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Hyperspheres in Euclidean and Minkowski 4-spaces as
almost paracontact almost paracomplex Riemannian

manifolds

Mancho Manev1 2 3 and Veselina Tavkova4

Abstract. Almost paracontact almost paracomplex Riemannian man-
ifolds of the lowest dimension are studied. Such structures are con-
structed on hyperspheres in 4-dimensional spaces, Euclidean and pseudo-
Euclidean, respectively. The obtained manifolds are studied and charac-
terised in terms of the classification used and their geometric properties.
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1. Introduction

In [12], I. Sato introduced the notion of almost paracontact Riemannian
structure on a differentiable manifold of arbitrary dimension so that this struc-
ture is compatible with a Riemannian metric such that the metric preserves
the structure endomorphism on the paracontact distribution. Later, other ge-
ometers (K. Matsumoto, T. Adati, T. Miyazawa, S. Sasaki) joined Sato in the
initial development of the differential geometry of almost paracontact Rieman-
nian manifolds (e.g. [1, 11]).

Another type of structure-metric compatibility is known in addition to the
above. If the structure endomorphism induces an anti-isometry with respect
to the metric on the paracontact distribution of each tangent fibre, then it is
said that the manifold has an almost paracontact metric structure (see, e.g.,
[3, 13]).

The restriction of the almost paracontact structure on the paracontact dis-
tribution is an almost product structure. In [10], A.M. Naveira gives a classi-
fication of Riemannian almost product manifolds with respect to the covariant
derivative of the almost product structure regarding the Levi-Civita connection
of the Riemannian metric.
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Almost paracontact Riemannian manifolds of Sasaki type (n, n) are classi-
fied in [6]. For them, the induced almost product structure on the paracontact
distribution is traceless and it is called an almost paracomplex structure ([4]).
These manifolds are necessarily odd-dimensional and are called almost para-
contact almost paracomplex Riemannian manifolds in [9].

An object of particular interest in our research is the case of the lowest
dimension (which is three) of almost paracontact almost paracomplex Rieman-
nian manifolds. In this regard, we study their properties in [9, 7, 8].

In the present work, we use two different approaches to construct an almost
paracontact almost paracomplex Riemannian manifold on a hypersphere. The
first case is of a hypersphere in Euclidean space E4 and the second is of a time-
like hypersphere in pseudo-Euclidean space E4

1 (i.e. Minkowski space). Similar
research was conducted in the case of almost contact B-metric hyperspheres in
[2, 5].

The purpose of this paper is to study the basic geometric characteristics of
the considered manifolds. The obtained results will provide explicit examples
of the lowest dimension of the manifolds under study and will contribute to the
understanding of their geometry.

The paper is organized as follows. In Sect. 2, we recall some necessary basic
definitions and properties of the studied manifolds. In Sect. 3 and Sect. 4,
we construct and characterize such manifolds on hyperspheres in E4 and E4

1,
respectively.

2. Almost paracontact almost paracomplex Riemannian
manifolds

Let us consider an almost paracontact almost paracomplex Riemannian man-
ifold (M, φ, ξ, η, g), i.e. M is a real differentiable manifold of dimension (2n+1)
equipped with an almost paracontact almost paracomplex structure (φ, ξ, η) and
a Riemannian metric g. Namely, φ is a tensor field of type (1, 1) (known as
a paracontact endomorphism) of the tangent bundle TM of M, ξ is a Reeb
vector field and η is its dual 1-form, which together with g satisfy the following
conditions: [12, 6]

φ2 = I − η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, trφ = 0,

g(φx, φy) = g(x, y)− η(x)η(y),

where I denotes the identity on TM.

Here and further x, y, z, w will stand for arbitrary elements of the Lie
algebra X(M) of tangent vector fields on M or vectors in the tangent space
TpM at p ∈M.

Let us denote the Levi-Civita connection of g by∇. The fundamental tensor
F of type (0,3) on (M, φ, ξ, η, g) is defined by

F (x, y, z) = g
(
(∇xφ) y, z

)
.
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It has the following basic properties with respect to the structure

F (x, y, z) = F (x, z, y)

= −F (x, φy, φz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

The relations of ∇ξ and ∇η with F are as follows:

(2.1) (∇xη)(y) = g (∇xξ, y) = −F (x, φy, ξ).

Let {ξ; ei} (i = 1, 2, . . . , 2n) be a basis of TpM at an arbitrary point p ∈M
and gij are the components of the inverse matrix of g. Using this basis, the
structure (φ, ξ, η) and the metric g, the following 1-forms (known as Lee forms)
are associated with F :

θ(z) = gijF (ei, ej , z), θ∗(z) = gijF (ei, φej , z), ω(z) = F (ξ, ξ, z).

In [6], a classification of almost paracontact almost paracomplex Rieman-
nian manifolds is made according to the basic properties of F with respect to the
tensor structure of the studied manifold. This classification consists of 11 basic
classes F1, F2, . . . , F11. Furthermore, the components F s (s ∈ {1, 2, . . . , 11})
of F , which correspond to the classes Fs, are determined in [9]. The latter
approach provides an alternative way to determine the basic classes of the con-
sidered classification. Namely, the manifold (M, φ, ξ, η, g) belongs to Fs if and
only if the equality F = F s is valid. As a corollary we have the following.
A manifold of the studied type belongs to a direct sum of two or more basic
classes, i.e. (M, φ, ξ, η, g) ∈ Fi ⊕ Fj ⊕ · · · , if and only if the tensor F on (M,
φ, ξ, η, g) is the sum of the corresponding components F i, F j , . . . of F , i.e. the
following condition is satisfied F = F i + F j + · · · .

Let (M, φ, ξ, η, g) have the lowest dimension (i.e. dimM = 3) and let the
set of vectors {e0, e1, e2} be a φ-basis of TpM which satisfies the following
conditions:

(2.2)
φe0 = 0, φe1 = e2, φe2 = e1, ξ = e0,

η(e0) = 1, η(e1) = η(e2) = 0,

(2.3) g(ei, ej) = δij , i, j ∈ {0, 1, 2}.

According to [9], the components Fijk = F (ei, ej , ek), θk = θ(ek), θ∗k = θ∗(ek)
and ωk = ω(ek) of F , θ, θ∗ and ω, respectively, with respect to the φ-basis
{e0, e1, e2} are determined as follows:

θ0 = F110 + F220, θ1 = F111 = −F122 = −θ∗2 ,
θ∗0 = F120 + F210, θ2 = F222 = −F211 = −θ∗1 ,

ω0 = 0, ω1 = F001, ω2 = F002.

Hence, the components F s, s ∈ {1, 2, . . . , 11}, of F on (M, φ, ξ, η, g) in the
corresponding basic classes Fs have the following form: [9]

(2.4a)

F 1(x, y, z) =
(
x1θ1 − x2θ2

) (
y1z1 − y2z2

)
;

F 2(x, y, z) = F 3(x, y, z) = 0;

F 4(x, y, z) = θ0
2

{
x1
(
y0z1 + y1z0

)
+ x2

(
y0z2 + y2z0

)}
;
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(2.4b)

F 5(x, y, z) =
θ∗0
2

{
x1
(
y0z2 + y2z0

)
+ x2

(
y0z1 + y1z0

)}
;

F 6(x, y, z) = F 7(x, y, z) = 0;

F 8(x, y, z) = λ
{
x1
(
y0z1 + y1z0

)
− x2

(
y0z2 + y2z0

)}
,

λ = F110 = −F220;

F 9(x, y, z) = µ
{
x1
(
y0z2 + y2z0

)
− x2

(
y0z1 + y1z0

)}
,

µ = F120 = −F210;

F 10(x, y, z) = νx0
(
y1z1 − y2z2

)
, ν = F011 = −F022;

F11(x, y, z) = x0
{
ω1

(
y0z1 + y1z0

)
+ ω2

(
y0z2 + y2z0

)}
,

where the decompositions x = xiei, y = yiei, z = ziei with respect to
{e0, e1, e2} are used.

By the virtue of (2.4), it is determined in [9] that the studied 3-dimensional
manifolds can belong only to the basic classes F1, F4, F5, F8, F9, F10, F11

and their direct sums.
The Nijenhuis tensor N of the structure (φ, ξ, η) is defined by the equality

N(x, y) = [φ, φ](x, y)−dη(x, y)ξ, where the Nijenhuis torsion of φ is determined
by [φ, φ](x, y) = [φx, φy] + φ2[x, y] − φ[φx, y] − φ[x, φy] and dη is the exterior
derivative of η given by dη(x, y) = (∇xη)y−(∇yη)x. The corresponding tensor
of type (0,3) of the Nijenhuis tensor on (M, φ, ξ, η, g) is defined by the equality
N(x, y, z) = g (N(x, y), z). According to [9], we express N in terms of F as
follows:

(2.5)
N(x, y, z) = F (φx, y, z)− F (φy, x, z)− F (x, y, φz) + F (y, x, φz)

+ η(z) {F (x, φy, ξ)− F (y, φx, ξ)} .

The associated Nijenhuis tensor N̂ of the structure (φ, ξ, η, g) is defined in

the following way: N̂(x, y) = {φ, φ}(x, y)−(Lξg)(x, y)ξ. In the latter equal-
ity, {φ, φ} is the symmetric tensor of type (1, 2) determined by {φ, φ}(x, y) =
{φx, φy}+ φ2{x, y} − φ{φx, y} − φ{x, φy} for {x, y} = ∇xy +∇yx and Lξg is
the Lie derivative of g along ξ expressed by (Lξg) (x, y) = (∇xη)y + (∇yη)x.
The corresponding tensor of type (0,3) of the associated Nijenhuis tensor is

defined by N̂(x, y, z) = g
(
N̂(x, y), z

)
. In [9], we express N̂ by F as follows:

(2.6)
N̂(x, y, z) = F (φx, y, z) + F (φy, x, z)− F (x, y, φz)− F (y, x, φz)

+ η(z) {F (x, φy, ξ) + F (y, φx, ξ)} .

The curvature tensor R of type (1, 3) for ∇ is defined as usually by R =
[∇,∇] − ∇[ , ]. The corresponding (0, 4)-tensor is denoted by the same letter
and it is given by R(x, y, z, w) = g(R(x, y)z, w).

The Ricci tensor ρ and the scalar curvature τ for R, as well as their associ-
ated quantities, are determined respectively by:

(2.7)
ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej),

ρ∗(y, z) = gijR(ei, y, z, φej), τ∗ = gijρ∗(ei, ej).
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Moreover, we use the Kulkarni-Nomizu product g ? h of two (0, 2)-tensors
g and h defined by

(g ? h) (x, y, z, w) = g(x, z)h(y, w)− g(y, z)h(x,w)

+ g(y, w)h(x, z)− g(x,w)h(y, z).

Obviously, g ? h has the basic properties of R if and only if g and h are
symmetric

Let α be a non-degenerate 2-plane in TpM, p ∈ M, having a basis {x, y}.
The sectional curvature k(α; p) is determined by

(2.8) k(α; p) = − 2R(x, y, y, x)

(g ? g)(x, y, y, x)
.

3. A hypersphere with the studied structure in Euclidean
4-space

Let E4 be the Euclidean space
(
R4, 〈·, ·〉

)
, where 〈·, ·〉 is the usual Euclidean

inner product determined by

〈x, y〉 = x1y1 + x2y2 + x3y3 + x4y4

for x(x1, x2, x3, x4), y(y1, y2, y3, y4) from R4.
Then we consider a hypersphere S1 in E4 at the origin with a real radius r

identifying an arbitrary point p in E4 with its position vector z, i.e.

(3.1) S1 : 〈z, z〉 = r2.

It has the following parametrization

z(r cosu1 cosu2, r cosu1 sinu2, r sinu1 cosu0, r sinu1 sinu0),

where u0, u1, u2 are real parameters such as u0, u1, u2 ∈ [0; 2π), u1 6= kπ
2 for

k ∈ {0, 1, 2, 3}. Consequently, the local basic vectors ∂i = ∂z
∂ui , i ∈ {0, 1, 2}

have the following inner products:

〈∂0, ∂0〉 = r2 sin2 u1, 〈∂1, ∂1〉 = r2, 〈∂2, ∂2〉 = r2 cos2 u1,

〈∂i, ∂j〉 = 0, i 6= j.

Substituting ei = 1√
〈∂i,∂i〉

∂i, i ∈ {0, 1, 2}, we obtain an orthonormal basis {ei},
i ∈ {0, 1, 2} as follows

(3.2) e0 = ε2
r sinu1 ∂0, e1 = 1

r∂1, e2 = ε1
r cosu1 ∂2,

where ε1 = sgn(cosu1), ε2 = sgn(sinu1).
Next, we introduce an almost paracontact almost paracomplex structure

(φ, ξ, η) on S1 determined as shown in (2.2). The metric g on the hypersurface
is the restriction of 〈·, ·〉 on S1. Therefore, {ei}, i ∈ {0, 1, 2} is an orthonormal
φ-basis with respect to g on TpS1 at p ∈ S1, i.e. (2.3) is satisfied. Thus, we
obtain for (S1, φ, ξ, η, g) the following
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Proposition 3.1. The manifold (S1, φ, ξ, η, g) is a 3-dimensional almost para-
contact almost paracomplex Riemannian manifold.

Using (3.2), we calculate the following commutators of the basic vectors ei:

(3.3) [e0, e1] = 1
r cotu1e0, [e0, e2] = 0, [e1, e2] = 1

r tanu1e2.

According to the latter equations and the Koszul equality for ∇ of g, i.e.

(3.4) 2g (∇Ei
Ej , Ek) = g ([Ei, Ej ], Ek) + g ([Ek, Ei], Ej) + g ([Ek, Ej ], Ei) ,

we obtain the components of the covariant derivatives of ei with respect to ∇:

(3.5)
∇e0e0 = − 1

r cotu1e1, ∇e0e1 = 1
r cotu1e0,

∇e2e1 = − 1
r tanu1e2, ∇e2e2 = 1

r tanu1e1

and the remaining ∇eiej are zero.
Bearing in mind (2.2), (2.3) and (3.5), we obtain the following components

Fijk of F with respect to the basis {ei}, i ∈ {0, 1, 2}:

(3.6) F002 = F020 =
1

r
cotu1, F211 = −F222 =

2

r
tanu1

and the other components Fijk are zero.
According to (2.5), (2.6) and (3.6), we determine the basic components

Nijk = N(ei, ej , ek) of the Nijenhuis tensor and N̂ijk = N̂(ei, ej , ek) of its
associated tensor. The non-zero ones among them are:

N010 = −N100 = 1
r cotu1,

N̂221 = N̂111 = −N̂122 = −N̂212 = 4
r tanu1,

N̂001 = − 2
r cotu1, N̂010 = N̂100 = 1

r cotu1.

Using (2.4) and (3.6), we get the equality

F (x, y, z) =
2

r
tanu1x2

(
y1z1 − y2z2

)
+

1

r
cotu1x0

(
y0z2 + y2z0

)
.

By the virtue of the latter equality, we establish that F has the following form:

(3.7) F (x, y, z) = F 1(x, y, z) + F 11(x, y, z),

where F 1 and F 11 are the components of F for the basic classes F1 and F11,
respectively. Therefore, we have the following non-zero components of F 1 and
F 11 with respect to {ei}, i ∈ {0, 1, 2}:

(3.8)
F 1
211 = −F 1

222 = −θ2 = 2
r tanu1,

F 11
002 = F 11

020 = ω2 = 1
r cotu1.

Let us note that the components of F 1 and F 11 from the above are non-zero
for all values of u1 in its domain.
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Next, using (2.1), (3.7) and (3.8), we find the following:

N = −dη ⊗ ξ, ∇ξξ 6= 0,

which support the results obtained in [9].
Bearing in mind (2.3), (3.3), (3.5) and the definition equality of R, we obtain

the components Rijk` = R(ei, ej , ek, e`) of R with respect to {ei}, i ∈ {0, 1, 2}.
The first of them are:

(3.9) R0101 = R0202 = R1212 = − 1

r2
.

The rest of the non-zero components of R are determined by (3.9) and the
basic symmetries of R and its first Bianchi identity.

According to (2.3), (2.7) and (3.9), we obtain the components ρjk = ρ(ej , ek)
and ρ∗jk = ρ∗(ej , ek) of the Ricci tensor ρ and the ∗-Ricci tensor ρ∗, respec-
tively, as well as the values of the scalar curvature τ and its associated quantity
τ∗ as follows:

(3.10)
ρ00 = ρ11 = ρ22 = 2

r2 , ρ∗12 = ρ∗21 = − 1
r2 ,

τ = 6
r2 , τ∗ = 0.

Furthermore, from (2.3), (2.8) and (3.9), we get the basic sectional curvatures
kij = k(ei, ej) determined by the basis {ei, ej} of the corresponding 2-plane:

(3.11) k01 = k02 = k12 =
1

r2
.

Taking into account (2.3), (3.9) and (3.11), we get the form of the curvature
tensor as follows

(3.12) R(x, y, z, w) = − 1

2r2
(g ? g)(x, y, z, w).

According to the results obtained above, we have the following

Theorem 3.2. Let (S1, φ, ξ, η, g) be the hypersphere in the Euclidean 4-space
E4 equipped with an almost paracontact almost paracomplex structure and a
Riemannian metric defined by (3.1), (2.2) and (2.3). Then, the manifold
(S1, φ, ξ, η, g) has the following properties:

1. it is in the class F1 ⊕F11 but does not belong to either F1 or F11;

2. it has a positive scalar curvature;

3. it is ∗-scalar flat;

4. it is a space-form of positive constant sectional curvature.

Proof. We establish the truthfulness of assertion (1) using (3.7) and (3.8).
Conclusions (2) and (3) are consequences of (3.10), whereas (4) follows from
(3.12).
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4. A hypersphere with the studied structure in Minkowski
4-space

In this section we consider the pseudo-Euclidean space E4
1, i.e. the real

4-space R4 equipped with the following Lorentzian inner product

(4.1) 〈x, y〉 = x1y1 + x2y2 + x3y3 − x4y4

for arbitrary vectors x(x1, x2, x3, x4) and y(y1, y2, y3, y4) in R4.
In a similar manner as in the previous section, we define the following

hypersphere S2 in E4
1 at the origin with real radius r,

S2 : 〈z, z〉 = −r2.

It has the following parametrization

z(r sinhu1 cosu2, r sinhu1 sinu2, r coshu1 sinhu3, r coshu1 coshu3),

where u1, u2, u3 are real parameters such as u1 ∈ (−∞; 0) ∪ (0; +∞), u2 ∈
[0; 2π), u3 ∈ (−∞; +∞).

Therefore, for the local basic vectors ∂i = ∂z
∂ui , i ∈ {1, 2, 3}, we obtain the

following

〈∂1, ∂1〉 = r2, 〈∂2, ∂2〉 = r2 sinh2 u1, 〈∂3, ∂3〉 = r2 cosh2 u1,

〈∂i, ∂j〉 = 0, i 6= j.

Then, we substitute ei−1 = 1√
|〈∂i,∂i〉|

∂i and get the orthonormal basis {ei},
i ∈ {0, 1, 2}, as follows

e0 = 1
r∂1, e1 = 1

r sinhu1 ∂2, e2 = 1
r coshu1 ∂3.

In the same way as in the previous section, here we equip S2 with an almost
paracontact almost paracomplex structure and a Riemannian metric defined by
(2.2) and (2.3), respectively. Thus, for the obtained manifold (S2, φ, ξ, η, g), we
have the following

Proposition 4.1. The manifold (S2, φ, ξ, η, g) is a 3-dimensional almost para-
contact almost paracomplex Riemannian manifold.

By similar considerations as for S1, we obtain the following:

(4.2) [e0, e1] = − 1
r cothu1e1, [e0, e2] = − 1

r tanhu1e2, [e1, e2] = 0.

Taking into account (3.4) and (4.2) we get:

(4.3)
∇e1e0 = 1

r cothu1e1, ∇e2e0 = 1
r tanhu1e2,

∇e1e1 = − 1
r cothu1e0, ∇e2e2 = − 1

r tanhu1e0.
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Bearing in mind (2.2), (2.3) and (4.3), we compute the components Fijk of F .
The non-zero once among them are:

(4.4) F102 = F120 = − 1
r cothu1, F201 = F210 = − 1

r tanhu1.

Then, applying (2.5), (2.6) and (4.4), we calculate the components Nijk and

N̂ijk as follows:

N101 = −N011 = N022 = −N202 = 2
r sinh 2u1 ,

N̂101 = N̂011 = −N̂202 = −N̂022 = 2
r sinh 2u1 ,

N̂110 = N̂220 = − 2
r (cothu1 + tanhu1).

By the virtue of (2.4) and (4.4), we establish the following equality

(4.5) F (x, y, z) = (F 5 + F 9)(x, y, z),

where F 5 and F 9 are the components of F corresponding to the basic classes
F5 and F9. The non-zero components of F 5 and F 9 with respect to the basis
{e0, e1, e2} are the following

(4.6)
F 5
102 = F 5

120 = F 5
201 = F 5

210 = 1
2θ
∗
0 = − 1

2r (cothu1 + tanhu1),

F 9
102 = F 9

120 = −F 9
201 = −F 9

210 = µ = 1
2r (tanhu1 − cothu1).

Taking into account (2.1), (4.5) and (4.6), we get

(4.7) dη = 0, ∇ξξ = 0,

which support the results obtained in [9].
Bearing in mind (2.3), (4.2) and (4.3), we calculate the components Rijkl

of R. The non-zero ones among them are determined by the basic symmetries
of R and the following

(4.8) R0101 = R0202 = R1212 = 1
r2 .

Using (2.3), (2.7) and (4.8), we obtain the basic components ρjk and ρ∗jk as
well as the values of τ and τ∗:

(4.9)
ρ00 = ρ11 = ρ22 = − 2

r2 , ρ∗12 = ρ∗21 = 1
r2 ,

τ = − 6
r2 , τ∗ = 0.

Bearing in mind (2.3), (2.8) and (4.8), we compute the basic sectional curva-
tures kij with respect to the basis {e0, e1, e2} as follows

(4.10) k01 = k02 = k12 = − 1

r2
.

Bearing in mind (2.3), (4.8) and (4.10), we get the form of the curvature
tensor in the following way

(4.11) R(x, y, z, w) =
1

2r2
(g ? g)(x, y, z, w).

By the virtue the results obtained above, we obtain the following
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Theorem 4.2. Let (S2, φ, ξ, η, g) be the time-like sphere in the Minkowski 4-
space E4

1 equipped with an almost paracontact almost paracomplex structure and
a Riemannian metric defined by (4.1), (2.2) and (2.3). Then, the manifold
(S2, φ, ξ, η, g) has the following properties:

1. it is in the class F5 ⊕F9 but does not belong to either F5 or F9;

2. it has a closed 1-form η and geodesic integral curves of ξ;

3. it has a negative scalar curvature;

4. it is ∗-scalar flat;

5. it is a space-form of negative constant sectional curvature.

Proof. We establish the truthfulness of assertion (1) using (4.5) and (4.6).
Statements (2), (3)–(4), (5) follow directly from (4.7), (4.9), (4.11), respec-
tively.
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