Study of nonlinear stochastic Cauchy problems in $(\mathcal{C}, \mathcal{E}, \mathcal{P})$-algebras

Victor Dévoụ̂

Abstract

We use the framework of the $(\mathcal{C}, \mathcal{E}, \mathcal{P})$-algebras of J-A. Marti to study some nonlinear stochastic Cauchy problems for a simple equation, namely the transport equation in basic form, with stochastic generalized processes. Until now such studies were made in Colombeautype algebras.

AMS Mathematics Subject Classification (2010): 35L70, 35R60, 45G10, 46F30, 46T30
Key words and phrases: Generalized functions; non-linear problems; generalized stochastic processes; transport equation; white noise.

1. Introduction

To study some nonlinear stochastic Cauchy problems we reformulate them in the framework of the $(\mathcal{C}, \mathcal{E}, \mathcal{P})$-algebras of J.-A. Marti [6, 7, 8], [2]. These algebras allow us to treat singular processes in stochastic analysis following the example of Colombeau algebras. In this article we use the notations and concepts of our previous paper, [5].

The plan of this article is as follows. This section is followed by Section 2, which introduces the definitions and properties for stochastic analysis, $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ algebras and algebras of generalized stochastic processes. We refer the reader to [5] in which we make similar studies.

In Section 3, we examine the following Cauchy problems associated to a simple equation, namely the transport equation in basic form, formally written:

$$
(P): \frac{\partial U}{\partial t}=F(U)+W,\left.U\right|_{\gamma}=f
$$

and

$$
\left(P^{\prime}\right): \frac{\partial U}{\partial t}=F(U) W,\left.U\right|_{\gamma}=f
$$

with a smooth function F on the right-hand side. F can be non Lipschitz (in U) but F and all its derivatives have polynomial growth. γ is a monotonic curve with the equation $x=l(t), \gamma$ is not a characteristic curve, f is a generalized stochastic process on \mathbb{R}, W a generalized process on \mathbb{R}^{2}. That is, f and W are weakly measurable maps of some probability space (Ω, Σ, μ) with values in the distribution space $\mathcal{D}^{\prime}(\mathbb{R})$, respectively $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$.

For ω fixed, ω in Ω, using regularizations and cutoff techniques, we define a well formulated problem $\left(P(\omega)_{\text {gen }}\right)$ (resp. $\left.\left(P^{\prime}(\omega)_{g e n}\right)\right)$ associated to problem

[^0]$(P)\left(\right.$ resp. $\left.\left(P^{\prime}\right)\right)$ in a convenient algebra. We must use two parameters. The first parameter is used to regularize the data and the second one to replace the problem by a family of Lipschitz problems. We prove that problem (P) (resp. $\left(P^{\prime}\right)$) has a unique solution in some algebras of generalized stochastic processes.
Section 4, is devoted to a nonlinear stochastic Cauchy problem with the white noise as initial data
$$
\left(P_{1}\right): \frac{\partial U}{\partial t}=F(U),\left.U\right|_{\gamma}=W
$$
where γ is the curve of equation $x=l(t), \gamma$ is not a characteristic curve, W is the white noise on \mathbb{R}. The function F is smooth, it can be non Lipschitz but F and all derivatives have polynomial growth. We study problem $\left(P_{1}\right)$ as the previous ones and we examine the limiting behavior of the generalized solution.

2. Algebra of generalized stochastic processes

2.1. The presheaves of $(\mathcal{C}, \mathcal{E}, \mathcal{P})$-algebras

We refer the reader to the references [3], 4], 5], for the definition and the properties of $(\mathcal{C}, \mathcal{E}, \mathcal{P})$-algebras, the notion of overgenerated rings, the relationship with distribution theory and the association process, the notion of algebra $\mathcal{A}(\Omega)$ stable under the family $\left(F_{\eta}\right)_{\lambda}[2]$, the definition of the generalized operator \mathcal{F} associated to the family $\left(F_{\eta}\right)_{\lambda}$, the definition of the generalized second side restriction mapping \mathcal{R}_{g} associated to the function g.

We use the same notations and the same notions as the references. All these elements of the theory of the $(\mathcal{C}, \mathcal{E}, \mathcal{P})$-algebras are now well-known.
2.2. Algebras $\mathcal{A}_{p}(O), p \in \mathbb{N}^{*}$ and $\mathcal{A}(O)$

Take $\mathcal{E}=\mathrm{C}^{\infty}, X=\mathbb{R}^{d}$ for $d=1,2, E=\mathcal{D}^{\prime}$ and Λ a set of indices, $\lambda \in \Lambda$. Take $p \in \mathbb{N}^{*}$. For any open set O in $\mathbb{R}^{d} \mathcal{E}(O)=\mathrm{C}^{\infty}(O)$, is endowed with the $\mathcal{P}_{p}(O)$ topology defined by the family of the seminorms

$$
\begin{aligned}
N_{K, l}^{p}\left(u_{\lambda}\right) & =\sup _{|\alpha| \leq l} N_{K, \alpha}^{p}\left(u_{\lambda}\right), \text { with } \\
N_{K, \alpha}^{p}\left(u_{\lambda}\right) & =\left\|D^{\alpha} u_{\lambda}(x)\right\|_{L^{p}(K)}, K \Subset O
\end{aligned}
$$

and $D^{\alpha}=\frac{\partial^{\alpha_{1}+\ldots+\alpha_{d}}}{\partial z_{1}^{\alpha_{1}} \ldots \partial z_{d}^{\alpha_{d}}}$ for $z=\left(z_{1}, \ldots, z_{d}\right) \in O, l \in \mathbb{N}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$, $K \Subset O$ means that K is a compact subset of O. Let A be a subring of the ring \mathbb{R}^{Λ}. We consider a solid ideal I_{A} of A. Put

$$
\begin{aligned}
& \mathcal{X}_{p}(O)=\left\{\left(u_{\lambda}\right)_{\lambda} \in\left[\mathrm{C}^{\infty}(O)\right]^{\Lambda}: \forall K \Subset O, \forall l \in \mathbb{N},\left(N_{K, l}^{p}\left(u_{\lambda}\right)\right)_{\lambda} \in|A|\right\} \\
& \mathcal{N}_{p}(O)=\left\{\left(u_{\lambda}\right)_{\lambda} \in\left[\mathrm{C}^{\infty}(O)\right]^{\Lambda}: \forall K \Subset O, \forall l \in \mathbb{N},\left(N_{K, l}^{p}\left(u_{\lambda}\right)\right)_{\lambda} \in\left|I_{A}\right|\right\} \\
& \mathcal{A}_{p}(O)=\mathcal{X}_{p}(O) / \mathcal{N}_{p}(O)
\end{aligned}
$$

The generalized derivation $D^{\alpha}: u\left(=\left[u_{\varepsilon}\right]\right) \mapsto D^{\alpha} u=\left[D^{\alpha} u_{\varepsilon}\right]$ provides $\mathcal{A}_{p}(O)$ with a differential algebraic structure.

For $p=+\infty, \mathcal{E}(O)=\mathrm{C}^{\infty}(O)$ is endowed with the $\mathcal{P}(O)$ topology defined by the family of the seminorms

$$
\begin{aligned}
P_{K, l}\left(u_{\lambda}\right) & =\sup _{|\alpha| \leq l} P_{K, \alpha}\left(u_{\lambda}\right), \text { with } \\
P_{K, \alpha}\left(u_{\lambda}\right) & =\left\|D^{\alpha} u_{\lambda}(x)\right\|_{L^{\infty}(K)}, K \Subset O
\end{aligned}
$$

Put

$$
\begin{aligned}
\mathcal{X}(O) & =\left\{\left(u_{\lambda}\right)_{\lambda} \in\left[\mathrm{C}^{\infty}(O)\right]^{\Lambda}: \forall K \Subset O, \forall l \in \mathbb{N},\left(P_{K, l}\left(u_{\lambda}\right)\right)_{\lambda} \in|A|\right\} \\
\mathcal{N}(O) & =\left\{\left(u_{\lambda}\right)_{\lambda} \in\left[\mathrm{C}^{\infty}(O)\right]^{\Lambda}: \forall K \Subset O, \forall l \in \mathbb{N},\left(P_{K, l}\left(u_{\lambda}\right)\right)_{\lambda} \in\left|I_{A}\right|\right\}
\end{aligned}
$$

The generalized derivation $D^{\alpha}: u\left(=\left[u_{\varepsilon}\right]\right) \mapsto D^{\alpha} u=\left[D^{\alpha} u_{\varepsilon}\right]$ provides $\mathcal{A}(O)=$ $\mathcal{X}(O) / \mathcal{N}(O)$ with a differential algebraic structure.
Remark 2.1. The $N_{K, l}^{2}$ norms are bounded by the $P_{K, l}$ norms. We have $\mathcal{A}(O) \subset$ $\mathcal{A}_{2}(O)$.
Remark 2.2. $\mathcal{A}_{p}(O)$ have properties similar to those of $\mathcal{A}(O)$.

2.3. Stochastic analysis

We refer the reader to [11, [12, [10] and (9), for construction of white noise and the relation between the white noise and Wiener process on \mathbb{R}^{d}.

Let (Ω, Σ, μ) be a probability space. A generalized stochastic process on \mathbb{R}^{d} is a weakly measurable map

$$
X: \Omega \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

For any fixed test function $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, the map $\Omega \rightarrow \mathbb{R} ; \omega \mapsto\langle X(\omega), \varphi\rangle$ is a random variable. The space of generalized stochastic processes is denoted by $\mathcal{D}_{\Omega}^{\prime}\left(\mathbb{R}^{d}\right)$.

2.4. Algebras of generalized stochastic processes

Let O be an open set in $\mathbb{R}^{d},(\Omega, \Sigma, \mu)$ a probability space.
Definition 2.3. A mapping $U: \Omega \rightarrow \mathcal{A}(O)$ such that there is a representing function

$$
u=R_{U}: \Lambda \times O \times \Omega \rightarrow \mathbb{R}
$$

with the properties:
(i) for fixed $\lambda \in \Lambda$, the map $(x, \omega) \mapsto u(\lambda, x, \omega)$ is jointly measurable on $O \times \Omega$;
(ii) almost surely in $\omega \in \Omega$, the map $\lambda \mapsto u(\lambda, \cdot, \omega)$ belongs to $\mathcal{X}(O)$ and it is a representative of $U(\omega)$, i.e. almost surely in $\omega \in \Omega,\left(U(\omega)_{\lambda}\right)_{\lambda}=(u(\lambda, \cdot, \omega))_{\lambda} \in$ $\mathcal{X}(O)$, is called a $\mathcal{A}(O)$-generalized stochastic processes on the probability space (Ω, Σ, μ).
The algebra of generalized stochastic processes is denoted by $\mathcal{A}^{\Omega}(O)$.

Definition 2.4. A map $U: \Omega \rightarrow \mathcal{A}_{2}(O)$ such that there is a representing function

$$
u=R_{U}: \Lambda \times O \times \Omega \rightarrow \mathbb{R}
$$

with the properties:
(i) for fixed $\lambda \in \Lambda$, the map $(x, \omega) \mapsto u(\lambda, x, \omega)$ is jointly measurable on $O \times \Omega$;
(ii) almost surely in $\omega \in \Omega$, the map $\lambda \mapsto u(\lambda, \cdot, \omega)$ belongs to $\mathcal{X}_{2}(O)$ and it is a representative of $U(\omega)$, i.e. almost surely in $\omega \in \Omega,\left(U(\omega)_{\lambda}\right)_{\lambda}=(u(\lambda, \cdot, \omega))_{\lambda} \in$ $\mathcal{X}_{2}(O)$, is called a $\mathcal{A}_{2}(0)$-generalized stochastic processes on the probability space (Ω, Σ, μ).
The algebra of generalized stochastic processes is denoted by $\mathcal{A}_{2}^{\Omega}(O)$.
Remark 2.5. Let φ of the form $\varphi(x, y)=\chi(x) \chi(y)$ with $\chi \in \mathcal{D}(\mathbb{R})$ with the property

$$
\int \chi(s) d s=1 ; \int s^{p} \chi(s) d s=0,1 \leq p \leq 2
$$

Let $V \in \mathcal{D}_{\Omega}^{\prime}\left(\mathbb{R}^{d}\right)$ be a generalized stochastic process. If $\lambda \in \Lambda$, then $V(\omega) * \varphi_{\lambda}$ is measurable with respect to $\omega \in \Omega$ and smooth with respect to $x \in \mathbb{R}^{d}$, hence jointly measurable. So, $\left(V(\omega) * \varphi_{\lambda}\right)_{\lambda}$ belongs to $\mathcal{X}\left(\mathbb{R}^{d}\right)$. Then

$$
R_{V}(\lambda, x, \omega)=\left(V(\omega) * \varphi_{\lambda}\right)(x)=V(\omega)_{\lambda}(x)
$$

qualifies as a representative for a random generalized function. Thus we have an imbedding $\tau: \mathcal{D}_{\Omega}^{\prime}\left(\mathbb{R}^{d}\right) \hookrightarrow \mathcal{A}^{\Omega}\left(\mathbb{R}^{d}\right)$.

3. Some nonlinear stochastic problems

3.1. A nonlinear stochastic problem with additive generalized stochastic process

Consider the Cauchy problem formally written:

$$
\begin{equation*}
(P): \frac{\partial U}{\partial t}=F(U)+W,\left.U\right|_{\gamma}=f \tag{1}
\end{equation*}
$$

where γ is a monotonic curve of equation $x=l(t), \gamma$ is not a characteristic curve, $f \in \mathcal{A}^{\Omega}(\mathbb{R})$, $W \in \mathcal{A}^{\Omega}\left(\mathbb{R}^{2}\right)$ is a $\mathcal{A}\left(\mathbb{R}^{2}\right)$-generalized stochastic process on a probability space $(\Omega, \Sigma, \mu) . F$ is smooth, it can be non Lipschitz but F and all derivatives have polynomial growth and $F(0)=0$. We look for a solution $\left(U: \Omega \rightarrow \mathcal{A}_{2}\left(\mathbb{R}^{2}\right)\right) \in \mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$. (For example, $F(U)=-U-U^{2}$ or $F(U)=-U^{2}$.)

Thus U is a solution to problem (P) if and only if for each $\omega \in \Omega, U(\omega)$ is solution to the formally written problem

$$
(P(\omega))\left\{\begin{aligned}
\frac{\partial U(\omega)}{\partial t} & =F(U(\omega))+W(\omega) \\
\left.U(\omega)\right|_{\gamma} & =f(\omega)
\end{aligned}\right.
$$

3.2. A nonlinear stochastic problem with multiplicative generalized stochastic process

Consider the Cauchy problem formally written:

$$
\begin{equation*}
\left(P^{\prime}\right): \frac{\partial U}{\partial t}=F(U) W,\left.U\right|_{\gamma}=f \tag{2}
\end{equation*}
$$

where γ is a monotonic curve of equation $x=l(t), \gamma$ is not a characteristic curve, $f \in \mathcal{A}^{\Omega}(\mathbb{R}), W \in \mathcal{A}^{\Omega}\left(\mathbb{R}^{2}\right)$ is a $\mathcal{A}\left(\mathbb{R}^{2}\right)$-generalized stochastic process on a probability space (Ω, Σ, μ). F is smooth, it can be non Lipschitz, but F and all derivatives have polynomial growth and $F(0)=0$. We look for a solution $\left(U: \Omega \rightarrow \mathcal{A}_{2}\left(\mathbb{R}^{2}\right)\right) \in \mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$. (For example, $\left.F(U)=-U^{2}\right)$.

Thus U is a solution to problem (P) if and only if for each $\omega \in \Omega, U(\omega)$ is solution to the formally written problem

$$
\left.P^{\prime}(\omega)\right)\left\{\begin{aligned}
\frac{\partial U(\omega)}{\partial t} & =F(U(\omega)) W(\omega) \\
\left.U(\omega)\right|_{\gamma} & =f(\omega)
\end{aligned}\right.
$$

3.3. Cut off procedure

Take $\left(r_{\eta}\right)_{\eta}$ be in $\mathbb{R}_{*}^{(0,1]}$ such that $r_{\eta}>0$ and $\lim _{\eta \rightarrow 0} r_{\eta}=+\infty$. Set $E_{\eta}=$ $\left[-r_{\eta}, r_{\eta}\right]$.

Set a family of smooth one-variable functions $\left(h_{\eta}\right)_{\eta}$ such that

$$
\sup _{z \in I_{\eta}}\left|h_{\eta}(z)\right|=1, h_{\eta}(z)=\left\{\begin{array}{c}
0, \text { if }|z| \geq r_{\eta} \tag{3}\\
1, \text { if }-r_{\eta}+1 \leq z \leq r_{\eta}-1
\end{array}\right.
$$

Suppose that $\frac{\partial^{n} h_{\eta}}{\partial z^{n}}$ is bounded on E_{η} for any integer $n, n>0$. Set

$$
\sup _{z \in E_{\eta}}\left|\frac{\partial^{n} h_{\eta}}{\partial z^{n}}(z)\right|=M_{n}
$$

Let $\phi_{\eta}(z)=z h_{\eta}(z)$. We approximate the function F by the family of functions $\left(F_{\eta}\right)_{\eta}$ defined by

$$
F_{\eta}(z)=F\left(\phi_{\eta}(z)\right)=F\left(z h_{\eta}(z)\right) .
$$

Suppose that $F(0)=0 . F$ is smooth, it can be non Lipschitz but F and all derivatives have polynomial growth. More precisely, we assume the existence of $p \in \mathbb{N}$ such that

$$
\forall l \in \mathbb{N}, \exists c_{l}>0, \sup _{z \in \mathbb{R}}\left|D^{l} F(z)\right| \leq c_{l}(1+|z|)^{p}
$$

Then

$$
\forall l \in \mathbb{N}, \exists \mu_{l}>0, \sup _{z \in \mathbb{R} ;|\alpha| \leq l}\left|D^{\alpha} F_{\eta}(z)\right|=\sup _{|z| \leq r_{\eta} ;|\alpha| \leq l}\left|D^{\alpha} F\left(\phi_{\eta}(z)\right)\right| \leq a_{l}\left(1+r_{\eta}\right)^{p} .
$$

Thus, according to [3], [4], $\mathcal{A}(\mathbb{R})$ is stable under the family $\left(F_{\eta}\right)_{\eta}$.

3.4. Construction of $\mathcal{A}\left(\mathbb{R}^{2}\right)$

Take $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ and

$$
W(\omega)_{\varepsilon, \eta}(t, x)=\left(\phi_{\eta}\left(W(\omega) * \varphi_{\varepsilon}\right)\right)(t, x),
$$

φ of the form $\varphi(t, x)=\chi(t) \chi(x), \chi \in \mathcal{D}(\mathbb{R})$ having the property

$$
\int \chi(s) d s=1 ; \int s^{p} \chi(s) d s=0,1 \leq p \leq 2
$$

and $\left(\chi_{\varepsilon}\right)_{\varepsilon}$ being a family of mollifiers such that $\varkappa_{\varepsilon}(x)=\frac{1}{\varepsilon} \chi\left(\frac{x}{\varepsilon}\right)$, thus $\varphi_{\varepsilon}(t, x)=$ $\varkappa_{\varepsilon}(t) \varkappa_{\varepsilon}(x)$. Take $f(\omega)_{\varepsilon}=f(\omega) * \chi_{\varepsilon}$.

We make the following assumptions to generate a convenient $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ algebra adapted to our problem.

$$
\begin{gathered}
\left(H_{1}\right): \exists p>0, \forall n \in \mathbb{N}, \exists a_{n}>0, \sup _{z \in \mathbb{R} ;|\alpha| \leq n}\left|D^{\alpha} F_{\eta}(z)\right| \leq a_{n}\left(1+r_{\eta}\right)^{p} . \\
\left(H_{2}\right): \forall K \Subset \mathbb{R}^{2}, \forall n \in \mathbb{N}, \exists \rho_{n}>0, P_{K, n}\left(W(\omega)_{\varepsilon, \eta}\right) \leq \rho_{n}\left(1+r_{\eta}\right)^{p} .
\end{gathered}
$$

$\left(H_{3}\right)\left\{\begin{array}{l}\mathcal{C}=A / I_{A} \text { is overgenerated by the following elements of } \mathbb{R}_{*}^{(0,1]} \\ (\varepsilon)_{\varepsilon, \eta},(\eta)_{\varepsilon, \eta},\left(r_{\eta}\right)_{\varepsilon, \eta},\left(\exp \left(1+r_{\eta}\right)\right)_{\varepsilon, \eta} .\end{array}\right.$
$\left(H_{4}\right)\left\{\begin{aligned} \mathcal{A}\left(\mathbb{R}^{2}\right) & =\mathcal{X}\left(\mathbb{R}^{2}\right) / \mathcal{N}\left(\mathbb{R}^{2}\right) \text { is built on } \mathcal{C} \text { with } \\ (\mathcal{E}, \mathcal{P}) & =\left(\mathrm{C}^{\infty}\left(\mathbb{R}^{2}\right),\left(P_{K, l}\right)_{K \Subset \mathbb{R}^{2}, l \in \mathbb{N}}\right) .\end{aligned}\right.$

$$
\begin{aligned}
\left(H_{5}\right) \mathcal{A}_{2}\left(\mathbb{R}^{2}\right) & =\mathcal{X}_{2}\left(\mathbb{R}^{2}\right) / \mathcal{N}_{2}\left(\mathbb{R}^{2}\right) \text { is built on } \mathcal{C} \\
\text { with }\left(\mathcal{E}, \mathcal{P}^{\prime}\right) & =\left(\mathrm{C}^{\infty}\left(\mathbb{R}^{2}\right),\left(N_{K, l}^{2}\right)_{K \Subset \mathbb{R}^{2}, l \in \mathbb{N}}\right)
\end{aligned}
$$

3.5. Generalized differential problems associated to the formal ones

We give a meaning to the problems formally written as (P) and $\left(P^{\prime}\right)$.
F_{η} is defined above. Let \mathcal{F} be the generalized operator associated to F via the family $\left(h_{\eta}\right)_{\eta} . \mathcal{R}_{l}$ is the generalized second-size mapping associated with l [5].

3.5.1. Generalized differential problem associated to (P)

For ω fixed, the problem associated to $(P(\omega))$ can be written as the wellformulated problem

$$
\left(P(\omega)_{g e n}\right)\left\{\begin{array}{c}
\frac{\partial U(\omega)}{\partial t}=\mathcal{F}(U(\omega))+\left[W(\omega)_{\varepsilon, \eta}\right] \\
\mathcal{R}_{l}(U(\omega))=\left[f(\omega)_{\varepsilon}\right]
\end{array}\right.
$$

then

$$
\left\{\begin{aligned}
\frac{\partial U(\omega)}{\partial t} & =\left[F_{\eta}(U(\omega))\right]+\left[W(\omega)_{\varepsilon, \eta}\right] \\
\left.U(\omega)\right|_{\gamma} & =\left[f(\omega) * \chi_{\varepsilon}\right]
\end{aligned}\right.
$$

In terms of representatives, and thanks to the stability and restriction hypothesis, if we find $U(\omega)_{\varepsilon, \eta} \in \mathrm{C}^{\infty}\left(\mathbb{R}^{2}\right)$ verifying

$$
\left(P(\omega)_{(\varepsilon, \eta)}\right)\left\{\begin{array}{l}
\frac{\partial U(\omega)_{\varepsilon, \eta}}{\partial t}(t, x)=F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(t, x)\right)+W(\omega)_{\varepsilon, \eta}(t, x) \\
U(\omega)_{\varepsilon, \eta}(t, l(t))=f(\omega)_{\varepsilon}(t)=\left(f(\omega) * \chi_{\varepsilon}\right)(t)
\end{array}\right.
$$

and if we prove that $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{X}_{2}\left(\mathbb{R}^{2}\right)$, thus $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ is a solution of $P(\omega)_{g e n}$.

Let $V(\omega)=\left[V(\omega)_{\varepsilon, \eta}\right]$ be another solution to $P(\omega)_{\text {gen }}$. If $\left(V(\omega)_{\varepsilon, \eta}-U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{N}\left(\mathbb{R}^{2}\right)$ the solution to $P_{g e n}(\omega)$ is unique.
Remark 3.1. Dependence on some regularizing family. The problem $P(\omega)_{\text {gen }}$ itself, so a solution of it, a priori depends on the family of cutoff functions and, in the case of irregular data, on the family of mollifiers 4].
Remark 3.2. $F(U)$ is such that

$$
F(U): \Omega \rightarrow \mathcal{A}\left(\mathbb{R}^{2}\right), \omega \mapsto\left[F_{\eta}\left(U(\omega)_{\varepsilon, \eta}\right)\right]
$$

and

$$
F_{\eta}\left(U(\omega)_{\varepsilon, \eta}\right): \mathbb{R}^{2} \rightarrow \mathbb{R},(t, x) \mapsto F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(t, x)\right)
$$

Moreover

$$
R_{U}=u: \Lambda \times \mathbb{R}^{2} \times \Omega \rightarrow \mathbb{R} ;(\lambda,(t, x), \omega) \mapsto U(\omega)_{\varepsilon, \eta}(t, x)=u(\lambda, t, x, \omega)
$$

with $\lambda=(\varepsilon, \eta)$.

3.5.2. Generalized differential problem associated to $\left(P^{\prime}\right)$

For ω fixed, the problem associated to $\left(P^{\prime}(\omega)\right)$ can be written as the wellformulated problem

$$
\left(P_{g e n}^{\prime}(\omega)\right)\left\{\begin{array}{l}
\frac{\partial U(\omega)}{\partial t^{\prime}}=\mathcal{F}(U(\omega))\left[W(\omega)_{\varepsilon, \eta}\right] \\
\quad \mathcal{R}_{l}(U(\omega))=\left[f(\omega)_{\varepsilon}\right]
\end{array}\right.
$$

then

$$
\left\{\begin{aligned}
\frac{\partial U(\omega)}{\partial t} & =\left[F_{\eta}(U(\omega))\right]\left[W(\omega)_{\varepsilon, \eta}\right] \\
\left.U(\omega)\right|_{\gamma} & =\left[f(\omega) * \chi_{\varepsilon}\right]
\end{aligned}\right.
$$

In terms of representatives, and thanks to the stability and restriction hypothesis, if we find $U(\omega)_{\varepsilon, \eta} \in \mathrm{C}^{\infty}\left(\mathbb{R}^{2}\right)$ verifying

$$
\left(P^{\prime}(\omega)_{(\varepsilon, \eta)}\right)\left\{\begin{aligned}
\frac{\partial U(\omega)_{\varepsilon, \eta}}{\partial t}(t, x) & =F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(t, x)\right) W(\omega)_{\varepsilon, \eta}(t, x) \\
U(\omega)_{\varepsilon, \eta}(t, l(t)) & =f(\omega)_{\varepsilon}(t)=\left(f(\omega) * \chi_{\varepsilon}\right)(t)
\end{aligned}\right.
$$

and if we prove that $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{X}_{2}\left(\mathbb{R}^{2}\right)$, thus $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ is a solution of $\left(P^{\prime}(\omega)_{g e n}\right)$.

3.6. Generalized problems

3.6.1. Solution to the parametrized regular problems

Fix ω, consider the regularized problems $\left(P(\omega)_{(\varepsilon, \eta)}\right)$ and $\left(P^{\prime}(\omega)_{(\varepsilon, \eta)}\right)$.
Under assumptions $\left(H_{1}\right),\left(H_{2}\right)$ and the assumptions

$$
\left(H_{\varepsilon, \eta}\right) \begin{cases}\text { a) } & l \in \mathrm{C}^{\infty}(\mathbb{R}), l^{\prime}>0, l(\mathbb{R})=\mathbb{R} \\ \text { b) } & F_{\eta} \in \mathrm{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\ \text { c) } & f(\omega)_{\varepsilon} \in \mathrm{C}^{\infty}(\mathbb{R})\end{cases}
$$

one can prove that $\left(P(\omega)_{(\varepsilon, \eta)}\right)$ admits a unique smooth solution $U(\omega)_{\varepsilon, \eta}$ such that

$$
U(\omega)_{\varepsilon, \eta}(t, x)=f(\omega)_{\varepsilon}\left(l^{-1}(x)\right)+\int_{l^{-1}(x)}^{t}\left(F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(\zeta, x)\right)+W(\omega)_{\varepsilon, \eta}(\zeta, x)\right) d \zeta
$$

and $\left(P^{\prime}(\omega)_{(\varepsilon, \eta)}\right)$ admits a unique smooth solution $U(\omega)_{\varepsilon, \eta}$ such that

$$
U(\omega)_{\varepsilon, \eta}(t, x)=f(\omega)_{\varepsilon}\left(l^{-1}(x)\right)+\int_{l^{-1}(x)}^{t}\left(F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(\zeta, x)\right) W(\omega)_{\varepsilon, \eta}(\zeta, x)\right) d \zeta
$$

Theorem 3.3. Under assumptions $\left(H_{\varepsilon, \eta}\right),\left(H_{1}\right)$ and $\left(H_{2}\right), \operatorname{problem}\left(P(\omega)_{(\varepsilon, \eta)}\right)$ (resp. $\left.\left(P^{\prime}(\omega)_{(\varepsilon, \eta)}\right)\right)$ has a unique solution, $U(\omega)_{\varepsilon, \eta}$, in $C^{\infty}\left(\mathbb{R}^{2}\right)$.

See [1].

3.6.2. Solution to the problems

Theorem 3.4. Suppose that $U(\omega)_{\varepsilon, \eta}$ is the solution to problem $\left(P(\omega)_{(\varepsilon, \eta)}\right)$ (resp. $\left.\left(P^{\prime}(\omega)_{(\varepsilon, \eta)}\right)\right)$ then problem $\left(P(\omega)_{\text {gen }}\right)$ (resp. $\left.\left(P^{\prime}(\omega)_{g e n}\right)\right)$ has a unique solution $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ in $\mathcal{A}\left(\mathbb{R}^{2}\right)$.
$U(\omega)$ is the solution to $\left(P(\omega)_{(\varepsilon, \eta)}\right)$ (resp. $\left.\left(P^{\prime}(\omega)_{(\varepsilon, \eta)}\right)\right)$ if $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in$ $\mathcal{X}\left(\mathbb{R}^{2}\right)$, that is

$$
\forall K \Subset \mathbb{R}^{2}, \forall l \in \mathbb{N},\left(P_{K, l}\left(U(\omega)_{\varepsilon, \eta}\right)\right)_{\varepsilon, \eta} \in A
$$

The proof follows the same steps as the existence results which can be found in [3], replacing $u_{\varepsilon, \eta}$ by $U(\omega)_{\varepsilon, \eta}$ and $F_{\eta}\left(x, y, u_{\varepsilon, \eta}(x, y)\right)$ by $F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(x, y)\right)+$ $W(\omega)_{\varepsilon, \eta}(x, y)\left(\right.$ resp. $\left.F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(x, y)\right) W(\omega)_{\varepsilon, \eta}(x, y)\right)$. An induction process on the order of the successive derivatives shows that $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta}$ belongs to $\mathcal{X}\left(\mathbb{R}^{2}\right)$. For the uniqueness, the Gronwall lemma is an essential tool.

Theorem 3.5. Suppose that $U(\omega)_{\varepsilon, \eta}$ is the solution to problem $\left(P(\omega)_{(\varepsilon, \eta)}\right)$ (resp. $\left.\left(P^{\prime}(\omega)_{(\varepsilon, \eta)}\right)\right)$ then problem $\left(P(\omega)_{\text {gen }}\right)$ (resp. $\left.\left(P^{\prime}(\omega)_{g e n}\right)\right)$ has a unique solution $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ in $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$.

Proof. $U(\omega)$ is the solution to $\left(P(\omega)_{(\varepsilon, \eta)}\right)$ if $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{X}_{2}\left(\mathbb{R}^{2}\right)$. We must prove that

$$
\forall K \subseteq \mathbb{R}^{2}, \forall l \in \mathbb{N},\left(N_{K, l}^{2}\left(U(\omega)_{\varepsilon, \eta}\right)\right)_{\varepsilon, \eta} \in A
$$

However

$$
\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{L^{2}(K)} \leq(\mu(K))^{1 / 2}\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{L^{\infty}(K)}
$$

and, as $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{X}\left(\mathbb{R}^{2}\right)$, we have $\left(\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{\infty}\right)_{\varepsilon, \eta} \in A$. Then

$$
\left(\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{L^{2}(K)}\right)_{\varepsilon, \eta}=\left(N_{K, l}^{2}\left(U(\omega)_{\varepsilon, \eta}\right)\right)_{\varepsilon, \eta} \in A .
$$

So $U(\omega) \in \mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$ and it is the solution to problem $\left(P(\omega)_{\text {gen }}\right)$ in $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$. Set

$$
U: \Omega \rightarrow \mathcal{A}_{2}\left(\mathbb{R}^{2}\right), \omega \mapsto U(\omega)
$$

Thus $U \in \mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$.
Theorem 3.6. The mapping U is the solution to problem (P) (resp. (P^{\prime})) and it is almost surely unique in $\mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$.

Proof. Since $U(\omega)$ is the unique solution to problem $\left(P(\omega)_{\text {gen }}\right)$ in $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$ then almost surely in $\omega \in \Omega$, the map $\lambda \mapsto R_{U}(\lambda,(\cdot, \cdot), \omega)=U(\omega)_{\lambda},(\lambda=(\varepsilon, \eta))$, belongs to $\mathcal{X}_{2}\left(\mathbb{R}^{2}\right)$ and it is a representative of $U(\omega)$ (i.e. $\left.U(\omega)=\left[U(\omega)_{\lambda}\right]\right)$. For fixed $\lambda=(\varepsilon, \eta) \in \Lambda$, the map

$$
((x, y), \omega) \mapsto R_{U}(\lambda,(x, y), \omega)=U(\omega)_{\lambda}(x, y)=u_{\lambda}((x, y), \omega)
$$

is jointly measurable on $\mathbb{R}^{2} \times \Omega$. Then U is the solution to problem (P) almost surely unique in $\mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$.

3.7. A special case

Consider the Cauchy problem formally written as

$$
\begin{equation*}
(S): \frac{\partial U}{\partial t}=W,\left.U\right|_{\gamma}=f \tag{2}
\end{equation*}
$$

where γ is a monotonic curve of equation $x=l(t), \gamma$ is not a characteristic curve, $f \in \mathcal{A}^{\Omega}(\mathbb{R}), W \in \mathcal{A}^{\Omega}\left(\mathbb{R}^{2}\right)$ is a $\mathcal{A}\left(\mathbb{R}^{2}\right)$-generalized stochastic process on a probability space (Ω, Σ, μ).

This problem coincides with problem (P) for $F=0$ and with problem $\left(P^{\prime}\right)$ for $F=1$. Problem (S) admits a solution $U . U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ in $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$ is defined, with the previous notations, by

$$
U(\omega)_{\varepsilon, \eta}(t, x)=f(\omega)_{\varepsilon}\left(l^{-1}(x)\right)+\int_{l^{-1}(x)}^{t} W(\omega)_{\varepsilon, \eta}(\zeta, x) d \zeta
$$

4. A nonlinear stochastic Cauchy problem with the white noise as data

Consider the Cauchy problems formally written:

$$
\begin{equation*}
\left(P_{1}\right): \frac{\partial U}{\partial t}=F(U),\left.U\right|_{\gamma}=W \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P_{2}\right): \frac{\partial V}{\partial t}=0,\left.V\right|_{\gamma}=W \tag{5}
\end{equation*}
$$

where γ is a monotonic curve of equation $x=l(t), \gamma$ is not a characteristic curve, $W \in \mathcal{A}^{\Omega}(\mathbb{R})$ is the white noise on \mathbb{R}. F is smooth, it can be non Lipschitz but F and all its derivatives have polynomial growth. We look for a solution $\left(U: \Omega \rightarrow \mathcal{A}\left(\mathbb{R}^{2}\right)\right) \in \mathcal{A}^{\Omega}\left(\mathbb{R}^{2}\right)$ and $\left(V: \Omega \rightarrow \mathcal{A}\left(\mathbb{R}^{2}\right)\right) \in \mathcal{A}^{\Omega}\left(\mathbb{R}^{2}\right)$.
U is a solution to problem $\left(P_{1}\right)$ if and only if for every $\omega \in \Omega, U(\omega)$ is a solution to the formal problem

$$
\left(P_{1}(\omega)\right): \frac{\partial U(\omega)}{\partial t}=F(U(\omega)),\left.U(\omega)\right|_{\gamma}=W(\omega)
$$

V is a solution to problem $\left(P_{2}\right)$ if and only if, for any $\omega \in \Omega, V(\omega)$ is a solution to the formally problem

$$
\left(P_{2}(\omega)\right): \frac{\partial V(\omega)}{\partial t}=0,\left.V(\omega)\right|_{\gamma}=W(\omega)
$$

We make the same hypotheses and we take the same spaces $\mathcal{A}\left(\mathbb{R}^{2}\right)$ and $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$ built for problems (P) and $\left(P^{\prime}\right)$.

4.1. A generalized differential problem associated to the formal one

For ω fixed, the problem associated to $\left(P_{1}(\omega)\right)$ can be written as the wellformulated problem

$$
\left(P_{1 g e n}(\omega)\right)\left\{\begin{array}{c}
\frac{\partial U(\omega)}{\partial t}=\mathcal{F}(U(\omega)) \\
\mathcal{R}_{l}(U(\omega))=\left[W(\omega)_{\varepsilon}\right]
\end{array}\right.
$$

then

$$
\left\{\begin{aligned}
\frac{\partial U(\omega)}{\partial t} & =\left[F_{\eta}(U(\omega))\right] \\
\left.U(\omega)\right|_{\gamma} & =\left[W(\omega) * \chi_{\varepsilon}\right]
\end{aligned}\right.
$$

The problem associated to $\left(P_{2}(\omega)\right)$ can be written as the well-formulated problem

$$
\left(P_{2 g e n}(\omega)\right): \frac{\partial V(\omega)}{\partial t}=0, \mathcal{R}_{l}(V(\omega))=\left[W(\omega)_{\varepsilon}\right]
$$

so

$$
\frac{\partial V(\omega)}{\partial t}=0,\left.V(\omega)\right|_{\gamma}=\left[W(\omega) * \chi_{\varepsilon}\right]
$$

In terms of representatives, and thanks to the stability and restriction hypothesis, if we find $U(\omega)_{\varepsilon, \eta} \in \mathrm{C}^{\infty}\left(\mathbb{R}^{2}\right)$ verifying

$$
\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)\left\{\begin{aligned}
\frac{\partial U(\omega)_{\varepsilon, \eta}}{\partial t}(t, x) & =F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(t, x)\right), \\
U(\omega)_{\varepsilon, \eta}(t, l(t)) & =\left(W(\omega) * \chi_{\varepsilon}\right)(t)
\end{aligned}\right.
$$

and if we prove that $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{X}_{2}\left(\mathbb{R}^{2}\right)$, then $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ is a solution of $\left(P_{1}(\omega)_{\text {gen }}\right)$.

As $\frac{\partial V(\omega)}{\partial t}=0$, we have

$$
V(\omega)_{\varepsilon, \eta}(t, x)=W(\omega) * \chi_{\varepsilon}\left(l^{-1}(x)\right)
$$

4.2. Generalized problem

4.2.1. Solution to the parametrized regular problem

For ω fixed consider the family of regularized problems $\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)$. We must prove that $\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)$ has a unique smooth solution under the following assumptions

$$
\begin{gathered}
\left(H_{\varepsilon, \eta}\right) \begin{cases}\text { a) } & l \in \mathrm{C}^{\infty}(\mathbb{R}), l^{\prime}>0, l(\mathbb{R})=\mathbb{R}, \\
\text { b) } & F_{\eta} \in \mathrm{C}^{\infty}(\mathbb{R}, \mathbb{R}), \\
\text { c) } & W(\omega)_{\varepsilon} \in \mathrm{C}^{\infty}(\mathbb{R}) .\end{cases} \\
\left(H_{1}\right): \exists p>0, \forall l \in \mathbb{N}, \exists a_{l}>0, \sup _{z \in \mathbb{R} ;|\alpha| \leq l}\left|D^{\alpha} F_{\eta}(z)\right| \leq a_{l}\left(1+r_{\eta}\right)^{p} .
\end{gathered}
$$

one can prove that $\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)$ admits a unique smooth solution $U(\omega)_{\varepsilon, \eta}$ such that

$$
U(\omega)_{\varepsilon, \eta}(t, x)=\left(W(\omega) * \chi_{\varepsilon}\right)\left(l^{-1}(x)\right)+\int_{l^{-1}(x)}^{t} F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(\zeta, x)\right) d \zeta
$$

Theorem 4.1. Under assumptions $\left(H_{\varepsilon, \eta}\right),\left(H_{1}\right)$, problem $\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)$ has a unique solution, $U(\omega)_{\varepsilon, \eta}$, in $C^{\infty}\left(\mathbb{R}^{2}\right)$.

4.2.2. \quad Solution to $\left(P_{1}\right)$

Theorem 4.2. Suppose that $U(\omega)_{\varepsilon, \eta}$ is the solution to problem $\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)$ then problem $\left(P_{1}(\omega)_{\text {gen }}\right)$ has a unique solution $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ in $\mathcal{A}\left(\mathbb{R}^{2}\right)$.

The proof follows the same steps as the existence results which can be found in [3] (replacing $u_{\varepsilon, \eta}$ by $U(\omega)_{\varepsilon, \eta}$ and $F_{\eta}\left(x, y, u_{\varepsilon, \eta}(x, y)\right)$ by $F_{\eta}\left(U(\omega)_{\varepsilon, \eta}(x, y)\right)$).

Theorem 4.3. Suppose that $U(\omega)_{\varepsilon, \eta}$ is the solution to problem $\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)$ then problem $\left(P_{1}(\omega)_{\text {gen }}\right)$ has a unique solution $U(\omega)=\left[U(\omega)_{\varepsilon, \eta}\right]$ in $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$.

Proof. $U(\omega)$ is the solution to $\left(P_{1}(\omega)_{(\varepsilon, \eta)}\right)$ if $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{X}_{2}\left(\mathbb{R}^{2}\right)$. We must prove that

$$
\forall K \Subset \mathbb{R}^{2}, \forall l \in \mathbb{N},\left(N_{K, l}^{2}\left(U(\omega)_{\varepsilon, \eta}\right)\right)_{\varepsilon, \eta} \in A
$$

However

$$
\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{L^{2}(K)} \leq(\mu(K))^{1 / 2}\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{L^{\infty}(K)}
$$

and, as $\left(U(\omega)_{\varepsilon, \eta}\right)_{\varepsilon, \eta} \in \mathcal{X}\left(\mathbb{R}^{2}\right)$, we have $\left(\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{\infty}\right)_{\varepsilon, \eta} \in A$. Then

$$
\left(\left\|D^{\alpha}\left(U(\omega)_{\varepsilon, \eta}\right)\right\|_{L^{2}(K)}\right)_{\varepsilon, \eta}=\left(N_{K, l}^{2}\left(U(\omega)_{\varepsilon, \eta}\right)\right)_{\varepsilon, \eta} \in A .
$$

Thus $U(\omega) \in \mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$ and it is the solution to problem $\left(P_{1}(\omega)_{\text {gen }}\right)$ in $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$. Set

$$
U: \Omega \rightarrow \mathcal{A}_{2}\left(\mathbb{R}^{2}\right), \omega \mapsto U(\omega)
$$

Thus $U \in \mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$.
Theorem 4.4. The mapping U is the solution to problem $\left(P_{1}\right)$ and it is almost surely unique in $\mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$.

Proof. Since $U(\omega)$ is the unique solution to problem $\left(P_{1}(\omega)_{\text {gen }}\right)$ in $\mathcal{A}_{2}\left(\mathbb{R}^{2}\right)$ thus almost surely in $\omega \in \Omega$, the map $\lambda \mapsto R_{U}(\lambda,(\cdot, \cdot), \omega)=U(\omega)_{\lambda},(\lambda=(\varepsilon, \eta))$, belongs to $\mathcal{X}_{2}\left(\mathbb{R}^{2}\right)$ and it is a representative of $U(\omega)$ (i.e. $\left.U(\omega)=\left[U(\omega)_{\lambda}\right]\right)$. For fixed $\lambda=(\varepsilon, \eta) \in \Lambda$, the map

$$
((x, y), \omega) \mapsto R_{U}(\lambda,(x, y), \omega)=U(\omega)_{\lambda}(x, y)
$$

is jointly measurable on $\mathbb{R}^{2} \times \Omega$. Then U is the solution to problem $\left(P_{1}\right)$ almost surely unique in $\mathcal{A}_{2}^{\Omega}\left(\mathbb{R}^{2}\right)$.

4.3. Limiting behavior of the solution

See [11], 12]. Take $W_{\varepsilon}=\left(W(\omega) * \chi_{\varepsilon}\right)$. We have $E\left(W_{\varepsilon}\right)=0$ and $V\left(W_{\varepsilon}\right)=$ $\sigma_{\varepsilon}^{2}=\left\|\chi_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}$. Then the variance of W_{ε} tends to infinity as ε tends to 0 . That implies

Theorem 4.5. There is a subsequence $\varepsilon_{k} \rightarrow 0$ such that μ-almost surely in $\omega \in \Omega$,

$$
\lim _{k \rightarrow 0}\left|R_{V}\left(\left(\varepsilon_{k}, \eta\right),(t, x), \omega\right)\right|=\lim _{k \rightarrow 0}\left|V(\omega)_{\varepsilon_{k}, \eta}(t, x)\right|=\infty
$$

for almost all $(x, y) \in \mathbb{R}^{2}$.
Proof. See [11] Corollary 1 and [12].
Suppose that $\lim _{|z| \rightarrow \infty} F(z)=L$. Define the function $M: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $M(t, x)=t L$.

Theorem 4.6. Under the assumptions above, every subsequence of $\varepsilon \rightarrow 0$ has a subsequence $\varepsilon_{k} \rightarrow 0$ such that for any compact set $K \Subset \mathbb{R}^{2}$

$$
\lim _{k \rightarrow 0}\left\|R_{U}\left(\left(\varepsilon_{k}, \eta\right),(\cdot, \cdot), \omega\right)-R_{V}\left(\left(\varepsilon_{k}, \eta\right),(\cdot, \cdot), \omega\right)-M\right\|_{L^{1}(K)}=0
$$

μ-almost surely.
That is

$$
\lim _{k \rightarrow 0}\left\|U(\omega)_{\varepsilon_{k}, \eta}-V(\omega)_{\varepsilon_{k}, \eta}-M\right\|_{L^{1}(K)}=0
$$

μ-almost surely.
Proof. Take $\lambda=(\varepsilon, \eta)$. We have

$$
\frac{\partial\left(U(\omega)_{\lambda}-V(\omega)_{\lambda}-M\right)}{\partial t}=\frac{\partial\left(U(\omega)_{\lambda}\right)}{\partial t}-\frac{\partial\left(V(\omega)_{\lambda}+M\right)}{\partial t}
$$

and

$$
\begin{aligned}
& \frac{\partial\left(U(\omega)_{\lambda}\right)}{\partial t}-\frac{\partial\left(V(\omega)_{\lambda}+M\right)}{\partial t} \\
& =F\left(U(\omega)_{\lambda}\right)-L \\
& =\left(F\left(U(\omega)_{\lambda}\right)-F\left(V(\omega)_{\lambda}+M\right)\right)+\left(F\left(V(\omega)_{\lambda}+M\right)-L\right) \\
& =\left(U(\omega)_{\lambda}-V(\omega)_{\lambda}-M\right) \int_{0}^{1} \frac{\partial F}{\partial z}\left(U(\omega)_{\lambda}+\sigma\left(U(\omega)_{\lambda}-V(\omega)_{\lambda}-M\right)\right) d \sigma \\
& +\left(F\left(V(\omega)_{\lambda}+M\right)-L\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& \left\|\frac{\partial\left(U(\omega)_{\lambda}-V(\omega)_{\lambda}-M\right)}{\partial t}\right\|_{L^{1}(K)} \\
& \leq\left\|U(\omega)_{\lambda}-V(\omega)_{\lambda}-M\right\|_{L^{1}(K)}\left\|\frac{\partial F}{\partial z}\right\|_{L^{\infty}(\mathbb{R})}+\left\|F\left(V(\omega)_{\lambda}+M\right)-L\right\|_{L^{1}(K)}
\end{aligned}
$$

By Theorem 4.5 there is a subsequence $\varepsilon_{k} \rightarrow 0$ such that μ-almost surely in $\omega \in \Omega$ almost everywhere $\left((t, x) \in \mathbb{R}^{2}\right), \lim _{k \rightarrow 0}\left|V(\omega)_{\varepsilon_{k}, \eta}(t, x)\right|=\infty$.
As $\lim _{|z| \rightarrow \infty} F(z)=L$, we deduce that

$$
\lim _{k \rightarrow 0}\left\|F\left(V(\omega)_{\lambda}+M\right)-L\right\|_{L^{1}(K)}=0
$$

almost everywhere.
Hence by Lebesgue's theorem and Gronwall's lemma the assertion follows.

Theorem 4.7. Let $V \in \mathcal{D}_{\Omega}^{\prime}\left(\mathbb{R}^{2}\right)$ be the distributional solution to the free equation $\left(P_{2}\right)$. Then the representative $U(\omega)_{\varepsilon, \eta}$ of the generalized solution to the nonlinear problem $\left(P_{1}\right)$ converges to $V+M$ with respect to the strong topology of $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$, in probability as $\varepsilon \rightarrow 0$.

Proof. Let q be one of the defining seminorms of the strong topology of $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$. According to Theorem 4.6, every subsequence of $\varepsilon \rightarrow 0$ has a subsequence $\varepsilon_{k} \rightarrow 0$ such that for any compact set $K \Subset \mathbb{R}^{2}$

$$
q\left(R_{U}\left(\left(\varepsilon_{k}, \eta\right),(\cdot, \cdot), \omega\right)-R_{V}\left(\left(\varepsilon_{k}, \eta\right),(\cdot, \cdot), \omega\right)-M\right) \rightarrow 0
$$

almost surely. This is equivalent to convergence in probability.

References

[1] Delcroix, A., Dévoué, V., and Marti, J.-A. Generalized solutions of singular differential problems. Relationship with classical solutions. J. Math. Anal. Appl. 353, 1 (2009), 386-402.
[2] Delcroix, A., Dévoué, V., and Marti, J.-A. Well-posed problems in algebras of generalized functions. Appl. Anal. 90, 11 (2011), 1747-1761.
[3] DÉvoué, V. Generalized solutions to a non Lipschitz-Cauchy problem. J. Appl. Anal. 15, 1 (2009), 1-32.
[4] Dévoué, V. Generalized solutions to a non-Lipschitz Goursat problem. Differ. Equ. Appl. 1, 2 (2009), 153-178.
[5] DÉvoué, V. Some nonlinear stochastic cauchy problems with stochastic generalized processes. International Journal of Analysis 2016 (2016), 11 pages.
[6] Marti, J.-A. Fundamental structures and asymptotic microlocalization in sheaves of generalized functions. Integral Transform. Spec. Funct. 6, 1-4 (1998), 223-228. Generalized functions-linear and nonlinear problems (Novi Sad, 1996).
[7] Marti, J.-A. ($\mathcal{C}, \mathcal{E}, \mathcal{P})$-sheaf structures and applications. In Nonlinear theory of generalized functions (Vienna, 1997), vol. 401 of Chapman ξ^{3} Hall/CRC Res. Notes Math. Chapman \& Hall/CRC, Boca Raton, FL, 1999, pp. 175-186.
[8] Marti, J.-A. Multiparametric algebras and characteristic cauchy problem. In Non-linear algebraic analysis and applications (2004), Proceeding of the International Conference on Generalized functions (ICGF 2000), Cambridge Sci. Publ. Ltd., Cambridge, pp. 181-192.
[9] Nedeljkov, M., and Rajter, D. Nonlinear stochastic wave equation with Colombeau generalized stochastic processes. Math. Models Methods Appl. Sci. 12, 5 (2002), 665-688.
[10] Nedeljkov, M., and Rajter, D. Nonlinear stochastic wave equation with colombeau stochastic generalized processes. Math. Models Methods Appl. Sci. 12, 5 (2002), 665-688.
[11] Oberguggenberger, M., and Russo, F. Nonlinear stochastic wave equations. In Generalized functions - linear and nonlinear problems (Novi Sad, 1996), vol. 6. 1998, pp. 71-83.
[12] Oberguggenberger, M., and Russo, F. Singular limiting behavior in nonlinear stochastic wave equations. In Stochastic analysis and mathematical physics, vol. 50 of Progr. Probab. Birkhäuser Boston, Boston, MA, 2001, pp. 87-99.

Received by the editors August 10, 2020
First published online December 28, 2020

[^0]: ${ }^{1}$ Laboratoire MEMIAD, Université des Antilles, Campus de Shoelcher, BP 7209, 97275 Schoelcher Cedex, Martinique, e-mail: devoue-vi@orange.fr

