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Oscillation results for second-order mixed neutral
integro-dynamic equations with damping and a

nonpositive neutral term on time scales

H. A. Agwa1, H. M. Arafa23,
G. E. Chatzarakis4 and M. A. Abdel Naby5

Abstract. In this work, we are concerned with studying a new class of
second-order mixed neutral integro-dynamic equation with damping and
a nonpositive neutral term of the form:
(0.1)

(r(t)(z∆(t))γ)∆ +p(t)(z∆(t))γ +g(t, x(τ(t)))+

t∫
0

a(t, s)f(s, x(s))∆s = 0,

where

(0.2) z(t) = x(t) − p1(t)x(η1(t)) + p2(t)x(η2(t)),

on a time scale T. The obtained results not only present some new crite-
ria for such kind of neutral differential equations and neutral difference
equations as special cases, but also extend some results obtained on time
scales. An example is given to illustrate the importance of our work.

AMS Mathematics Subject Classification (2010): 34C10; 45D05; 34N05.
34K40
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1. Introduction

In this paper, we investigate the oscillatory behavior for the following
second-order neutral integro-dynamic equation

(r(t)((x(t)−p1(t)x(η1(t))+p2(t)x(η2(t)))∆)γ)∆ +p(t)((x(t)−p1(t)x(η1(t))+

p2(t)x(η2(t)))∆)γ + g(t, x(τ(t))) +

t∫
0

a(t, s)f(s, x(s))∆s = 0,
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on a time scale T ⊆ R with 0 ∈ T and supT =∞.
Defining the time scale interval [t0,∞)T by [t0,∞)T = [t0,∞)

⋂
T,

subject to the following hypotheses:

(H1) η1(t), η2(t) : T → T are rd-continuous functions such that η1(t) ≤ t ≤
η2(t), limt→+∞ η1(t) =∞ and η2(t) : T→ T is an injective rd-continuous
increasing function.

(H2) p1(t), p2(t), p(t) are nonnegative rd-continuous functions on an arbitrary
time scale T, such that 0 ≤ p1(t) ≤ p1 < 1, and r(t) is a positive rd-
continuous function with −pr (t) ∈ <+, and

(1.1)

∞∫
t0

[
1

r(s)
e−p
r

(s, t0)]
1
γ ∆s =∞,

where γ is a quotient of odd positive integers.

(H3) a(t, s) : T× R→ R+ is an rd-continuous function.

(H4) f and g ∈ C(T × R,R) such that uf(t, u) ≥ m(t)|u|β+1 and ug(t, u) ≥
q(t)|u|β+1 for all u 6= 0, where m(t) : T → [0,+∞) is a nonnegative
increasing rd-continuous function, q(t) : T → [0,+∞) is a nonnegative
rd-continuous function, which is not identically zero for all sufficiently
large t, and β is a quotient of odd positive integers.

In 1988, a new calculus was introduced by Hilger in his thesis, known as
the time scale calculus. This calculus unifies the continuous and the discrete
analysis. The main proposal of the time scales calculus is to prove results for
dynamic equations, where the domain of the unknown functions is the so-called
time scale T, which is an arbitrary nonempty closed subset of the real numbers
R. For the calculus on time scales, we refer to [7]. For advances in dynamic
equations on time scales, we refer to [8] and [1].

By a solution of (0.1), we mean a nontrivial real valued function x(t) which
satisfies (0.1) for t ∈ T. Our attention is restricted to those solutions of (0.1)
which exist on the half-line [ty,∞) and satisfy sup{|y(t)| : t > t∗} > 0 for any
t∗ = ty.

Definition 1.1 ([2]). A nontrivial solution x(t) is said to be oscillatory if it has
an infinite number of zeros, that is, there exists a sequence of zeros {tn} such
that x(tn) = 0 and limn→∞ tn =∞. Otherwise, x is said to be nonoscillatory.

Definition 1.2. A nontrivial solution x(t) is said to be almost oscillatory if
either x(t) or x∆(t) is oscillatory.

Definition 1.3. The neutral differential equation is called oscillatory if all its
solutions are oscillatory.

Definition 1.4. [7] The set of all positively regressive elements of < is denoted
by <+ or <+(T,R) and is defined as:

<+ = <+(T,R) = {p ∈ < : 1 + µ(t)p(t) > 0 for all t ∈ T}.
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The motivation starts from Erbe et al. [11], where the authors were con-
cerned with the oscillatory behavior of solutions of the following second-order
nonlinear functional dynamic equation with a nonpositive neutral term of the
form

(1.2) (r(t)((y(t)− p(t)y(τ(t)))∆)γ)∆ + f(t, y(η(t))) = 0, t ∈ T,

where τ(t), η(t) ∈ Crd(T,T), τ(t) ≤ t, limt→∞ τ(t) =∞,
limt→∞ η(t) =∞ and either η(t) ≥ 0 or η(t) ≤ 0 for all sufficiently large t.
In 2017, Agwa et al. [5], introduced new oscillation results for the second-order
nonlinear mixed neutral dynamic equation of the form

(r(t)(y∆(t))γ)∆ + f(t, x(τ1(t))) + g(t, x(τ2(t))) = 0,

where y(t) = x(t)− p1(t)x(η1(t)) + p2(t)x(η2(t)).
In 2010 Chen et al. [9] and in 2012, Şenel [10] studied the following second-order
nonlinear dynamic equations with damping

(1.3) ((x∆(t))γ)∆ + p(t)(x∆(t))γ + q(t)f(xσ(t)) = 0,

and

(1.4) (r(t)(x∆(t))γ)∆ + p(t)(x∆(t))γ + f(t, x(g(t))) = 0,

on a time scale T ⊂ R respectively.
In 2017, Agwa et al. [4] established new oscillation criteria for the following
second-order mixed nonlinear neutral dynamic equation with damping on time
scales

(1.5) (r(t)φ(z∆(t)))∆ + p(t)φ(z∆(t)) + f(t, x(τ1(t))) + g(t, x(τ2(t))) = 0,

where

(1.6) φ(s) = |s|γ−1s, z(t) = x(t) + p1(t)x(η1(t)) + p2(t)x(η2(t)).

In 2013, Grace et al. [12] studied the asymptotic behavior of nonoscillatory
solutions of the following second-order integro-dynamic equation

(1.7) (r(t)x∆(t))∆ +

t∫
0

a(t, s)f(s, x(s))∆s = 0.

Also, in 2014 Grace et al. [3] studied the oscillatory and asymptotic behavior
of the following second-order integro-dynamic equation

(1.8) (r(t)(x∆(t))γ)∆ +

t∫
0

a(t, s)f(s, x(s))∆s = 0.

It is useful to note that, the above mentioned equations are special cases of
our equation (0.1), and so the obtained results in [[3], [5], [4], [9], [11], [12], [10]]
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fail to apply in (0.1), but according to our criteria we can study the oscillatory
behavior of (0.1).

Now, we present some useful Lemmas that play an important role in the
proofs of our main results.

Lemma 1.5. [7] If θ ∈ <+, then the initial value problem y∆ = θ(t)y, y(t0) =
y0 ∈ R has the unique positive solution eθ(., t0) on [t0,∞)T. This solution
satisfies the semi group property

eθ(a, b)eθ(b, c) = eθ(a, c).

Lemma 1.6. [7] If x is a delta differentiable function, then

(xγ)∆ = γx∆

1∫
0

[hxσ + (1− h)x]γ−1dh.

Lemma 1.7. [13] If X and Y are nonnegative real numbers, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ, for all λ > 1,

where the equality holds if and only if X = Y.

Lemma 1.8. Assume that (1.1), H1 − H4 hold, and x(t) is a nonoscillatory
solution of (0.1). Then z(t) satisfies one of the following two cases:

(C1) z(t) > 0, z∆(t) > 0 and (r(t)(z∆(t))γ)∆ ≤ 0;

(C2) z(t) < 0, z∆(t) > 0 and (r(t)(z∆(t))γ)∆ ≤ 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

Proof. Let x(t) be a nonoscillatory solution of (0.1). We may assume that there
exists t1 ≥ t0 such that x(t) > 0 for all t ≥ t1 and there exists t2 ≥ t1 + η1(t1),
such that x(ηi(t)) > 0 for all t ≥ t2, i = 1, 2. Now from (0.1) we have

(1.9) (r(t)(z∆(t))γ)∆ + p(t)(z∆(t))γ = −
t∫

0

a(t, s)f(s, x(s))∆s− g(t, x(τ(t)))

= −
t2∫

0

a(t, s)f(s, x(s))∆s−
t∫

t2

a(t, s)f(s, x(s))∆s− g(t, x(τ(t))),

for t ∈ [t2,∞)T. Choosing t3 > t2 sufficiently large, then from H4 we can find
k ≥ 0 such that

k :=

t2∫
0

a(t, s)f(s, x(s))∆s+

t3∫
t2

a(t, s)m(s)xβ(s)∆s.
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In view of this, (1.9) can be written as

(1.10) (r(t)(z∆(t))γ)∆ + p(t)(z∆(t))γ < −
t2∫

0

a(t, s)f(s, x(s))∆s−

t3∫
t2

a(t, s)m(s)xβ(s)∆s−
t∫

t3

a(t, s)f(s, x(s))∆s− g(t, x(τ(t))),

= −k −
t∫

t3

a(t, s)f(s, x(s))∆s− g(t, x(τ(t))),

< −
t∫

t3

a(t, s)f(s, x(s))∆s− g(t, x(τ(t))) < 0.

From Lemma 1.5 and (1.10), we obtain

[
r(t)(z∆(t))γ

e−p
r (t)(t, t0)

]∆ =
(r(t)(z∆(t))γ)∆ + p(t)(z∆(t))γ

eσ−p
r (t)

(t, t0)
< 0,(1.11)

which means that r(t)(z∆(t))γ

e−p
r

(t)
(t,t0) is decreasing for t ∈ [t3,∞)T and z∆(t) is either

eventually positive or eventually negative. We claim that

(1.12) z∆(t) > 0,

and therefore we have (C1) or (C2). Indeed, assume that (1.12) is not satisfied.
Then there exists t4 ∈ [t3,∞)T such that z∆(t) < 0 for all t ∈ [t4,∞)T. Using
(1.11) and Lemma 1.5, we obtain

r(t)(z∆(t))γ

e−p
r

(t, t0)
≤ r(t4)(z∆(t4))γ

e−p
r

(t4, t0)
, for t ∈ [t4,∞)T,

i.e.,

z∆(t) ≤ −M [
1

r(t)
e−p
r

(t, t4)]
1
γ , for t ∈ [t4,∞)T,

where M = r
1
γ (t4)|z∆(t4)| > 0. Integrating both sides from t4 to t, we have

(1.13) z(t) ≤ z(t4)−M
t∫

t4

[
1

r(s)
e−p
r

(s, t4)]
1
γ ∆s.

Using (1.1), we get limt→∞ z(t) = −∞. Then we have the following two posi-
bilities:
Case (a): If x(t) is unbounded, then there exists a sequence {tk} such that
limk→∞ tk =∞ and limk→∞ x(tk) =∞. Assume that

x(tk) = max{x(s) : t0 ≤ s ≤ tk}.
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Since limt→∞ η1(t) = ∞, η1(tk) > t0 for all sufficiently large k and η1(t) ≤ t,
then
(1.14)
x(η1(tk)) = max{x(s) : t0 ≤ s ≤ η1(tk)} ≤ max{x(s) : t0 ≤ s ≤ tk} = x(tk).

Combining (1.14) and (0.2), we have

z(tk) = x(tk)− p1(tk)x(η1(tk)) + p2(tk)x(η2(tk)),

≥ x(tk)− p1(tk)x(η1(tk)),

≥ x(tk)− p1x(tk) = (1− p1)x(tk) > 0,

for all large k, which contradicts limt→∞ z(t) = −∞.
Case (b): If x(t) is bounded, then z(t) is bounded. This contradicts
limt→∞ z(t) = −∞.

So from Case (a) and Case (b), we conclude that (1.12) holds. Now using
z∆(t) > 0 in (1.10), we get [r(t)(z∆(t))γ ]∆ < 0. Hence, z(t) satisfies one of the
two cases (C1) or (C2).
If x(t) is an eventually negative solution of (0.1), then we can see that the
transformation y(t) = −x(t), y(t) > 0 transforms (0.1) into

(r(t)(v∆(t))γ)∆ + p(t)(v∆(t))γ −
t∫

0

a(t, s)f(s,−y(s))∆s− g(t,−y(τ(t))) = 0,

where

v(t) = y(t)− p1(t)y(η1(t)) + p2(t)y(η2(t)).

Thus,

(1.15)

(r(t)(v∆(t))γ)∆ + p(t)(v∆(t))γ =

t∫
0

a(t, s)f(s,−y(s))∆s+ g(t,−y(τ(t))),

=

t2∫
0

a(t, s)f(s, x(s))∆s+

t∫
t2

a(t, s)f(s, x(s))∆s+ g(t,−y(τ(t))).

Choosing t4 > t2 sufficiently large, then from H4, we can find k1 ≤ 0 such that

k1 :=

t2∫
0

a(t, s)f(s, x(s))∆s−
t4∫
t2

a(t, s)m(s)yβ(s)∆s.
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Hence (1.15) can be written as

(r(t)(v∆(t))γ)∆+p(t)(v∆(t))γ

<

t2∫
0

a(t, s)f(s, x(s))∆s−
t4∫
t2

a(t, s)m(s)yβ(s)∆s

+

t∫
t4

a(t, s)f(s, x(s))∆s+ g(t,−y(τ(t))),

=k1 +

t∫
t4

a(t, s)f(s, x(s))∆s+ g(t,−y(τ(t))),

<−
t∫

t4

a(t, s)m(s)yβ(s)∆s+ g(t,−y(τ(t))) < 0.

It follows in a similar manner that (C1) or (C2) holds for v(t). This completes
the proof.

Lemma 1.9. Assume that x(t) is a positive solution of (0.1) and z(t) satisfies
(C2). Then limt→∞ x(t) = 0.

Proof. By z(t) < 0 and z∆(t) > 0, we deduce that

limt→∞ z(t) = l ≤ 0.

As in the proof of Case (a) of Lemma 1.8, we see that x(t) is bounded. Thus
limt→∞ x(t) = a ≥ 0.
Now, if a > 0, then there exists tk ⊆ [t2,∞)T such that limk→∞ tk = ∞,
limk→∞ x(tk) = a > 0 and

x(tk) = max{x(s) : t0 ≤ s ≤ tk}.

Hence

z(tk) ≥ x(tk)− p1(tk)x(η1(tk)) ≥ x(tk)− p1x(tk) = (1− p1)x(tk),

which means that 0 > limk→∞ z(tk) > (1 − p1)a > 0. We are led to a contra-
diction. Therefore, a = 0 and limt→∞ x(t) = 0.

Lemma 1.10. Assume that (1.1) and H1-H4 hold. Let x(t) be a nonoscillatory
solution of (0.1) on [t0,∞)T and z(t) satisfies (C1). Then there exist suitable

constants b1 > 0 and b2 := z(t3)
L(t4,t3) + r

1
γ (t3)z∆(t3) ≥ 0 such that

(1.16) b1 ≤ z(t) ≤ b2L(t, t3),

where

L(t, t0) :=

t∫
t0

∆s

r
1
γ (s)

.
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Proof. Taking into account the fact that v(t) is increasing, we have

(1.17) z(t) > z(t3) := b1.

Integrating z∆(t) from t3 to t and using that r(t)(z∆(t))γ is decreasing, we
obtain

z(t) = z(t3) +

∫ t

t3

[r(s)(z∆(s))γ ]
1
γ

r
1
γ (s)

∆s

≤ z(t3) + r
1
γ (t3)z∆(t3)L(t, t3),

where L(t, t3) :=
∫ t
t3

∆s

r
1
γ (s)

. Hence L(t, t3) is a positive increasing function.

Choosing t4 ≥ t3 sufficiently large, we can write

z(t) ≤ b2L(t, t3), for all t ∈ [t4,∞)T,

where b2 := z(t3)
L(t4,t3) + r

1
γ (t3)z∆(t3) . Combining the previous inequality and

(1.17), we get

b1 ≤ z(t) ≤ b2L(t, t3), for t ∈ [t4,∞)T,

which is the desired inequality. This completes the proof.

2. Main results

Theorem 2.1. Assume that (1.1), H1−H4 hold, and η2(t) ≥ τ(t) ≥ t. More-
over, suppose that there exists a positive real-valued ∆ -differentiable function
δ(t) such that for all sufficiently large T > t1, we have

lim sup
t→∞

∫ t

T

[δ(u)[A(u) + q(u)Bβ(u)]− γγ

βγ(γ + 1)γ+1

r(u)(δ(u)+)γ+1

δγ(u)Dγ(u)
]∆u =∞,

(2.1)

where

(2.2) D(t) :=

b
β
γ−1

1 , β
γ ≥ 1,

[ 1
b2L(σ(t),t3) ]1−

β
γ , β

γ ≤ 1,

(2.3) A(t) := min{A1(t), A2(t)},

with

A1(t) :=
n1

(b2L(t, T ))β

∫ t

T

a(t, s)m(s)

(1 + p2(s))β
∆s,

A2(t) :=
n2

(b2L(t, T ))β

∫ η−1
2 (t)

η−1
2 (T )

a(t, η2(ξ))m(η2(ξ))(η2(ξ))∆

(1 + p2(ξ))β
∆ξ,
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given that b1, b2, n1 and n2 are positive constants. Also

(2.4) B(t) := min{B1(t) :=
1

1 + p2(τ(t))
, B2(t) :=

ψ(t, T )

1 + p2(η−1
2 (τ(t)))

},

where

ψ(t, T ) :=

η−1
2 (τ(t))∫
T

∆s

r
1
γ (s)

t∫
T

∆s

r
1
γ (s)

,

δ(t)+ := max{0, δ(t)} and δ(t) := δ∆(t)− p(t)δ(t)
r(t) . Then, every solution of (0.1)

is almost oscillatory on [t0,∞)T or converges to zero as t→∞.

Proof. Assume that x(t) is not almost oscillatory solution of (0.1). Then we can
assume that there exists t3 ≥ t0 such that x(t) > 0 and x(ηi(t)) > 0, i = 1, 2
on [t3,∞)T. (When x(t) is negative, the proof is similar.) By Lemma 1.8, z(t)
satisfies either (C1) or (C2). Since x(t) is not almost oscillatory, we have two
possibilities:

(I) x∆(t) < 0, for t ≥ t3,

(II) x∆(t) > 0, for t ≥ t3,

Case 1. Suppose that (C1) holds and x∆(t) < 0. Then we have

z(t) < x(t) + p2(t)x(η2(t)),

≤ (1 + p2(t))x(t), for t ≥ t3.(2.5)

Using (H4), (2.5) and (C1) in (1.10), we get

(2.6)

(r(t)(z∆(t))γ)∆ < −p(t)(z∆(t))γ −
∫ t

t3

a(t, s)m(s)

(1 + p2(s))β
zβ(s)∆s− q(t)xβ(τ(t))

< −p(t)(z∆(t))γ − zβ(t3)

∫ t

t3

a(t, s)m(s)

(1 + p2(s))β
∆s− q(t)

[1 + p2(τ(t))]β
zβ(τ(t)).

Defining the function w(t) by

(2.7) w(t) = δ(t)
r(t)(z∆(t))γ

zβ(t)
.

Clearly, w(t) > 0 and

w∆(t) =(
δ(t)

zβ(t)
)(r(t)(z∆(t))γ)∆ + r(σ(t))(z∆(σ(t))γ(

δ(t)

zβ(t)
)∆,

=(
δ(t)

zβ(t)
)(r(t)(z∆(t))γ)∆(2.8)

+ r(σ(t))(z∆(σ(t)))γ
zβ(t)δ∆(t)− δ(t)(zβ(t))∆

zβ(t)zβ(σ(t))
.
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Combining (2.6) and (2.8), we obtain

w∆(t) ≤ −p(t)δ(t)
zβ(t)

(z∆(t))γ − δ(t)zβ(t3)

zβ(t)

∫ t

t3

a(t, s)m(s)

(1 + p2(s))β
∆s+

δ∆(t)
r(σ(t))(z∆(σ(t)))γ

zβ(σ(t))
− δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))

− δ(t)q(t)

[1 + p2(τ(t))]β
[
z(τ(t))

z(t)
]β .

Using (1.16), (2.7) and z∆(t) > 0 in the above inequality, we get

(2.9) w∆(t) ≤ −δ(t)[A1(t) + q(t)Bβ1 (t)]− p(t)

r(t)
w(t) +

δ∆(t)

δ(σ(t))
w(σ(t))−

δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
,

where A1(t) := [ z(t3)
b2L(t,t3) ]β

∫ t
t3

a(t,s)m(s)
(1+p2(s))β

∆s and B1(t) := 1
1+p2(τ(t)) . From (C1)

and (2.7), we obtain

w(t)

δ(t)
=
r(t)(z∆(t))γ

zβ(t)
≥ r(σ(t))(z∆(σ(t)))γ

z(σ(t))β
=
w(σ(t))

δ(σ(t))
,

i.e.,

w(t) >
δ(t)

δ(σ(t))
w(σ(t)).

In view of this, (2.9)gives

w∆(t) ≤ −δ(t)[A1(t) + q(t)Bβ1 (t)] + (δ∆(t)− p(t)δ(t)

r(t)
)
w(σ(t))

δ(σ(t))
−

δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
,

≤ −δ(t)[A1(t) + q(t)Bβ1 (t)] +
δ(t)+

δ(σ(t))
w(σ(t))−

δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
,(2.10)

where δ(t)+ := max{0, δ(t)} and δ(t) := δ∆(t)− p(t)δ(t)
r(t) .

By Lemma 1.6, we have

(2.11) (zβ)∆ ≥


βz∆zβ−1, β ≥ 1,

βz∆(zσ)β−1, β ≤ 1.
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Also, from (C1), we have

(2.12) z∆ >
(rσ)

1
γ

r
1
γ

z∆σ.

Substituting from (2.11) and (2.12) in the last term of (2.10), we can write

w∆(t) ≤ −δ(t)[A1(t) + q(t)Bβ1 (t)] +
δ(t)+

δ(σ(t))
w(σ(t))−

βδ(t)(r(σ(t))1+ 1
γ (z∆(σ(t)))γ+1

r
1
γ (t)(z(σ(t)))β+1

= −δ(t)[A1(t) + q(t)Bβ1 (t)] +
δ(t)+

δ(σ(t))
w(σ(t))−

βδ(t)(r(σ(t)))1+ 1
γ (z∆(σ(t)))γ+1

r
1
γ (t)(z(σ(t)))β+ β

γ

(z(σ(t)))
β
γ−1

≤ −δ(t)[A1(t) + q(t)Bβ1 (t)] +
δ(t)+

δ(σ(t))
w(σ(t))−

βδ(t)D(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ(2.13)

where

D(t) :=

b
β
γ−1

1 , β
γ ≥ 1,

[ 1
b2L(σ(t),t3) ]1−

β
γ , β

γ ≤ 1.

Taking λ = γ+1
γ and using Lemma 1.7 with

X = [
βδ(t)D(t)

(δ(σ(t)))λr
1
γ (t)

]
1
λw(σ(t)) and Y = [

δ(t)+

λδ(σ(t))
[

βδ(t)D(t)

(δ(σ(t)))λr
1
γ (t)

]
−1
λ ]

1
λ−1 ,

we have
(2.14)

δ(t)+

δ(σ(t))
w(σ(t))− βδ(t)D(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ ≤ γγ

βγ(γ + 1)γ+1

r(t)(δ(t)+)γ+1

δγ(t)Dγ(t)
.

Substituting from (2.14) into (2.13), we obtain

w∆(t) ≤ −δ(t)[A1(t) + q(t)Bβ1 (t)] +
γγ

βγ(γ + 1)γ+1

r(t)(δ(t)+)γ+1

δγ(t)Dγ(t)
.(2.15)

Integrating the above inequality from t3 to t, we get∫ t

t3

[δ(u)[A1(u) + q(u)Bβ1 (u)]− γγ

βγ(γ + 1)γ+1

r(u)(δ(u)+)γ+1

δγ(u)Dγ(u)
]∆u <

w(t3)− w(t) < w(t3),(2.16)
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which contradicts (2.1).
Case 2. Suppose that (C1) holds and x∆(t) > 0. Then we have

z(t) < x(t) + p2(t)x(η2(t)),

≤ (1 + p2(t))x(η2(t)), forall t ≥ t3.

Choosing t4 sufficiently large such that t4 > t3 and η−1
2 (t) > t3

for all t ≥ t4, then

(2.17) x(t) ≥ 1

1 + p2(η−1
2 (t))

z(η−1
2 (t)), t ≥ t4.

Using H4, (2.17) and (C1) into (0.1), we get

(2.18)

(r(t)(z∆(t))γ)∆ < −p(t)(z∆(t))γ −
∫ t

t4

a(t, s)m(s)

(1 + p2(η−1
2 (s)))β

zβ(η−1
2 (s))∆s−

q(t)xβ(τ(t))

= −p(t)(z∆(t))γ −
∫ η−1

2 (t)

η−1
2 (t4)

a(t, η2(ξ))m(η2(ξ))(η2(ξ))∆

(1 + p2(ξ))β
zβ(ξ)∆ξ−

q(t)
zβ(η−1

2 (τ(t)))

[1 + p2(η−1
2 (τ(t)))]β

< −p(t)(z∆(t))γ − zβ(η−1
2 (t4))

∫ η−1
2 (t)

η−1
2 (t4)

a(t, η2(ξ))m(η2(ξ))(η2(ξ))∆

(1 + p2(ξ))β
∆ξ−

q(t)
zβ(η−1

2 (τ(t)))

[1 + p2(η−1
2 (τ(t)))]β

.

Substituting from (2.18) into (2.8), we obtain

w∆(t) ≤
−p(t)δ(t)
zβ(t)

(z∆(t))γ −
δ(t)zβ(η−1

2 (t4))

zβ(t)

∫ η−1
2 (t)

η−1
2 (t4)

a(t, η2(ξ))m(η2(ξ))(η2(ξ))∆

(1 + p2(ξ))β
∆ξ+

δ∆(t)
r(σ(t))(z∆(σ(t)))γ

zβ(σ(t))
−
δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
−

δ(t)q(t)

[1 + p2(η−1
2 (τ(t)))]β

[
z(η−1

2 (τ(t)))

z(t)
]β .(2.19)

Choose t5 ≥ t4 such that η−1
2 (τ(t)) > t4 for all t ≥ t5, integrating z∆(t)

from η−1
2 (τ(t)) to t and using the fact that r(t)(z∆(t))γ is decreasing, we have

z(t)− z(η−1
2 (τ(t))) =

t∫
η−1

2 (τ(t))

(r(s)(z∆(s))γ)
1
γ

r
1
γ (s)

∆s

≤ r
1
γ (η−1

2 (τ(t)))z∆(η−1
2 (τ(t)))

t∫
η−1

2 (τ(t))

∆s

r
1
γ (s)

.
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Hence,

z(η−1
2 (τ(t)))

z(t)
≥ [1 −

r
1
γ (η−1

2 (τ(t)))z∆(η−1
2 (τ(t)))

z(t)

t∫
η−1
2 (τ(t))

∆s

r
1
γ (s)

]

= 1 −
r

1
γ (η−1

2 (τ(t)))z∆(η−1
2 (τ(t)))

z(t)

[ t∫
t4

∆s

r
1
γ (s)

−

η−1
2 (τ(t))∫
t4

∆s

r
1
γ (s)

]
.

(2.20)

Integrating z∆(t) from t4 to η−1
2 (τ(t)), we get

z(η−1
2 (τ(t))) ≥ r

1
γ (η−1

2 (τ(t)))z∆(η−1
2 (τ(t)))

η−1
2 (τ(t))∫
t4

∆s

r
1
γ (s)

,

i.e.,

(2.21) r
1
γ (η−1

2 (τ(t)))z∆(η−1
2 (τ(t))) ≤ z(η−1

2 (τ(t)))[

η−1
2 (τ(t))∫
t4

∆s

r
1
γ (s)

]−1.

Substituting from (2.21) into (2.20), we have

z(η−1
2 (τ(t)))

z(t)
≥ 1 −

z(η−1
2 (τ(t)))

z(t)
[

η−1
2 (τ(t))∫
t4

∆s

r
1
γ (s)

]−1[

t∫
t4

∆s

r
1
γ (s)

−

η−1
2 (τ(t))∫
t4

∆s

r
1
γ (s)

]
,

i.e.,

(2.22)
z(η−1

2 (τ(t)))

z(t)
≥

η−1
2 (τ(t))∫
t4

∆s

r
1
γ (s)

t∫
t4

∆s

r
1
γ (s)

:= ψ(t, t4).

Using (2.22), (2.19) can be written as

w∆(t) ≤ −p(t)δ(t)
zβ(t)

(z∆(t))γ − δ(t)[A2(t) + q(t)Bβ2 (t)]+

δ∆(t)
r(σ(t))(z∆(σ(t)))γ

zβ(σ(t))
− δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
,

where

A2(t) := [
z(η−1

2 (t4))

b2L(t, t4)
]β
∫ η−1

2 (t)

η−1
2 (t4)

a(t, η2(ξ))m(η2(ξ))(η2(ξ))∆

(1 + p2(ξ))β
∆ξ,

and

B2(t) :=
ψ(t, t4)

1 + p2(η−1
2 (τ(t)))

.
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Using the same technique we used in Case 1, we obtain∫ t

t4

[δ(u)[A2(u) + q(u)Bβ2 (u)]− γγ

βγ(γ + 1)γ+1

r(u)(δ(u)+)γ+1

δγ(u)Dγ(u)
]∆u <

w(t4)− w(t) < w(t4),(2.23)

which contradicts (2.1).
Finally, suppose that (C2) holds. Then, by Lemma 1.9, we have

limt→∞ x(t) = 0. Thus every solution of (0.1) is almost oscillatory on [t0,∞)T
or converges to zero as t→∞. This completes the proof.

Theorem 2.2. Assume that (1.1), H1−H4 hold, and τ(t) ≥ η2(t) ≥ t . More-
over, assume that there exists a positive real-valued ∆ -differentiable function
δ(t) such that for all sufficiently large T > t1, we have

lim sup
t→∞

∫ t

T

[δ(u)[A(u) + q(u)Cβ(u)]− γγ

βγ(γ + 1)γ+1

r(u)(δ(u)+)γ+1

δγ(u)Dγ(u)
]∆u =∞,

(2.24)

where

(2.25) C(t) := min{B1(t) :=
1

1 + p2(τ(t))
, B3(t) :=

1

1 + p2(η−1
2 (τ(t)))

},

A(t) and D(t) are as defined in (2.3) and (2.2), respectively.
Then, every solution of (0.1) is almost oscillatory on [t0,∞)T or converges to
zero as t→∞.

Proof. The proof is similar to that of Theorem 2.1, so it is omitted.

Theorem 2.3. Assume that (1.1), H1 − H4 hold, and t ≥ τ(t) . Moreover,
assume that there exists a positive real-valued ∆ -differentiable function δ(t)
such that for all sufficiently large T > t1, we have

lim sup
t→∞

∫ t

T

[δ(u)[A(u) + q(u)Eβ(u)]− γγ

βγ(γ + 1)γ+1

r(u)(δ(u)+)γ+1

δγ(u)Dγ(u)
]∆u =∞,

(2.26)

where

(2.27) E(t) := min{B2(t), B4(t) :=
ς(t, T )

1 + p2(τ(t))
},

ς(t, T ) :=

τ(t)∫
T

∆s

r
1
γ (s)

t∫
T

∆s

r
1
γ (s)

,

A(t), D(t) and B2(t) are as defined in (2.3), (2.2) and (2.4), respectively.
Then, every solution of (0.1) is almost oscillatory on [t0,∞)T or converges to
zero as t→∞.
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Proof. The proof is similar to that of Theorem 2.1, so it is omitted.

Theorem 2.4. Assume that (1.1), H1−H4 hold, and η2(t) ≥ τ(t) ≥ t. More-
over, assume that there exist functions H,h such that for each fixed t, H(t, s)
and h(t, s) are rd-continuous functions with respect to s on D ≡ {(t, s) : t ≥
s ≥ t0},

(2.28) H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0,

and H has a non-positive continuous ∆-partial derivative H∆s(t, s) satisfying

(2.29) −H∆s(t, s) = h(t, s)(H(t, s))
γ
γ+1 .

Furthermore, suppose that there exists a positive real-valued ∆ -differentiable
function δ(t) such that for all sufficiently large T > t1, we have

(2.30) lim sup
t→∞

1

H(t, T )

t∫
T

[
H(t, s)δ(s)[A(u) + q(u)Bβ(u)]−

γγ

βγ(γ + 1)γ+1

r(s)(G+(t, s))γ+1

δγ(s)Dγ(s)

]
∆s =∞,

where

G(t, s) = δ(s)H1− 1
λ (t, s)− δ(σ(s))h(t, s), G+(t, s) = max{0, G(t, s)}.

Then, every solution of (0.1) is almost oscillatory on [t0,∞)T or converges to
zero as t→∞.

Proof. Assume that x(t) is not an almost oscillatory solution of (0.1). We may
assume that there exists t3 ≥ t0 such that x(t) > 0 and x(ηi(t)) > 0, i = 1, 2
on [t3,∞)T. (When x(t) is negative, the proof is similar.) Then by Lemma 1.8,
z(t) satisfies either (C1) or (C2). Since x(t) is not almost oscillatory, we have
two possibilities:

(I) x∆(t) < 0, for t ≥ t3,

(II) x∆(t) > 0, for t ≥ t3.

Case 1. Suppose that (C1) holds and x∆(t) < 0. Proceeding as in the proof of
first part of Theorem 2.1 until we get (2.13), it follows that

w∆(t) ≤ −δ(t)[A1(t) + q(t)Bβ1 (t)] +
δ(t)+

δ(σ(t))
w(σ(t))−

βδ(t)D(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ.(2.31)
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Multiplying both sides of the previous inequality by H(t, s), we get

H(t, s)δ(t)[A1(t) + q(t)Bβ1 (t)] ≤ −H(t, s)w∆(t) +
δ(t)H(t, s)

δ(σ(t))
w(σ(t))−

βδ(t)D(t)H(t, s)

δλ(σ(t))r
1
γ (t)

wλ(σ(t)).

Integrating the above inequality from t5 → t and using integration by parts,
we get

(2.32)

t∫
t5

H(t, s)δ(s)[A1(s) + q(s)Bβ1 (s)]∆s ≤

H(t, t5)w(t5)−
t∫

t5

[−H∆s(t, s)]w(σ(s))∆s+

t∫
t5

δ(s)H(t, s)

δ(σ(s))
w(σ(s))∆s

−
t∫

t5

βδ(s)D(s)H(t, s)

δλ(σ(s))r
1
γ (s)

wλ(σ(s))∆s

= H(t, t5)w(t5) +

t∫
t5

δ(s)H(t, s)− δ(σ(s))h(t, s)H
1
λ (t, s)

δ(σ(s))
w(σ(s))∆s−

t∫
t5

βδ(s)D(s)H(t, s)

δλ(σ(s))r
1
γ (s)

wλ(σ(s))∆s

≤ H(t, t5)w(t5) +

t∫
t5

G+(t, s)

δ(σ(s))
H

1
λ (t, s)w(σ(s))∆s−

t∫
t5

βδ(s)D(s)H(t, s)

δλ(σ(s))r
1
γ (s)

wλ(σ(s))∆s,

where

G(t, s) = δ(s)H1− 1
λ (t, s)− δ(σ(s))h(t, s) and G+(t, s) = max{0, G(t, s)}.

Using Lemma 1.7 with

X = [
βδ(s)C(s)H(t, s)

δλ(σ(s))r
1
γ (s)

]
1
λw(σ(s)) and Y = [

G+(t, s)

λ
[
βδ(s)C(s)

r
1
γ

]
−1
λ ]

1
λ−1 ,

we get

(2.33)
G+(t, s)

δ(σ(s))
H

1
λ (t, s)w(σ(s))− βδ(s)C(s)H(t, s)

δλ(σ(s))r
1
γ (s)

wλ(σ(s)) ≤

γγ

βγ(γ + 1)γ+1

r(s)(G+(t, s))γ+1

δγ(s)Dγ(s)
.
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Substituting from (2.33) into (2.32), we get

1

H(t, t5)

t∫
t5

[
H(t, s)δ(s)[A1(s) + q(s)Bβ1 (s)]−

γγ

βγ(γ + 1)γ+1

r(s)(G+(t, s))γ+1

δγ(s)Dγ(s)

]
∆s ≤ w(t5),

which contradicts (2.30).
Case 2. Suppose that (C1) holds and x∆(t) > 0. Similarly, (2.13) can be
written as

(2.34) w∆(t) ≤ −δ(t)[A2(t) + q(t)Bβ2 (t)] +
δ(t)+

δ(σ(t))
w(σ(t))−

βδ(t)D(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ.

Using the same technique, we obtain

1

H(t, t5)

t∫
t5

[
H(t, s)δ(s)[A2(s) + q(s)Bβ2 (s)]−

γγ

βγ(γ + 1)γ+1

r(s)(G+(t, s))γ+1

δγ(s)Dγ(s)

]
∆s ≤ w(t5),

which contradicts (2.30).
Finally, suppose that (C2) holds. Then, by Lemma 1.9, we have

limt→∞ x(t) = 0. Thus every solution of Eq. (0.1) is almost oscillatory
on [t0,∞)T or converges to zero as t→∞. This completes the proof.

Example 2.5. Take T = [t4,∞)R where t4 ≥ 1 and consider the equation

(2.35)
[ 1

t2
(z∆(t))3

]∆
+

1

t4
(z∆(t))3 + q(t)x5(t+ 1)+

t∫
0

(b2L(t, t4))5m(s)x5(s)

s2
∆s = 0, t ∈ [t4,∞)R,

where

z(t) = x(t)− 1

3
x(
t

2
) +

1

2
x(t+ 1),

noting that, we take

a(t, s) =
(b2L(t, t4))5

s2
,

f(s, x(s)) = m(s)xβ(s) = s2x5(s),
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and
g(t, x(τ(t))) = q(t)x5(τ(t)) = c1x

β(t+ 1),

such that c1 > 0 is a positive constant.
Here

r(t) =
1

t2
, p(t) =

1

t4
, γ = 3, and β = 5,

η2(t) = τ(t) = t+ 1 and p2(t) = 1
2 . Hence we obtain

ψ(t, t4) = 1 and B(t) =
2

3
.

Since β > γ = 3, we obtain

D(t) = b
β
3−1
1 = b

2
3
1 .

Also, we have

1− µ(t)
p(t)

r(t)
= 1 > 0, for all t ∈ [t4,∞)R.

Using Lemma 2 in [6], we obtain

e−p
r

(t, t4) ≥ 1−
t∫

t4

p(s)

r(s)
∆s = 1−

∫ t

t4

1

s2
∆s >

1

t
, for all t ∈ [t4,∞)R,

so
t∫

t4

[ 1

r(s)
e−p
r

(s, t4)
] 1
γ ∆s ≥

t∫
t4

[
s2 1

s

] 1
3 ∆s =

t∫
t4

s
1
3 ∆s→∞ as t→∞.

Hence (1.1) holds. Taking δ(t) = t, then δ(t) = 1 − 1
t > 0, δ+(t) = t−1

t .
Moreover, we can easily obtain

A(t) = min{(10

9
)5n1t

5(t− t4)

(t
5
3 − t

5
3
4 )5

, (
10

9
)5n2t

5(t− t4)

(t
5
3 − t

5
3
4 )5
} = c2

t5(t− t4)

(t
5
3 − t

5
3
4 )5

,

where, c2 > 0 is a positive constant. Then (2.1) can be written as

lim sup
t→∞

t∫
t4

δ(u)[A(u) + q(u)Bβ(u)]− γγ

βγ(γ + 1)γ+1

r(u)(δ(u)+)γ+1

δγ(u)Dγ(u)
∆u =

lim sup
t→∞

t∫
t4

c2
u6(u− t4)

(u
5
3 − t

5
3
4 )5

+ c1(
2

3
)5u− 33

β3b
β
3−1
1 (4)4

(u− 1)4

u9
∆u =∞.

Using Theorem 2.1, we conclude that every solution of (2.35) is almost oscilla-
tory or tends to zero.

Remark 2.6. The results of [3], [5], [4], [9] ,[11], [12] and [10] can’t be applied to
(2.35). But according to Theorem 2.1, we obtain that every solution of (2.35)
is almost oscillatory or converges to zero as t→ +∞.
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Boston, Inc., Boston, MA, 2001. An introduction with applications.

[8] Bohner, M., and Peterson, A. C. Advances in dynamic equations on time
scales. Springer Science & Business Media, 2002.

[9] Chen, W., Han, Z., Sun, S., and Li, T. Oscillation behavior of a class of
second-order dynamic equations with damping on time scales. Discrete Dyn.
Nat. Soc. (2010), Art. ID 907130, 15.

[10] Şenel, M. T. Kamenev-type oscillation criteria for the second-order nonlinear
dynamic equations with damping on time scales. Abstr. Appl. Anal. (2012), Art.
ID 253107, 18.

[11] Erbe, L., Hassan, T. S., and Peterson, A. Oscillation criteria for nonlinear
functional neutral dynamic equations on time scales. J. Difference Equ. Appl.
15, 11-12 (2009), 1097–1116.

[12] Grace, S., El-Beltagy, M., and Deif, S. Asymptotic behavior of non-
oscillatory solutions of second order integro-dynamic equations on time scales.
J Appl Computat Math 2, 134 (2013), 2.

[13] Hardy, G. H., Littlewood, J. E., and Pólya, G. Inequalities. Cambridge
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