p 121 2 i>1
+4vpn||yn — 2|
= 5(1 - an)<yn - xmjp(yn - x*)>
+4vnbllyn — 2"|P
< 01 = an)llyn — zalllldp(yn — )|

F4vnbnlyn — *||P.
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Hence V i € N7, we obtain

1 p(1—ap) )

STy, —ynll) < BT g -zt
9GIT yn —yall) < oo Yn — Znll[|dp(yn — )|
p Uy
7797}. n - * p'
. [y — x|

It follows by Vi € N7, lim 2= =0 and (3.4) that lim g(||T7"yn—ynl|) =0
n—o0 7in n— 00
for each ¢ > 1. By the property of g and for each i > 1, we have

(36) Tt ([T =yl = 0.
Since

Tiyn —ynll < NTiyn — Ti(Ty)l| + 1T (T yn) — T ynll + 117 yn — yull
(3.7) < (Li 4 Dllyn = Tlynll + 1T gy — Tyl

From (3.6) and asymptotical regularity of T;, for each ¢ > 1 we obtain

Also
[T 20 — 4| Tz — T ynll + 1T Yyn = Ynll + |yn — zal]

<
< (Wn + Dllyn = znll + 1T yn — yall,

from (3.4) and (3.6)), for each ¢ > 1, we obtain
. 0o _
(3.9) nll)H;oHTl Ty — Tpl| = 0.

Following the same argument of (3.7) - (3.8]) and using (3.9)), we obtain
(3.10) lim ||T;z, — x,|| =0, for each i€ N.
n— o0

Define a map ¢ : E — R by

¢(y) = Mn”yn - y||27 for all yek,

where p,, denote a Banach limit. Then by coercivity of the functional ¢, ¢(y) —
oo as ||y|] = oo, ¢ is continuous and convex (see Takahashi [29] and Thesis by
Abdulrashid [I] for more detail). Thus, since E is reflexive, there exists ¢ € E
such that ¢(q) = umelggb(u) (see 1l 29] for more detail). Define the set

K" :={y € E: ¢(y) = ming(u)}.
Because F is a reflexive Banach space, K* is a nonempty bounded closed
and convex subset of E (see [IL 29] for more detail). Next, we show that
Vi € Ny, T; has a fixed point in K*. By (3.8), lim || Ty, —yn|| =0, Vi€ N7.
n—oo
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We show that lim ||y, — yn|| = 0, Vi € Nj and m > 1. We prove by
n—oo

induction. For m = 1, the result follows by (3.8). Assume that for m = k,
lim ||T*y, — yn|| =0, Vi € N;. Then
n—oo

|Tk+1

lim | — unl|

n—

lim || T3(T5 )y — ynll
n—oo
< im [[ITi(TF)yn — Tognl| + 1 Tigm — ynl]
n—roo
< Him [Lil| Ty — ynll + [ Tiyn — ynll] = 0.
n—roo
Now, for y € K* and v := w — lim; Timj y, using the weak lower semicontinuity

of ¢ and the properties of the Banach limit (see [7, [29] [30] for more detail), we
have

o) < liminfg(77y) < limsups (17

Jj—o0 m—00

= timsup (a7
m— o0

= hmsup<,un||yn Ty + T yn — T7y|| )
m—0o0

< limsup (unIIT["yn - szy‘|2)
m— o0

< limsup(,un[(l + ) |[Yn — y|H2) = o(y)
m—0o0

<

< f g(u).

So, v € K* by Lemma [2.4] T; has a fixed point in K* for all ¢ € N7 and so
K*NF 9.

Let p e K*NF and let t € (0,1). Then, it follows that ¢(p) < ¢p(p—t(G—~f)p)
and using Lemma we obtain that

yn —p+t(G =1 )PI* < llyn — pII> + 260G = v)p, j(yn — p + (G — 7)),

which implies that

pn{(vf — G)p, (Y —p + (G — v f)p)) <0

Moreover,

tn{(vf = G)ps j(yn — p))
= wunl(vf =GP j(Yn — ) = §(Yn —p + (G =7 f)p))
Fn{(Vf = G)p, j(yn —p + (G = f)p))
< (v = G)p, i (yn — p) — §(Yn —p + G =7 f)p)).

Since j is norm-to-weak* uniformly continuous on bounded subsets of F and
monotone, we have that

(3.11) pin{(vf = G)p, j(yn — p)) < 0.
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Now, from (3.1)), we obtain

lyn —plI* = IBavf(@n) + (I = BuG)zn — |

(I = BnG)an — (I = BuG)p + Bn(vf(zn) — Gp)|?

(I = Bn@)n — (I — BnG)pl* + 2Bn (7 f(xn) — Gp, j(yn — D))
(1= 782) |z — pII> + 2Bn (v f (@n) — VF (D), 5 (Yn — P))
+2B8n(vf(p) — Gp, j(yn — p))

(1= 7Bn) |z — plI* + 2807820 — pll|lyn — |

+2B8,(vf(p) — Gp, 5 (yn — p))

(1= Bu(r = ¥B)llzn — plI* + BryBllyn — plI?

+2B8n(vf(p) — Gp, j(yn — p))-

INIA I

IA

Therefore
(3.12yn — plI?
S vt [ wee o PACO R ORI O)

_ Bn[T_Q'Y/B] 2
= (1 - W)Hmn —pH

1 fg’;w (vf(p) = G(p), j(yn — P))-

From (3.1)) and (3.12)) by denoting w,, for 2v, + v2, we obtain
llen = pI[* = lI[L = 6(1 = @n))(@n = p) + 8D 0in(T 'y — p)I*

i>1

(3.13)  +

< [1_5(1_an)”"rn_p||2+5zai”||r[’iny”_p||2
i>1
< [1=6(1 = an)lllzn — plI? +6(1 = @) (1 + 0n)?[lyn — pl[*
= [1=601 —a)lllzn —plI* + (1 — @) (1 + wn)||yn — pl[?
671[7-_276] 2
< [M—6(1— PP 4001 —an)(1 1 - 2T = 20PN -
< =00 = an)llfen =l + 801 = an) (14 wn) (1= == e =
2By, .
+0(1 — ) (1 + wy, p)—G(p),i(yn —p
( ) )1*5n75<7f< ) — G(p),j(yn — p))
Bn wn(l_ﬂn')/ﬁ) 2
= 1601 = )1 +wn) x — 28] — .
(1= an) (U wn) x =5 (Ir = 208) = <=2 ) fllen = ol
2By, .
+0(1 — ay) (1 + wy, —G(P),i(Yn —p)).
( )( )1—Bmﬂ<7f(p) (), 3 (yn —p))
Since g~ — 0 as n — oo, it implies that%—)Oasn%oo, then there
exists ng € N such that w("ﬁ;f;[;f) < 77227B, for all n > ng. This implies

2(vf(p) — G(p),j(yn — p))
Ry

2 —pl|* <
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then by (3.11)), we obtain

il [2n = pI[* < 0.
Thus there exists a subsequence say {x,, } of {x,} such that klim Xy, = D,
—00

from ([3.4) we obtain klim Yn, = D- Next, we show that p solves the variational
—00
inequality (3.2)). Indeed, from the relation (3.1))

Yn = 5n7f(xn) + (I - ﬁnG)xn

we get
1

(I = BnG)(Yn — xn).

So, for any z € F we obtain

(G wn) = V(@) — 2)) = = (T = BuG)(thn — 0, i (m — 2))

Bn
1

= =5 (U = @y = 2)) + (Glyn = 20,3y — 2))
1

- _m<5;0m(yn - Tznyn)7](yn _ Z)>

G (Y — Tn), 5 (m — 2)

1 .
= _m<5§0in(yn - Tinyn) - 51-221@”([ - Tin>za.7(yn - Z)>
+<G(yn - xn)a](yn - Z)>
1 n mn -
= By 0 e —2) - 5;%(@ Yn = T7'2),§(yn — 2))
+<G(yn - l'n)yj(yn - Z)>

= Ty (0 el )

—520in<Ti"yn - Tlnz,j(yn - Z)>)

i>1
HG(Yn — 20n), 5 (Yn — 2))

1 2 1 2
S 7 |Yn — 2 +71+vn Yn — 2
ﬁn” | Bn( i |
HIGIYn — znllllyn — 2]
Therefore

(Gyn) =7 f(2n)), 4 (yn — 2)) < ;illyn — 2|2+ [1GI[llyn — znllllyn — =II,
and so

. Uny,
(G ) =7F @i ))s 3G = 2)) < 5= [y = 2P+ G Myn, = T Myn,, =21
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Taking the limit as £k — oo on both sides of the above inequality, and using
the fact that x,, — p and y,, — p as k — oo we obtain ((G(p) —vf(p)),j(p—
z)) <0 Vz € F . This implies that p € F is a solution of the variational
inequality (3.2). Now assume there exists another subsequence of {z,} and
{yn} say {zn,} and {yn,} respectively such that lim z,, = p* = lim y,,.

J]—0 J—00
Then, using and we have p* € F. Repeating the above argument
with p replaced by p* we can easily obtain that p* is also a solution of the
variational inequality . By the uniqueness of the solution of the variational
inequality, we obtain that p = p*. This completes the proof. O

Now, we prove a strong convergence of explicit scheme to a common fixed
point of family of asymptotically nonexpansive maps which is also a unique
solution of some variational inequality problem in uniformly convex Banach
space.

Theorem 3.2. Let E be a real uniformly convex Banach space with a uniformly
Gateauz differentiable norm. Let G : E — E be an n-strongly accretive and
p-strictly pseudocontractive mapping withn+p > 1 and let f : E — FE be a con-
traction with coefficient B € (0,1). Let {T;}32, be a family of uniformly asymp-
totically reqular asymptotically nonexpansive self mappings of E with sequences
{vin} such that vy, — 0 as n — oo for each i > 1 and F := (o, F(T;) # 0 .

Assume that v € (O,min{%ﬂ?}), where T := (1 — 1/177”). Let {a,}524 and

{Bn}22, be sequences in (0,1), and suppose that the following conditions are
satisfied:

in

(C1) lim B, =0, 2228, = 00 and V i € Ny, lim £~ =0
n— oo n—r00

(C2) lim 2= =0 and Vi € N, ILm 2 =0 where vy, 1= sup{vi, }

n—oo ~n i>1
(C3) nh_)rr;oan =0.

For some fized § € (0,1), let {z,, }72 be a sequence defined iteratively by o € E
chosen arbitrarily,

(3.14) { Tn1 = [1=6(1 —an)|z, + 5Zi21 TinT Yn,
' Yn = By f(zn) + (I =BGy, n>0.

Then, {z,}52, converges strongly to p € F, where p is the unique solution of
the variational inequality problem

(3.15) (vf(p) = Gp,j(g—p)) <0, forallgeF.

Proof. By the choice of v, (G—~f) is strongly accretive, thus the variational in-
equality (1.5) has a unique solution in F'. Next, we show that {z,} is bounded.
Let p € F, since g" — 0 as n — oo, then W — 0 as n — o0, so there
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exists ng € N such that M}ﬁ < #, for all n > ny.

llyn —pll = |[Ba(vf(2n) — Gp) + (I = BuG)(zn — p)]|
Bullvf(zn) — Gpl| + (1 = Bu)||z0 — Dl

(1= Bulr = 18) [z — pll + Bullvf () — G-

IN

(3.16)

IN

Using (3.16]), we obtain

o = pll = 1112 =60~ )] —p) +6 Y oin L'y — 1)

< (1= 81— an)ll2m — pll + 6(1 — @) (1 +v) g —

< [1=0(01 = an) + 801 = an)(1+ )1 = Bulr = 78] l|zn —
+5(1 - an)(l + Un)/Bn||7f(p) - Gp”

= 14601 = an)vn = Bad(1 = an)(1+ va)(7 = AB)]] I — pl|
+6(1 — ) (1 + vp) Bul |7 f (p) — G|

< [1-8000 - @)+ o) ((r=80) = o) |llen =l

Up 2|[vf(p) — Gl
+5n5(17an)(1+vn)((7—77ﬂ)7 (1+'Un)6n) T_'VB
2|lvf(p) — Gpl|
< max{”xn = plls W}

By induction, we obtain

2||vf(p) — Gpl|

e } Vn > ng.

2 = pll < max { ||z, ol

Hence {z,} is bounded. Also {f(zn)}, {G(zn)}, {yn}, {T7*xn} and {T'y,} are
all bounded.

Define two sequences by v, := (1 — §)ay, + 6 and z, = M From
the recursion formula ([3.14)), observe that

N 0 2121 UinT‘inyn + ann
Tn

Zn
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which implies

+1
0 Zi21 Tint1T]"" Ynt1 + Qng1Tni1

Zn+1 — % =
n+ n 7n+1
6 Zi21 UinTinyn + ApTp
Yn
0D i>1 Tint1
N :Y_1+1m (TinHynJrl_Tany")
n
0> .o, 0
n 21721 in+1 (Tfﬂyn—Tinyn)
n+1
0) ot Oing1l 0 .oq0;
+( Lz Tintt 02z ">T"yn
Tn+1 Tn
(0% (0%
+ n+1.’En+1 — nl‘n,
’Yn—‘—l n
therefore
0> i>1 Oint1
l|znt1 — znl] < %’Tf“ynﬂ—ﬂ"“yn
n+
0> .o, 0
+Zfl m“‘ﬁ“%—ﬂ”%
n+1
6 i>10int1 02 510
L R
n n
« 1 «
+,yn+ |\$n+1||+7n||$n||
n+1 n
61—« 1
< (fy:Jr)<1+U”+l)y”H_y"”
n
52 Oin+1
+ ;21 n ‘ T;H_lyn _ T;nyn
n+1
62 i>10int1 02 510
| - =T
’7n+1 ’Yn
(6] 1 [0
(3.17) n; 1l + = [zn]]-
n n
But

Yntl = Yn = 5n+1’>’(f(33n+1) - f(an)) + (ﬁnJrl - ﬂn)Wf(fﬂn)
+((I — Bn1G)rngr — (1 — ﬂn+1G)xn)
+(( = Bua @) = (1 = BuG)a).
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so that
W1 —ynll < Bup1¥Bllznss — znll 4 |Brtr = Bulllvf (za)l|
(1 = Bram)znt1 — 2all + |Brir — BulllG(z0)]|
= 1= Bns1(T =B |Tnt1 — al|
(3.18) HBut1 = Bal [IInf @)l + 1G]]
Using (3.18)) in (3.17)), we obtain that
[2n+1 = znl| = [|Tnt1 — 24|
o(1 — Ayt
< (U0 (g 4 )1 = B =98]~ 1) s — ol
’Yn-&-l
6(1 — an41)
(1 + 0| Batr — Bal [lI7f ()| + |G (20)]]]
Yn+1
0 2@1 Oin+1 HTinHZ/n —Ti'yn
+
’Yn+1
+‘ 521‘21 Cint1 || T ynl| _ 521'21 Tin| T Ynl| ‘
Yn+1 Tn
Q41 Qlp,
+ zngall + —Ilzal|
Tn+1 Tn
01l — oy
< (M) 4 )1 = (e =98] 1)l —
Tn+1
6(1 — o)
(14 0| Batr = Bal [lIvf ()| + |G (20)]]]
Yn+1
d Zi>1 Oin+1 HTinHyn —T'yn
n >
'Yn-&-l
n (1 —any1) (1 —an) A
Tn+1 Tn
Qn 41 70
+ |Znt1l| + —[@n]].
Tn+1 el Tn [l
for some M* > 0 and this implies
limsup(|[zn+1 = 2nll = [[2n41 — @al]) <0,
n—oo
and from Lemma we have
lim ||z, — x| = 0.
n—oo

Hence

(3.19) [|Znt1 — Znl| = (1 = vp)||2n — Tl = 0 as n — oco.
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Next, we show that limO||TZ-”yn — xn|] = 0, for any z* € F. Using the same
n—

argument as in (3.5)), from (3.14) and Lemma we obtain

4 1o
=0 oing(G Ty — zall)
p 4 2
i>1
< A+ 0nb)llyn — 1P +8 Y Ginl@n — Ty, Gp(@n — %))
i>1
—Alje* =z,

< AL+ vaby)[l[zn — 2P + Bup{(vf — G)zn, Jp(zn — P))]
—A||z" = 2n|[P + 6D oinl@n — Ty, Gp(@n — %))
i>1
= 01 —an){@nt1 — Tn, Jp(an — 7)) + 40,0, ||z — 2*||P
+4Bnp(1 + vp0n)((Vf — G)Tn, jp(Tn — P))
< 61— an)l[zntr — zalllldp(zn — 27)|| + 4000 |25 — 27| [P

+4ﬁnp(1 + Unen)«’yf - G)l'n»]p(mn - p)>

Hence V i € N7, we obtain

1 l—« . «
sl =l < B0 e — )]
o bl — 2P
P B
+?7(1 + b ){(Vf — G)2n, Jp(Tn — 27)).
Oin

It follows from the fact that lim 2=~ =0, Vi€ N, lim 2= =0, Vi € A7 and
n—oo 7 tn n—oo 9in
(3.19) that
1 n
g(§||TZ Yn — Znl]) >0 as n — oo,
for all i € N7. Then by the property of g, it implies that for each i € N7,
(3.20) lim |77y, — x,|| = 0.
n—oo
Also, from the recursion formula (3.14)), we obtain
(3.21) [Yn — nll = Bullvf(@n) — G(2,)|| = 0 as n — oo.
which implies that for each i > 1,
(3.22) IT"yn — ynll < |T"yn — @l + [J2n —ynll = 0 as n — oo.
Furthermore

T @y — T ynl| + |1 Y0 — nl|
(I +va)llzn = yull + 1T yn — w0l

IAIA
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It follows from (3.19) and ([3.21)), for each i > 1, we obtain

(3.23) nl;ngo||71 Tp — Zn|| =0
Therefore
| Tiwn —zall < |Tiwn — T ||+ [T 2 — T 2 |

+HT¢n+1$n+1 = Zna|| + [Tt — 20l
Lillzn — T zn|| + (2 + vng1)||Tns1 — 2n|
HT g1 — T ],

IN

for each ¢ > 1, also by using (3.20) and (3.23]), we obtain

(3.24) lim ||T;x, — 2,|| =0 for each 4> 1.
n—oo

we also have

< (U4 Li)llyn — wall + | Tizn — 2]l
This implies that,
(3.25) lim ||T;yn — yn|| =0 for each i > 1.
n—roo

Next we show that

limsup((vf — G)p, j(yn —p)) < 0.

n—roo

For each m > 0, let z, € FE be the unique fixed point of the contraction
mapping, 7. Then z,, = [1 — 6(1 — am)]zm + (522-21 Cim T Y, Where y,, =
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BV f (2m) + (I — BinG) zm (see Theorem and that p = liln Zm, SO that

[2m — v

<

IN

IN

all? < 11 =6(1 = am)lllzm = Yal > + 8 0imlI T Yon =

i>1

[1 =801 = am)lllzm — yall?

2
+8 3 Gim |17 gom = Tl + 117" =

i>1

[1 =001 = am)lllzm = yall?

0> i 1Ty = T I* + 2017 = T 9l 19 = 9

i>1

2
+||szyn _yn‘|2]
[1 - 5(1 - O‘m)mzm - ynHQ
+8 3 Gim | (14wl [gon = 9l + 200+ vl [gm = wlllIT" 90 =

i>1

2
[Ty = vl ]
(1= 5(1 = am)]ll2m = yall?

+6(1 — am) (1 + w)||Ym — Yn

17

+5Z‘71'm[(1 + V)Y — Ynl| + ||szyn _yn”]”szyn — Y|

i>1

[1—6(1 — am)ll|zm — ynll?
+5(1 - am)(l + wm)”ﬂm('}/f(zm) - G(Zm)) + Zm — ynH2
+520im[(1 + ) [[Ym = Ynll + 1T Yn = yn [l T Y — Yl

IN

i>1

(1= 801 = a2 — vl
+0(1 = ) (1 + wn) [ [12m = gl

2B (1] (2m) = Gzm), (. — )]

‘HSZUWL + v )[Ym = Ynll + 1T Yn — yn 11T Y — ynl|
i>1

l|2m — yn||2 + (1 — am)wm||2m — ynHQ

+26m5(1 - am)(l + wm)<'7f(zm> - G<Zm)7j(ym - yn)>

+520im[(1 + V)| [Ym — Ynl| + ||Timyn = Yul T Y — yull-

i>1
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Therefore
W,
_ i _ < . 7m
(1 ) = Gl ) = 1)) € s
+6Zi21 Tim (L + V) [[Ym — Ynll + [T Y5 — YT Yn — ynl|
2B (1 + wyy) '

Now, taking limit superior as n — oo firstly, and then as m — oo, we have

*ynHz

(3:26)  Tnsuplimsup(yf(zm) = G jun — 2m)) <0

n—oo

Moreover, we note that

(vf(p) = Gp,j(yn — p)) = (7 (P) = Gp, i (yn — p)) — (Vf (D) — GD, j(Yn — 2m))
+(1f(p) = Gp i (yn — 2m)) — (W (P) = Gz, § (yn — 2m))
+f(P) = Gzmy J(Yn — 2m)) — (Vf(2m) — Gz, §(Yn — 2m))
(v f(2m) — Gzm, §(Yn — 2m))
= (vf(p) = Gp,j(yn — ) = j(Yn — 2m))

HGzm — Gp, j(Yn — 2m))
+{(1f (zm) = 7f (D), (yn — 2m))

(3-27) +<'Yf(zm) - szvj(yn - zm»

Taking limit superior as n — oo in , we have

limsup(vyf(p) — Gp,j(yn — p))

n— oo

< limsup(vf(p) — Gp,5(Yn — 1) = J(Un — 2m))

n—oo
+||G2p — Gpl[lim sup||yn — 2|
n—oo
7 f(zm) = 7 f ()| [lim sup|[yn — 2|
n— oo
+Hlim sup(yf(zm) — Gzm, i (Yn — 2m))
n—oo
< limsup(vf(p) — Gp, j(Yn — P) — J(Yn — 2m))
n— o0
1 .
(0 2) 4 ) 2 — plltim supl g — 2
12 n—00
+limsup(yf(zm) — GZm, J(Yn — 2m))-
n—oo

By Theorem [3.1} 2, — p € F as m — oc.
Since j is norm — to — weak™ uniformly continuous on bounded subset of F,
with uniformly Géateaux differentiable norm, so we conclude that

lim sup limsup(yf(p) — Gp,j(Yn — p) — j(Yn — 2m)) =0,

m—o0 n—oo

therefore, using (3.26]) we have

limsup(yf(p) — Gp,j(yn —p)) < limsup limsup(yf(zm) — Gzm, j(yn — p))
n—oo m—0oQ n—o0
< 0.
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Un

We now conclude by showing that x,, — p as n — co. Since s 0asn — oo,
if we denote by w,, the value 2v,, +v2, it implies that W — 0 asn — oo,

< =28 for all n > ny. By

then there exists ng € N such that @ +g2) 7 < T3

recursion formula (3.14)), we obtain

enss = pl* = [I[1 = 6(1 = an))(@n —p) +6 > oin(T}'yn — p)II?
i>1

(1= 61— an)lllen = plI> + 8 ol Ty — plI?

(1= 601 — an)2n — pl> + 61— ) (1 +0)? Iy — o2

[1 = 5(1 = )]l —p||?

+6(1 - an)(l + wn) [”ﬁn(’yf(wn) - Gp) + (I - ﬁnG)(wn - p)HZ}
(1= 801 = an)lllen = plI? + (1 = an)(1+ wa) [(1 = Bur) o — I
26, (7 (@n) = Gp, (4 — P))]

[1=6(1 = a) +6(1 = ) (1 +wa)(1 = Bu7)| [ — I

+2/8n5(1 - an)(l + wn)'}/ﬁuxn - pHHyn —p||

+26,0(1 — an) (1 + wn ) (7 f(p) — Gp, j(yn — D))

(1= 601 = an) + 81 = @) (1 4+ wa) (1 = Ba7)] llan = pII

+28,0(1 — ) (1 + wy V8| xn — pl[?

+28,6(1 — an)(1 + wn)yBllxn — pll||yn — 2nl|
+2/8n5(1 - an)(l + wn)<7f(p) - Gpvj(yn - p)>

|1 001 = @) + 8(1 = )L+ wn)(1 = Bulr — 298]) 1z = pll?
+28,0(1 = an ) (1 + wn ) yBllzn = pllllyn — |l

+2Bn6(1 — an)(1 + wn) (v f(p) — Gp, (yn — p))

= [t 880~ @)1 wn) (= 298) = s ) [l = 2P
+26n0(1 — an)(1 +wn)(7f(p) — G, j(yn — )

+2B,0(1 = ) (1 + wa ) Blkn = [y — 2]

= [1-Bu80 — @)t wn) (0= 298) = s )l = P

IN

IAIA

IN

IN

IN

FBn0(1 = an)(1+w,) (7 = 298) - ﬂ:UTnn)Bn) i

2[(vf(p) = Gp, j(yn — p)) + val|2n — Pll||Yyn — 20 ][]
((7 = 298) = (wa /(1 + wn)B0))
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Observe that > £,0(1 — ap)(1 + wy,) ((T —270) — Mﬁ) = o0 and

2[(vf(p) — Gp, j(yn — p)) + ¥Bl|zn — pll||yn —xnll]) <0

lim sup ( ((T —298) — (wn/(1 4 w")ﬂ"))

Applying Lemma we obtain ||z, — p|| = 0 as n — oco. This completes the
proof.
O

Corollary 3.3. Let E be a real uniformly convex Banach space whose duality
mapping J is weakly sequentially continuous. Let G : B — E, f : E — E,

{T}eoy F, {an oy, {Bntey and {x,}52, be as in Theorem[3.3, then {xn}5L,
converges strongly to p € F, which is also the unique solution of the variational
iequality

(vf(p) — Gp,j(qg—p)) <0, forallqeF.

Corollary 3.4. Let H be a real Hilbert space, {2t }1e(0,1), be as in Theorem.
Then {z:} converges strongly to a common fized point of the family {T;}32, say
p, which is a unique solution of the variational inequality

(G —=~f)p,qg—p) >0, forallgeF.

Corollary 3.5. Let H be a real Hilbert space and let C' a nonempty closed
convexr subset of H. Let G : H — H, f : H — H, {T;}2, F, {an}2,,
{82352, and {x,}32, be as in Theorem[3.4 Then {x,}52, converges strongly
to p € F, which is also the unique solution of the variational inequality

(vf(p) —Gp,q—p) <0, forall q € F.

Here we present detailed example of an asymptotically nonexpansive self
mapping which is also uniformly asymptotically regular by Goebel and Kirk
[10], (see also [32]).

Example 3.6. Let B denote the unit ball in the Hilbert space £2. Then

B:={x = (21,72,---) €L*: || <1/2 and |2;] <1 fori=2,3,---},
with norm ||z|| = max {|z;], for n=1,2,3,---}. Define a mapping T : B —
<i<n
B by
Tz = (0,221, a2x2, a3x3, - )

where {a;} is a sequence of numbers such that 0 < a; < 1 and []°, = 3.

Then T is Lipschitzian and ||Tz — Ty|| < 2||x — y||, for all z,y € B. Moreover,
if u=(1/2,0,0,---), v =(0,0,0,---) € B. Then, we get

[|Tw—Tv|| =1/(0,1,0,0,---)|| =1>1/2 = |ju — ]|
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Hence, T is not nonexpansive. Now, let # = (w1,%2,23,---) and
Y= (y17y27y37 o ) be in B. Then

m-+1 m+k—1

T (x) = ( ,0, QHale, H a;To, - H aixk,--~).
i=k

Thus, for m > n, we have ||T™xz — T™y|| = 0. And for any k > 0 and n > k, if
n > m, then m = n — k. With this we obtain

[|T™x — Tyl

m m+1 m+k—1

< max{2Ha,»|x1 -, H ailza — yo|, - -, H a;|xy —yk\}
i=2 i=2 i=k
m m—+1 m+k—1

< max{ZHa,-, H iy H ai}||x—y||
=2 i=2 i=k

m
< QHGiHJJ - yH = kaZ‘ - y||’

=2

where k,, = 2 HZ’; a;, km — 1 as m — oco. Hence T is asymptotically nonex-
pansive mapping. Also, it is easy to see that T" is uniformly asymptotic regular
on B.

Remark 3.7. A prototype of the sequence {a;} in Example such that 0 <
a; <1and [[;2, = 3 is given by a; := (%)7 That is

o166

1=2

1 1 1 1 1
> 5 = wtEtetegt
1 1 1 1 1 1
wtg)t(@Eteteta)

1 1 1
Hg++g) (g ram)
(+
_|_
1
2

IA

1
(s

i+i) (1+—+i+1>

227 2 42742 7 2 T g2
11 1 11 1
11 1

itgtw
2

162~ 162 162
+

12
1-1/2




72 Godwin Chidi Ugwunnadi

Therefore

i 1
Hai = 5
i=2
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