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Some characterizations of regularity and intra-regularity
of Γ-semigroups by means of quasi-ideals1

Fabiana Çullhaj23 and Anjeza Krakulli4

Abstract. The concept of regularity in Γ-semigroups is not very easy
to deal with even though it shares some analogy with its analogue in
semigroup theory. In this paper we establish a mechanism which trans-
lates the regularity in a Γ-semigroup (S,Γ) as the usual von Neumann
regularity in an ordinary semigroup Ωγ0 that we construct in terms of
(S,Γ). This enables us to characterize the regularity in Γ-semigroups
by means of quasi-ideals. A similar characterization is proved for those
Γ-semigroups which are regular and intra-regular.
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1. Introduction and preliminaries

The aim of this paper is to give an alternative way to that in [5] for project-
ing a Γ-semigroup onto a certain semigroup which inherits several properties
of the Γ-semigroup. Pasku in [5] associated to any Γ-semigroup an ordinary
semigroup Σγ0 where γ0 ∈ Γ is a fixed element, and showed that Green’s the-
orem for ordinary semigroups implies an analogue for Γ-semigroups. Also he
showed that if for this particular γ0, the local semigroup Sγ0 = (S, ◦) with
multiplication ◦ defined by a ◦ b = aγ0b, is completely simple, then so is every
Sγ . This result generalizes a result of Sen and Saha in [7] (see also [6]). It is
important to emphasize that Σγ0 is used in [5] as a pathway which connects the
two theories, Γ-semigroups with ordinary semigroups, and it is this connection
that enables one to produce results for Γ-semigroups that are analogues of re-
sults in semigroup theory with minimal costs. But Pasku’s Σγ0 doesn’t seem to
be very helpful when it comes to regularity or intra-regularity of Γ-semigroups
because such concepts differ significantly from their counterparts for ordinary
semigroups. For this reason we had to consider a different version of Σγ0 , which
we call here Ωγ0 , and is a quotient of a free product of a group whose underlying
set is Γ with the free semigroup on S. This new semigroup enables us to relate
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40 Fabiana Çullhaj, Anjeza Krakulli

the regularity of a Γ-semigroup S to the set Q(S) of all quasi-ideals of (S,Γ)
which turns out to be a Γ-semigroup and that encodes in full the regularity of
(S,Γ). An attempt has been made in [1] to make such a connection, but the
author does not consider there the set Q(S) as a Γ-semigroup, and therefore
misses the importance of Q(S) and the analogy that exists with the theory of
ordinary semigroups. We also consider intra-regularity and in particular those
Γ-semigroups which are regular and intra-regular at the same time. Again,
we prove that such Γ-semigroups can be characterized as those Γ-semigroups
whose quasi-ideals are idempotent. We obtain this characterization as an im-
plication of its well known analogue for ordinary semigroups. Other results on
intra-regular Γ-semigroups can be found in [2].

Now we give some elementary notions from the theory that will be needed
in the rest of the paper. If S and Γ are two non empty sets, then every map
· : S × Γ × S → S will be called a Γ-multiplication in S. The result of this
multiplication for a, b ∈ S and γ ∈ Γ is denoted by aγb. According to Sen
and Saha [7], a Γ-semigroup S is an ordered pair (S,Γ) equipped with a Γ-
multiplication · on S which satisfies the following property

∀(a, b, c, α, β) ∈ S3 × Γ2, (aαb)βc = aα(bβc).

Let S be a Γ-semigroup and A,B subset of S. We define the set

AΓB = {aγb|a ∈ A, b ∈ B and γ ∈ Γ}.

For simplicity we write aΓB instead of {a}ΓB and similarly we write AΓb, and
write AγB in place of A{γ}B.

By analogy with the definition of quasi-ideals in plain semigroups [8] we
give the following.

Definition 1.1. A quasi-ideal of a Γ-semigroup S is a non empty subset Q of
S such that QΓS ∩ SΓQ ⊆ Q.

It is easy to see that the principal quasi-ideal (a)q generated by a in a
Γ-semigroup S exists and is given by

(a)q = a ∪ (aΓS ∩ SΓa).

Given a Γ-semigroup S it is obvious that for any fixed γ ∈ Γ one can associate
to S a semigroup (Sγ , ◦) where Sγ = S and ◦ is defined by setting x ◦ y = xγy
for every x, y ∈ S.

2. The adjoint semigroup Ωγ0

To define Ωγ0 we will use the fact that we can always define a multiplication
• on any non empty set Γ in such a way that (Γ, •) becomes a group. This,
in fact is, equivalent to the axiom of choice (see [3]). Also we use the concept
of the free product of two semigroups. Material related to this concept can
be found in [4] pp 258-261. Further, let (F, ·) be the free semigroup on S. Its
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elements are finite strings (x1, ..., xn) where each xi ∈ S and the product · is
the concatenation of words. Now we define Ωγ0 as the quotient semigroup of
the free product F ∗ Γ of (F, ·) with (Γ, •) by the congruence generated from
the set of relations

((x, y), xγ0y), ((x, γ, y), xγy)

for all x, y ∈ S, γ ∈ Γ and with γ0 ∈ Γ a fixed element. We can also regard the
group (Γ, •) as given by a presentation with generators the elements of Γ, and
relations arising from the multiplication table of the group. So a presentation
of Ωγ0 has now as a generating set S ∪Γ, and relations those mentioned above
together with those arising from the multiplication table of (Γ, •).

Lemma 2.1. Every element of Ωγ0 can be represented by an irreducible word
which has the form (γ, x, γ′), (γ, x), (x, γ), γ or x where x ∈ S and γ, γ′ ∈ Γ.

Proof. First we have to prove that the reduction system arising from the given
presentation is Noetherian and confluent, and therefore any element of Ωγ0 is
given by a unique irreducible word from S ∪ Γ. Secondly, we have to prove
that the irreducible words have one of these five forms. So if ω is a word of
the form ω = (u, x, γ, y, v) for γ ∈ Γ, x, y ∈ S and u, v possibly empty words,
then ω reduces to ω′ = (u, xγy, v). And if ω = (u, x, y, v), then it reduces to
ω′ = (u, xγ0y, v). In this way we obtain a reduction system which is length
reducing and therefore it is Noetherian. To prove that this system is confluent,
from Newman’s lemma, it is sufficient to prove that it is locally confluent. For
this we need to see only the overlapping pairs.
1. (x, y, z)→ (xγ0y, z) and (x, y, z)→ (x, yγ0z) which both reduce to (xγ0yγ0z).
2. (x, γ, y, z) → (xγy, z) and (x, γ, y, z) → (x, γ, yγ0z) which both reduce to
(xγyγ0z).
3. (x, y, γ, z) → (xγ0y, γ, z) and (x, y, γ, z) → (x, yγz) which both reduce to
(xγ0yγz).
4. (x, γ, y, γ′, z) → (xγy, γ′, z) and (x, γ, y, γ′, z) → (x, γ, yγ′z) which both re-
duce to (xγyγ′z).
5. (γ1, γ2, γ3)→ (γ1 • γ2, γ3) and (γ1, γ2, γ3)→ (γ1, γ2 • γ3) which both reduce
to γ1 • γ2 • γ3.
To complete the proof we need to show that the irreducible word representing
the element of Ωγ0 has one of the five forms stated. If the word which has
neither a prefix nor a suffix made entirely of letters from Γ, then it reduces to
an element of S by performing the appropriate reductions. If the word has the
form (α, ω, α′), (α, ω), or (ω, α′), where ω is a word which has neither a prefix
nor a suffix made entirely of letters from Γ, and α, α′ have only letters from Γ,
then it reduces to an element of one of the first three forms.

Definition 2.2. An element a of a Γ-semigroup (S,Γ) is called regular if there
are γ1, γ2 ∈ Γ and x ∈ S such that aγ1xγ2a = a. The element x is called the
inverse of a with respect to γ1 and γ2. If every element of (S,Γ) is regular,
then (S,Γ) is called a regular Γ-semigroup.

Proposition 2.3. If S is a regular Γ-semigroup then Ωγ0 is a von Neumann
regular semigroup and conversely.
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Proof. Since S is a regular Γ-semigroup it means that for every a ∈ S, ∃x ∈
S, γ1, γ2 ∈ Γ such that a = aγ1xγ2a. An immediate implication of this is that
a has an inverse in Ωγ0 which is (γ1xγ2). We show that the same happens with
all the remaining types of elements of Ωγ0 . Let α1aα2 be another element of
Ωγ0 . As its inverse we take α−1

2 γ1xγ2α
−1
1 ∈ Ωγ0 , because

(α1aα2)(α−1
2 γ1xγ2α

−1
1 )(α1aα2) = α1aγ1xγ2aα2 = α1aα2.

Also αa ∈ Ωγ0 is regular and as its inverse we take γ1xγ2α
−1 ∈ Ωγ0 , because

(αa)(γ1xγ2α
−1)(αa) = αaγ1xγ2a = αa.

The same holds true for aα ∈ Ωγ0 which is regular with inverse α−1γ1xγ2 ∈ Ωγ0 ,
because (aα)(α−1γ1xγ2)(aα) = aγ1xγ2aα = aα. And finally every α ∈ Γ has
inverse α−1, its inverse in (Γ, •).

For the converse, if Ωγ0 is regular, then every a ∈ S has an inverse in Ωγ0 .
We will show that every a ∈ S has an inverse in (S,Γ). For this we distinguish
between the following five cases. First, if the inverse of a in Ωγ0 is of the form
αxβ where x ∈ S, then aαxβa = a which means that a is regular in (S,Γ).
Second, if αx is the inverse of a in Ωγ0 , then a(αx)a = a, which can be written
as aαxγ0a = a proving the regularity of a in (S,Γ). Third, the inverse of a in
Ωγ0 is some xα. This case is dealt with similarly to the second case. Fourth, the
inverse of a in Ωγ0 is some x ∈ S. Then, axa = a, or equivalently, aγ0xγ0a = a,
which again implies that a is regular in (S,Γ). Finally, the inverse a in Ωγ0
is some α ∈ Γ. In this case, aαa = a, then aαaαa = a and a is regular in
(S,Γ).

Remark 2.4. If there is some γ0 ∈ Γ such that (Sγ0 , ◦) is von Neumann regular,
then (S,Γ) is regular in the sense of Definition 2.2. Indeed, if a ∈ S, then
a ∈ Sγ0 , which is von Neumann regular, so there is x ∈ Sγ0 = S such that
aγ0xγ0a = a, hence a is regular. We also emphasize here that Ωγ0 defined for
this particular γ0 is von Neumann regular.

Lemma 2.5. If Q is a quasi-ideal of a Γ-semigroup S, then Q is a quasi-ideal
of Ωγ0 .

Proof. Let p be an element from the intersection QΩγ0 ∩Ωγ0Q. The following
cases are possible. First, p = qx = yq′ where q, q′ ∈ Q and x, y ∈ S. Thus,
p = qγ0x = yγ0q

′ ∈ QΓS ∩ SΓQ ⊆ Q. Second, p = q(αx) = q′y where x, y ∈ S
and α ∈ Γ. Again, p = qαx = q′γ0y ∈ QΓS ∩ SΓQ ⊆ Q, The two remaining
cases are p = qx = (yβ)q′, where x, y ∈ S and β ∈ Γ, and p = q(αx) = (yβ)q′,
where x, y ∈ S and α, β ∈ Γ. The corresponding proofs are similar to the
previous proofs.

A partial converse of the above holds true.

Lemma 2.6. If Q is a quasi-ideal of Ωγ0 which consists only of elements of S,
then Q is a quasi-ideal of the Γ-semigroup S.
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Proof. Let p = qαx = yβq′ ∈ QΓS ∩ SΓQ with x, y ∈ S and α, β ∈ Γ, then
p = q(αx) = (yβ)q′ ∈ QΩγ0 ∩Ωγ0Q ⊆ Q. Thus Q is a quasi-ideal of (S,Γ).

Lemma 2.7. Let Q be a quasi-ideal of (S,Γ) and α ∈ Γ, then αQ is a quasi-
ideal of Ωγ0 .

Proof. Let p = (αq)w = w′(αq′) ∈ (αQ)Ωγ0 ∩ Ωγ0(αQ), then necessarily w
equals to some x ∈ S or has the form βx where β ∈ Γ and x ∈ S, and w′ has
the form w = αy or w = αyγ where y ∈ S and γ ∈ Γ. We give below the proof
when w = βx and w′ = αyγ. The other cases are dealt with similarly. In this
case, we have

p = αqβx = αyγαq′ ∈ αQΓS ∩ αSΓQ = α(QΓS ∩ SΓQ) ⊆ αQ,

which shows that αQ is a quasi-ideal of Ωγ0 .

An analogue of Proposition 2.7 of [5] holds true. It relates the quasi-ideal

(a)
Ωγ0
q in Ωγ0 , generated by some a ∈ S, with the quasi-ideal (a)Γ

q in S generated
by a. We leave the proof to the reader.

Proposition 2.8. For every a ∈ S, (a)
Ωγ0
q = (a)Γ

q .

Lemma 2.9. Let α, β ∈ Γ and a ∈ S. Then (αaβ)
Ωγ0
q = α(a)

Ωγ0
q β, (αa)

Ωγ0
q =

α(a)
Ωγ0
q and (aβ)

Ωγ0
q = (a)

Ωγ0
q β.

Proof. We will make the proof for αaβ only. The other proofs are similar.
In the following we use the fact that in Ωγ0 , for all α, β ∈ Γ, we have that
βΓ = Γ = Γα.

(αaβ)
Ωγ0
q = αaβ ∪ ((αaβ)Ωγ0 ∩ Ωγ0(αaβ))

= αaβ ∪ ((αaΓ ∪ αaΓS ∪ αaΓSΓ) ∩ (Γaβ ∪ SΓaβ ∪ ΓSΓaβ))

= αaβ ∪ ((αaΓ ∪ αaΓSΓ) ∩ (Γaβ ∪ ΓSΓaβ))

= αaβ ∪ (αaΓSβ ∩ αSΓaβ) = α(a ∪ (aΓS ∩ SΓa))β

= α(a)Γ
q β = α(a)

Ωγ0
q β,

hence, (αaβ)
Ωγ0
q = α(a)

Ωγ0
q β.

Theorem 2.10. A Γ-semigroup (S,Γ) is regular if and only if the set Q(S)
of quasi-ideals of S forms a Γ-semigroup, where the Γ-multiplication is given
by Q1γQ2 = {q1γq2|q1 ∈ Q1, q2 ∈ Q2}, and has the property that for every
quasi-ideal Q ∈ Q(S) there is a family of pairs (αi, βi) ∈ Γ×Γ together with a
family of quasi-ideals Qi ∈ Q(S) such that Q = ∪i∈IQαiQiβiQ.

Proof. We first define a Γ-semigroup structure on the set Q(S) of all quasi-
ideals of (S,Γ). Let Q1, Q2 ∈ Q(S) and let α ∈ Γ. We define

Q1αQ2 = {q1αq2|q1 ∈ Q1, q2 ∈ Q2}.
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To see that Q1αQ2 ∈ Q(S) we recall from Lemma 2.7 that αQ2 ∈ Q(Ωγ0),
where Q(Ωγ0) is the set of quasi-ideals of Ωγ0 . But (S,Γ) is regular and so is Ωγ0
(Proposition 2.3), hence Theorem 9.3 of [8] tells that the product Q1(αQ2) ∈
Q(Ωγ0). But any quasi-ideal of Ωγ0 with elements entirely lying in S is a quasi-
ideal of (S,Γ) (lLemma 2.6) hence Q1αQ2 ∈ Q(S). Now the fact that (S,Γ) is a
Γ-semigroup implies easily that Q1α(Q2βQ3) = (Q1αQ2)βQ3 for any α, β ∈ Γ
and Q1, Q2, Q3 ∈ Q(S), thus proving that (Q(S),Γ) is a Γ-semigroup. Now let
Q ∈ Q(S). Then Q ∈ Q(Ωγ0) and since Ωγ0 is von Neumann regular, then from
Theorem 9.3 of [8] there is Q′ ∈ Q(Ωγ0) such that Q = QQ′Q. We can express

Q′ as a union of principal quasi-ideals (a)
Ωγ0
q , (αa)

Ωγ0
q , (aβ)

Ωγ0
q or (αaβ)

Ωγ0
q for

every a ∈ S, αa ∈ ΓS, aβ ∈ SΓ or αaβ ∈ ΓSΓ that may be an element of Q′.

It follows from Lemma 2.9 that Q′ is a union of quasi-ideals (a)
Ωγ0
q , α(a)

Ωγ0
q ,

(a)
Ωγ0
q β or α(a)

Ωγ0
q β, and then Q is the union of quasi-ideals Q(a)

Ωγ0
q Q =

Qγ0(a)
Ωγ0
q γ0Q, Qα(a)

Ωγ0
q Q = Qα(a)

Ωγ0
q γ0Q, Q(a)

Ωγ0
q βQ = Qγ0(a)

Ωγ0
q βQ or

Qα(a)
Ωγ0
q βQ. Now the result follows.

For the converse, let a ∈ S and let (a)Γ
q be the quasi-ideal of (S,Γ) generated

by a which has the form

(a)Γ
q = a ∪ (aΓS ∩ SΓa).

Since Q(S) has the stated property, then (a)Γ
q is expressed as

(a)Γ
q = ∪i∈I(a)Γ

qαiQiβi(a)Γ
q ,

which implies in particular that there is i ∈ I such that a ∈ (a)Γ
qαiQiβi(a)Γ

q .

It follows that there are y, z ∈ (a)Γ
q and q ∈ Qi such that a = yαiqβiz. But

each of the elements y, z can be either a or it is of the form aγ1s = tγ2a if it is
in the intersection aΓS ∩ SΓa, where γ1, γ2 ∈ Γ and s, t ∈ S. In either case it
follows that there are δ1, δ2 ∈ Γ and u ∈ S such that a = aδ1uδ2a which shows
that (S,Γ) is regular.

Definition 2.11. A non empty subset B of a Γ-semigroup S is called a bi-ideal
of S if BΓB ⊆ B and BΓSΓB ⊆ B.

One can easily prove that quasi-ideals are bi-ideals. In what follows we
prove that for regular Γ-semigroups bi-ideals are quasi-ideals. This is true for
ordinary semigroups where regularity is the usual von Neumann regularity.
We derive the above result as a consequence of Corollary 9.6 of [8] for ordinary
semigroups by utilizing Ωγ0 .

Lemma 2.12. If B is a bi-ideal of a Γ-semigroup S, then B is a bi-ideal of
Ωγ0 .

Proof. For every b1, b2 ∈ B, we see that b1b2 = b1γ0b2 ∈ BΓB ⊆ B. Also, for



Some characterizations of regularity and intra-regularity of Γ-semigroups 45

every b1, b2 ∈ B, α, β ∈ Γ and x ∈ S, we have

b1 · αx · b2 = b1αxγ0b2 ∈ BΓSΓB ⊆ B,
b1 · xβ · b2 = b1γ0xβb2 ∈ BΓSΓB ⊆ B,
b1 · αxβ · b2 = b1αxβb2 ∈ BΓSΓB ⊆ B,
b1 · x · b2 = b1γ0xγ0b2 ∈ BΓSΓB ⊆ B,
b1αb2 ∈ BΓB ⊆ B,

which prove that B is a bi-ideal of (Ωγ0 , ·).

Also, we note in passing here that a partial converse of the above also holds
true. More precisely, if B is a bi-ideal of a Ωγ0 consisting only of elements of
S, then B is a bi-ideal of (S,Γ). Indeed, since BΩγ0B ⊆ B, then for every
b1, b2 ∈ B and every α ∈ Γ, b1αb2 ∈ BΩγ0B ⊆ B, which shows that BΓB ⊆ B.
To prove that BΓSΓB ⊆ B we need to show that for every b1, b2 ∈ B, α, β ∈ Γ
and x ∈ S, b1αxβb2 ∈ B. Indeed,

b1αxβb2 = b1 · (αxβ) · b2 ∈ BΩγ0B ⊆ B,

which proves the claim.

Proposition 2.13. If S is a regular Γ-semigroup, then every bi-ideal of S is
also a quasi-ideal.

Proof. Let S be a regular Γ-semigroup and let B be a bi-ideal of (S,Γ) which
is also a bi-ideal of Ωγ0 (Lemma 2.12). From Proposition 2.3 we have that Ωγ0
is von Neumann regular, hence from Corollary 9.6 of [8], B is a quasi-ideal of
Ωγ0 . Now Lemma 2.6 implies that B is a quasi-ideal of (S,Γ).

Definition 2.14. We say that a Γ-semigroup (S,Γ) is intra-regular if for each
a ∈ S, there are x, y ∈ S and γ, γ1, γ2 ∈ Γ such that a = xγ1aγaγ2y.

Lemma 2.15. If (S,Γ) is intra-regular, then for every γ0 the semigroup Ωγ0
is an intra-regular semigroup.

Proof. The intra-regularity of the elements of S follows from the definition. Let
us now check the remaining cases. If αa is an element of Ωγ0 , where α ∈ Γ,
a ∈ S and a = xγ1aγaγ2y, then αa = αxγ1α

−1αaγα−1αaγ2y. A similar proof
is available when the element is of the form aβ with a ∈ S and β ∈ Γ. For
the case when the element is αaβ with α, β ∈ Γ and a ∈ S, assuming that
a = xγ1aγaγ2y, then αaβ = αxγ1α

−1αaββ−1γα−1αaββ−1γ2yβ. The last case
when the element is some γ ∈ Γ follows from the fact that (Γ, •) is a group.

Theorem 2.16. A Γ-semigroup (S,Γ) is regular and intra-regular if and only
if for every Q ∈ Q(S), and every γ ∈ Γ, QγQ = Q.

Proof. Assume that (S,Γ) is regular and intra-regular, and let γ0 ∈ Γ be a
fixed element. The resulting semigroup Ωγ0 is von Neumann regular and intra-
regular as well, therefore from Corollary 9.10 of [8], every quasi-ideal there
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is idempotent. If now Q ∈ Q(S), then from Lemma 2.5 we can regard Q
as an element of Q(Ωγ0), hence in Ωγ0 we have QQ = Q, or in other words
Qγ0Q = Q. Since γ0 was chosen arbitrarily, then the claim follows.

Conversely, assume that for every γ ∈ Γ and every Q ∈ Q(S) we have
QγQ = Q. In particular, we have that a ∈ (a)Γ

q γ(a)Γ
q , which can be written as

a ∈ (a ∪ (aΓS ∩ SΓa))γ(a ∪ (aΓS ∩ SΓa)).

Distinguish between the following cases. First, a = aγa, in which case we
have that a is regular and intra-regular. Second, a = aγ(aαx), where aαx =
yβa ∈ aΓS ∩ SΓa. The regularity of a is obvious if we replace in the given
equality aαx by yβa. To prove intra-regularity, we replace the middle a by
aγ(aαx), and obtain a = aγ(aγa)αxαx which proves intra-regularity. Third,
a = (aαx)γa, where aαx = yβa ∈ aΓS ∩ SΓa. The proof in this case is dual
to that of the second case. The last case is when a = (aαx)γ(aµx′), where
aαx = yβa ∈ aΓS ∩ SΓa, and aµx′ = y′νa ∈ aΓS ∩ SΓa. Replacing aµx′ by
y′νa in the given equality we get the regularity, and replacing aαx by yβa we
get the intra-regularity.
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