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Some properties of almost Jordan homomorphisms on
Fréchet algebras

A. Zivari-Kazempour1

Abstract. In this paper, we investigate the notion of almost mixed
Jordan homomorphisms between Fréchet algebras. We show that if A is
a Fréchet algebra and T : A −→ C is an almost mixed Jordan homomor-
phism, then either T is continuous, or it is a 3-homomorphism. Moreover,
we prove that every almost Jordan homomorphism from a commutative
Fréchet algebra A into C is almost n-multiplicative.
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1. Introduction

An algebra A over the complex field, is called a Fréchet algebra if it is a
complete metrizable topological linear space, which is also an LMC (locally
multiplicatively convex) algebra, i.e., it has a neighbourhood basis of (abso-
lutely) convex sets Vn of zero such that Vn is multiplicative (idempotent) for
all natural numbers n. The topology of a Fréchet algebra A can be generated
by a sequence (pi) of separating submultiplicative seminorms, i.e.,

pi(xy) 6 pi(x)pi(y),

for all i ∈ N and x, y ∈ A, such that pi(x) 6 pi+1(x), whenever i ∈ N and
x ∈ A. If A is unital then (pi) can be chosen such that pi(1) = 1 for all i ∈ N.

A Fréchet algebra A with the above generating sequence of seminorms (pi)
is denoted by (A, (pi)).

Let (A, (pi)) and (B, (qj)) be Fréchet algebras. A linear map T : A −→ B
is called an almost n-multiplicative, if there exists ε > 0 such that for every
j ∈ N there exists i ∈ N with

qj(Ta1a2...an − Ta1Ta2...Tan) 6 εpi(a1)pi(a2)...pi(an),

for all a1, ..., an ∈ A, and j ∈ N. Also T is called almost [mixed] n-Jordan
homomorphism, if for every j ∈ N there exists i ∈ N such that

qj(Ta
n − (Ta)n) 6 εpi(a)n, [qj(Ta

nb− (Ta)nTb) 6 εpi(a)npi(b)], a, b ∈ A.
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The Jacobson radical of an algebra A is denoted by radA, and A is called
semisimple if radA = {0}. If A is a commutative Fréchet algebra, then

radA =
⋂
{kerϕ : ϕ ∈M(A)},

where M(A) is the space of all continuous non-zero multiplicative linear func-
tionals on A. See, for example, [6, Proposition 8.1.2].

Let A and B be complex algebras and T : A −→ B be a linear map. Then,
T is called an n-homomorphism if for all a1, a2, · · · , an ∈ A,

T (a1a2 · · · an) = Ta1Ta2 · · ·Tan.

The concept of an n-homomorphism was studied for complex algebras in [7].
Also T is called an n-Jordan homomorphism if Tan = (Ta)n, for all a ∈ A.
This notion was introduced by Herstein in [8]. For the case n = 2, these
concepts coincide with the classical definitions of homomorphism and Jordan
homomorphism, respectively. It is clear that every n-homomorphism is an
n-Jordan homomorphism, but in general, the converse is false.

The following characterization of Jordan homomorphisms on Banach alge-
bras is due to Zelazko.

Theorem 1.1. [19, Theorem 1] Suppose that A is a Banach algebra, which
need not be commutative, and B is a semisimple commutative Banach algebra.
Then each Jordan homomorphism T : A −→ B is a homomorphism.

It is well-known that every homomorphism T : A −→ B between Ba-
nach algebras A and B is automatically continuous, where B is commutative
and semisimple [3]. For more information about the relationship between n-
homomorphism, n-Jordan homomorphism and their automatic continuity on
Banach algebras, we refer the reader to [1, 2, 4, 20, 21], and the references
therein.

The notion of almost multiplicative functions between normed algebras was
introduced by K. Jarosz in [12]. A linear map T between normed algebras A
and B is called almost multiplicative if there exists ε > 0 such that for all
a, b ∈ A,

‖Tab− TaTb‖ 6 ε‖a‖‖b‖.
Moreover, T is called almost Jordan if

‖Ta2 − (Ta)2‖ 6 ε‖a‖2, a ∈ A.

Some properties of almost multiplicative functionals were investigated in [2],
[13] and [14].

For the automatic continuity of homomorphisms between Fréchet and Ba-
nach algebras, one may refer to the monographs of Dales [3], M. Fragoulopoulou
[5], T. G. Honary [10], T. Husain [11], K. Jarosz [12], and E. A. Michael [15].

In this paper, we investigate almost mixed Jordan homomorphism between
Fréchet algebras and we obtain some results on the automatic continuity of
such maps.
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We show that every almost Jordan homomorphism from commutative Fré-
chet algebra A into C is almost n-multiplicative.

Throughout this paper, A and B denote Fréchet algebras equipped with
the generating sequence of seminorms (pi) and (qj), respectively.

2. Almost Mixed Jordan homomorphism

We first introduce the concept of an almost n-multiplicative and almost
[mixed] n-Jordan homomorphism between Fréchet algebras.

Definition 2.1. Let A and B be Fréchet algebras. A linear map T : A −→ B
is called almost n-multiplicative if there exists ε > 0 such that for every j ∈ N
there exists i ∈ N with

qj(Ta1a2...an − Ta1Ta2...Tan) 6 εpi(a1)pi(a2)...pi(an),

for every a1, ..., an ∈ A, and j ∈ N.

Definition 2.2. A linear map T : A −→ B between Fréchet algebras A and
B is called an almost mixed n-Jordan homomorphism if for every j ∈ N there
exists i ∈ N such that

qj(Ta
nb− (Ta)nTb) 6 εpi(a)npi(b),

for every a, b ∈ A, and it is called an almost n-Jordan homomorphism if for
every j ∈ N there exists i ∈ N such that

qj(Ta
n − (Ta)n) 6 εpi(a)n, a ∈ A.

In the above definitions, if n = 2, then we speak about an almost multi-
plicative and almost mixed Jordan homomorphism, respectively.

The concept of mixed n-Jordan homomorphisms was introduced by Neghabi,
Bodaghi and Zivari-Kazempour in [16] for Banach algebras. Some significant
results concerning almost Jordan homomorphisms on Fréchet algebras were
obtained in [17].

Since (qj) is a separating sequence of seminorms on B, hence both defi-
nitions turn out to be n-multiplicative and [mixed] n-Jordan homomorphism,
whenever ε = 0, respectively. Moreover, any almost (n+ 1)-multiplicative ho-
momorphism is an almost mixed n-Jordan homomorphism, and every almost
mixed n-Jordan homomorphism is an almost (n + 1)-Jordan homomorphism
for every ε > 0.

Remark 2.3. In the case when B = C, a linear functional T on a Fréchet algebra
A is almost n-multiplicative, if there exists m ∈ N such that

|Ta1a2...an − Ta1Ta2...Tan| 6 εpm(a1)pm(a2)...pm(an),

for every a1, ..., an ∈ A. Since the generating sequence (pi) in the Fréchet
algebra A is an increasing sequence, the inequality

|Ta1a2...an − Ta1Ta2...Tan| 6 εpk(a1)pk(a2)...pk(an),
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holds for all k > m. The same is true for an almost [mixed] n-Jordan homo-
morphism.

We recall that a Fréchet algebra A is called uniform if pi(a
2) = (pi(a))2, for

each i ∈ N and for all a ∈ A.
The following result has appeared in [6, page 73], without proof. For the

proof one may refer to [9, Proposition 2.7].

Remark 2.4. Let A and B be Fréchet algebras with generating sequences of
seminorms (pi) and (qi), respectively. If ϕ : A −→ B is a linear operator, then
ϕ is continuous if and only if for each j ∈ N there exist i ∈ N and a constant
cj > 0 such that

qj(ϕ(a)) 6 cjpi(a),

for every a ∈ A.
In the case that B is a uniform Fréchet algebra and ϕ : A −→ B is a

continuous homomorphism, we may choose cj = 1 for all j ∈ N.

If A is a Fréchet algebra and T : A −→ C is an almost mixed Jordan
homomorphism, then there exists smallest m ∈ N such that

|Ta2b− (Ta)2Tb| 6 εpm(a)2pm(b), a, b ∈ A.

In the sequel we use this fixed m for every almost mixed Jordan homomorphism.
We commence with the next result, wherein Z(A) = {a ∈ A : ax = xa x ∈

A} is the center of A.

Theorem 2.5. Let A be a Fréchet algebra, and let f be an almost n-multipli-
cative linear functional on A. If f(a) = 1 for some a ∈ Z(A), then the linear
functional T : x 7−→ f(ax) is an almost mixed Jordan homomorphism.

Proof. Suppose that f is an almost n-multiplicative linear functional. Then
there exists ε > 0 such that

|fa1a2...an − fa1fa2...fan| 6 εpm(a1)pm(a2)...pm(an),

for every a1, ..., an ∈ A. For each x, y ∈ A, we have

|Tx2y − (Tx)2Ty|
= |f(ax2y)− f(ax)f(ax)f(ay)|
= |f(ax2y)± f(an−1x2ya)− f(ax)f(ax)f(ay)|
6 |f(ax2y)− f(an−1x2ya)|+ |f(an−1x2ya)− f(ax)f(ax)f(ay)|
6 |f(a)n−2f(ax2y)f(a)− f(an−1x2ya)|

+|f(an−1x2ya)− f(a)n−3f(ax)f(ax)f(ay)|
6 δpm(x)2pm(y).

Thus, T is an almost mixed Jordan homomorphism, for δ = 2εpm(a)n.

Corollary 2.6. Let A be Fréchet algebra, and let f be an almost n-multiplicative
linear functional on A. If f(a) = 1 for some a ∈ Z(A), then the linear func-
tional T (x) := f(ax) is an almost 3-Jordan homomorphism.
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The following theorem is similar to Theorem 2.8 of [17].

Theorem 2.7. Let T : A −→ B be an almost mixed Jordan homomorphism
between two commutative Fréchet algebras. Then for all a, b, c ∈ A,

qj(Tabc− TaTbTc) 6 ε pi(c)(pi(a)2 + pi(b)
2).

Proof. Suppose that A and B are commutative. Then for all a, b, c ∈ A,

T (a+b)2c−(T (a+b))2Tc+(Ta)2Tc−Ta2c+(Tb)2Tc−Tb2c = 2
(
Tabc−TaTbTc

)
.

Since 2pi(a)pi(b) 6 pi(a)2 + pi(b)
2, hence by the assumption for each j there

exists i such that

2
(
qj(Tabc− TaTbTc)

)
= qj

(
(T (a+ b))2c− T (a+ b)2Tc

)
+ qj((Ta)2Tc− Ta2c) + qj((Tb)

2Tc− Tb2c)
6 ε pi(c)

(
pi(a+ b)2 + pi(a)2 + pi(b)

2
)

6 ε pi(c)
(
[pi(a) + pi(b)]

2 + pi(a)2 + pi(b)
2
)

6 ε pi(c)
(
2pi(a)pi(b) + 2pi(a)2 + 2pi(b)

2
)

6 3ε pi(c) (pi(a)2 + pi(b)
2).

Therefore,
qj(Tabc− TaTbTc) 6 ε1 pi(c)(pi(a)2 + pi(b)

2),

for ε1 = 3
2ε and every a, b, c ∈ A. This completes the proof.

For the proof of the following result we adopt the same method as in [9,
Lemma 2.8].

Lemma 2.8. Let A be a commutative Fréchet algebra and T : A −→ C be an
almost mixed Jordan homomorphism. Then, for every a, b, c, x ∈ A we have

(2.1) |Tx|2 · |Tabc− TaTbTc| 6 εpm(x)2pm(c)[(pm(a) + pm(b))2 + 2|TaTb|].

Proof. Using Theorem 2.7, for every a, b, c, x ∈ A we have

|Tx|2|Tabc− TaTbTc| =|Tabc(Tx)2 − TaTbTc(Tx)2|
6|Tabc(Tx)2 − Tabcx2|+ |Tabcx2 − TaTbTcx2|

+ |TaTbTcx2 − TaTbTc(Tx)2|
6εpm(abc)

(
pm(x)2 + pm(x)2

)
+ εpm(cx2)

(
pm(a)2 + pm(b)2

)
+ ε|TaTb| pm(c)

(
pm(x)2 + pm(x)2

)
6εpm(x)2pm(c)[2pm(a)pm(b)

+ pm(a)2 + pm(b)2 + 2|TaTb|]
6εpm(x)2pm(c)[(pm(a) + pm(b))2 + 2|TaTb|],

as required.
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Corollary 2.9. Let A be a commutative Fréchet algebra and T : A −→ C
be an almost mixed Jordan homomorphism. If there exists x ∈ A such that
pm(x) = 0 but Tx 6= 0, then T is a (2n+ 1)-homomorphism for all n ∈ N.

Proof. It follows from Lemma 2.8, that Tabc = TaTbTc, for all a, b, c ∈ A.
Thus, T is a 3-homomorphism and so it is (2n + 1)-homomorphism for all
n ∈ N.

The next result, which is the main result of this paper, characterizes almost
mixed Jordan homomorphisms. However, its proof is similar to [9, Theorem
3.3].

Theorem 2.10. Let A be a commutative Fréchet algebra and T : A −→ C be
an almost mixed Jordan homomorphism. Then, at least one of the following
holds:

(i) T is a 3-homomorphism,

(ii) T is continuous.

Proof. Suppose that T is an almost mixed Jordan homomorphism for some
ε > 0. Then, by Theorem 2.7, we have

(2.2) |Tabc− TaTbTc| 6 ε pm(c)(pm(a)2 + pm(b)2),

for all a, b, c ∈ A. Set ξ = 1 + 1+
√
1+4ε
2 . If for all a ∈ A,

(2.3) |Ta| 6 ξpm(a),

then T is continuous. If (2.3) does not hold for some u ∈ A, then we have

(2.4) |Tu| > ξpm(u),

and hence T is not continuous by Remark 2.4. Thus, Tu 6= 0. If pm(u) = 0,
then T is a 3-homomorphism by Corollary 2.9. Now assume that pm(u) 6= 0 in
(2.4). We may assume without loss of generality that pm(u) = 1 and |Tu| > ξ.
Therefore, we can write |Tu| = ξ+ r, for some r > 0. Since pm(u) = 1 by (2.2)
we have

(2.5) |Tu3 − (Tu)3| 6 2ε.

On the other hand,

(2.6) |Tu3| = |(Tu)3 −
(
(Tu)3 − Tu3

)
| > |(Tu)3| − |Tu3 − (Tu)3|.

Since ξ > 2 and ξ3 − ξ > 2ε, so by (2.5) and (2.6) we get

(2.7) |Tu3| > |Tu|3 − 2ε = (ξ + r)3 − 2ε > ξ3 + 3ξ2r + ξ − ξ3 > ξ + r.

We prove by induction that

(2.8) |T (u3
n

)| > ξ + nr.
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To see this

|Tu3
n+1

| = |Tu3
n

Tu3
n

Tu3
n

−
(
Tu3

n

Tu3
n

Tu3
n

− T (u3
n

u3
n

u3
n

)
)
|

> |(Tu3
n

)3| − 2ε > |Tu3
n

|3 + ξ − ξ3,

Hence,

|Tu3
n+1

| >
(
ξ + nr

)3
+ ξ − ξ3

> ξ + 3ξ2nr

> ξ + 3nr

> ξ + (n+ 1)r.

Thus, (2.8) holds for all N. To prove that T is a 3-homomorphism, let a, b, c ∈ A
and note that Tu3

n 6= 0 for each n ∈ N, by (2.8). Let α = [(pm(a) + pm(b))2 +
2|TaTb|]. By taking x = u3

n

in (2.1), it follows from (2.8) that

|Tabc− TaTbTc| 6 εpm(u3
n

)2pm(c)α

|Tu3n |2

6
ε[pm(u)3

n

]2pm(c)α

|Tu3n |2

6
εpm(c)α

(ξ + nr)2
.(2.9)

Letting n → ∞ in (2.9), we obtain that Tabc = TaTbTc. Therefore, T is a
3-homomorphism.

Corollary 2.11. Let T : A −→ B be an almost mixed Jordan homomorphism
between commutative Fréchet algebras. If B is semisimple, then T is either an
3-homomorphism or it is continuous.

Proof. Suppose that T is not a 3-homomorphism. Let ϕ ∈ M(B), then it is
routine to check that ϕ◦T : A −→ C is an almost mixed Jordan homomorphism,
and hence it is continuous by Theorem 2.10.

Now, suppose that an −→ 0 in A and Tan −→ b in B. Then, by the
continuity of ϕ ◦ T , we have (ϕ ◦ T )(an) −→ 0. On the other hand, it follows
from the continuity of ϕ : B −→ C that

(ϕ ◦ T )(an) = ϕ(Tan) −→ ϕ(b).

Consequently, ϕ(b) = 0 and since ϕ ∈ M(B) was arbitrary, we get b = 0.
Therefore, T is continuous by the Closed Graph Theorem.

The next result follows from Theorem 2.5 and Theorem 2.10.

Corollary 2.12. Suppose that A is a commutative Fréchet algebra, and f is
an almost n-multiplicative linear functional. If f(a) = 1 for some a ∈ A, then
the linear functional T : x 7−→ f(ax) is either a 3-homomorphism or it is
continuous.
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Example 2.13. Let Ki = [−i, i] for i ∈ N, and consider the Fréchet algebra
A = C(R), the algebra of continuous complex-valued functions on R with the
compact open topology, equipped with the seminorms

pi(f) = sup{|f(x)| : x ∈ Ki}.

Let ξ = 1+
√
1+4δ
2 , where δ is positive. For a fixed a ∈ R, we define T : A −→ C

by Tf = ξf(a). Then there exists m ∈ N such that a ∈ Km. Since ξ2 = ξ + δ,
hence for all f, g ∈ A,

|Tf2g − (Tf)2Tg| =
∣∣ξ(f2g)a− (ξfa)2(ξga)

∣∣
=

∣∣ξ(fa)2(ga)− (ξ + δ)ξ(fa)2ga
∣∣

=
∣∣− δξ(fa)2(ga)− δ(fa)2(ga)

∣∣
6 (ξ + 1)δpm(f)2pm(g).

Therefore, T is an almost mixed Jordan homomorphism for ε = (ξ+1)δ. Since
T is not a 3-homomorphism, hence, by Theorem 2.10, T is continuous.

Theorem 2.14. Let A be a commutative Fréchet algebra, and T : A −→ C be
an almost Jordan homomorphism. Then T is almost n-multiplicative, for all
n > 2.

Proof. Let T be an almost Jordan homomorphism. Then by Theorem 2.11 of
[17], either T is a homomorphism or it is continuous. If T is a homomorphism,
then it is n-multiplicative. In particular, T is almost n-multiplicative for every
ε > 0. Now we assume that T is continuous. By Remark 2.4, for all a ∈ A,

(2.10) |Ta| 6 pm(a).

It follows from Theorem 2.8 of [17], that T is almost multiplicative. Hence
there exists ε1 > 0 such that

(2.11) |Tab− TaTb| 6 ε1pm(a)pm(a), a, b ∈ A.

By (2.10) and (2.11), for all a, b, c ∈ A, we have

|Tabc− TaTbTc| 6|Tabc− TabTc|+ |TabTc− TaTbTc|
6ε1pm(ab)pm(c) + |Tab− TaTb||Tc|
6ε1pm(a)pm(b)pm(c) + ε1pm(a)pm(b)|Tc|
6ε′pm(a)pm(b)pm(c).

Thus, T is almost 3-multiplicative for ε′ = 2ε1. Now let T be almost n-
multiplicative for some fixed n ∈ N. Then there exists ε2 > 0 such that

(2.12) |Ta1a2...an − Ta1Ta2...Tan| 6 ε2pm(a1)pm(a2)...pm(an),
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for all a1, a2, ..., an ∈ A. Hence by (2.10), (2.11) and (2.12), we get

|Ta1a2...an+1 − Ta1Ta2...Tan+1| 6|Ta1a2...an+1 − Ta1a2Ta3...TanTan+1|
+|Ta1a2Ta3...TanTan+1 − Ta1Ta2...Tan+1|
6ε2pm(a1a2)pm(a3)...pm(an+1)

+|Ta1a2 − Ta1Ta2|
(
|Ta3|...|Tan+1|

)
6ε2pm(a1)pm(a2)...pm(an+1)

+ε1pm(a1)pm(a2)
(
pm(a3)...pm(an+1)

)
6εpm(a1)pm(a2)...pm(an+1).

Consequently, T is almost (n+ 1)-multiplicative for ε = ε1 + ε2. This finishes
the proof.

It is known that every Jordan homomorphism is an n-Jordan homomor-
phism [18]. The next result generalizes this property for almost Jordan homo-
morphisms.

Corollary 2.15. Let A be a commutative Fréchet algebra, and T : A −→ C be
an almost Jordan homomorphism. Then T is an almost n-Jordan homomor-
phism for all n > 2.

Proposition 2.16. Let T : A −→ B be a linear map between Fréchet algebras
such that

(2.13) qj(Ta
nb− (Ta)nTb) 6 ε(pi(a) + pi(b)),

for all a, b ∈ A and for some ε > 0. Then, T is an (n + 1)-Jordan homomor-
phism.

Proof. Assume that the inequality (2.13) holds for all a, b ∈ A. Replacing b by
a in (2.13), we find

(2.14) qj(Ta
n+1 − (Ta)n+1) 6 2εpi(a),

for all a ∈ A. Setting a = 2mx, we obtain

(2.15) qj(Tx
n+1 − (Tx)n+1) 6

ε2m+1

2m(n+1)
pi(x),

for all x ∈ A. Letting m → ∞, we obtain Txn+1 = (Tx)n+1 and so T is an
(n+ 1)-Jordan homomorphism.

Remark 2.17. Let A and B be Fréchet algebras and T : A −→ B be a linear
map such that

(2.16) qj(Ta
nb− (Ta)nTb) 6 εpi(a)nppi(b),

for some ε > 0 and a, b ∈ A. If p < 1, then T is an (n + 1)-Jordan homomor-
phism. Indeed, replacing a by 2mx in (2.16), we get

qj(Tx
nb− (Tx)nTb) 6 ε2nm(p−1)pi(x)nppi(b).
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Since (qj) is a separating sequence of seminorms on B, by letting m→∞, for
all x, b ∈ A, we get T (xnb) = (Tx)nTb. Consequently, T is mixed n-Jordan,
and so it is an (n+ 1)-Jordan homomorphism.

We recall that this situation fails for p = 1. For example, let A = C(R), and
let T : A −→ C defined by Tf = ξf(a) as in Example 2.13. Then T satisfies
(2.16) with n = 2, p = 1 and ε = (ξ + 1)δ. However, T is not an 3-Jordan
homomorphism.
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