Study of nonlinear stochastic Cauchy problems in $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebras

Victor Dévoué¹

Abstract. We use the framework of the $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebras of J-A. Marti to study some nonlinear stochastic Cauchy problems for a simple equation, namely the transport equation in basic form, with stochastic generalized processes. Until now such studies were made in Colombeau-type algebras.

AMS Mathematics Subject Classification (2010): 35L70, 35R60, 45G10, 46F30, 46T30

Key words and phrases: Generalized functions; non-linear problems; generalized stochastic processes; transport equation; white noise.

1. Introduction

To study some nonlinear stochastic Cauchy problems we reformulate them in the framework of the $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebras of J.-A. Marti [6, 7, 8], [2]. These algebras allow us to treat singular processes in stochastic analysis following the example of Colombeau algebras. In this article we use the notations and concepts of our previous paper, [5].

The plan of this article is as follows. This section is followed by Section 2, which introduces the definitions and properties for stochastic analysis, $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebras and algebras of generalized stochastic processes. We refer the reader to [5] in which we make similar studies.

In Section 3, we examine the following Cauchy problems associated to a simple equation, namely the transport equation in basic form, formally written:

$$(P): \frac{\partial U}{\partial t} = F(U) + W, \ U|_{\gamma} = f,$$

and

$$(P'): \frac{\partial U}{\partial t} = F(U)W, \ U|_{\gamma} = f,$$

with a smooth function F on the right-hand side. F can be non Lipschitz (in U) but F and all its derivatives have polynomial growth. γ is a monotonic curve with the equation x = l(t), γ is not a characteristic curve, f is a generalized stochastic process on \mathbb{R} , W a generalized process on \mathbb{R}^2 . That is, f and W are weakly measurable maps of some probability space (Ω, Σ, μ) with values in the distribution space $\mathcal{D}'(\mathbb{R})$, respectively $\mathcal{D}'(\mathbb{R}^2)$.

For ω fixed, ω in Ω , using regularizations and cutoff techniques, we define a well formulated problem $(P(\omega)_{gen})$ (resp. $(P'(\omega)_{gen})$) associated to problem

¹Laboratoire MEMIAD, Université des Antilles, Campus de Shoelcher, BP 7209, 97275 Schoelcher Cedex, Martinique, e-mail: devoue-vi@orange.fr

(P) (resp. (P')) in a convenient algebra. We must use two parameters. The first parameter is used to regularize the data and the second one to replace the problem by a family of Lipschitz problems. We prove that problem (P) (resp. (P')) has a unique solution in some algebras of generalized stochastic processes.

Section 4, is devoted to a nonlinear stochastic Cauchy problem with the white noise as initial data

$$(P_1): \frac{\partial U}{\partial t} = F(U), U|_{\gamma} = W,$$

where γ is the curve of equation x = l(t), γ is not a characteristic curve, W is the white noise on \mathbb{R} . The function F is smooth, it can be non Lipschitz but F and all derivatives have polynomial growth. We study problem (P_1) as the previous ones and we examine the limiting behavior of the generalized solution.

2. Algebra of generalized stochastic processes

2.1. The presheaves of $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebras

We refer the reader to the references [3], [4], [5], for the definition and the properties of $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebras, the notion of overgenerated rings, the relationship with distribution theory and the association process, the notion of algebra $\mathcal{A}(\Omega)$ stable under the family $(F_{\eta})_{\lambda}$ [2], the definition of the generalized operator \mathcal{F} associated to the family $(F_{\eta})_{\lambda}$, the definition of the generalized second side restriction mapping \mathcal{R}_{g} associated to the function g.

We use the same notations and the same notions as the references. All these elements of the theory of the $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebras are now well-known.

2.2. Algebras $\mathcal{A}_p(O), p \in \mathbb{N}^*$ and $\mathcal{A}(O)$

Take $\mathcal{E} = \mathbb{C}^{\infty}$, $X = \mathbb{R}^d$ for $d = 1, 2, E = \mathcal{D}'$ and Λ a set of indices, $\lambda \in \Lambda$. Take $p \in \mathbb{N}^*$. For any open set O in $\mathbb{R}^d \mathcal{E}(O) = \mathbb{C}^{\infty}(O)$, is endowed with the $\mathcal{P}_p(O)$ topology defined by the family of the seminorms

$$N_{K,l}^p(u_{\lambda}) = \sup_{|\alpha| \le l} N_{K,\alpha}^p(u_{\lambda}), \text{ with}$$
$$N_{K,\alpha}^p(u_{\lambda}) = \|D^{\alpha}u_{\lambda}(x)\|_{L^p(K)}, K \Subset O,$$

and $D^{\alpha} = \frac{\partial^{\alpha_1 + \ldots + \alpha_d}}{\partial z_1^{\alpha_1} \ldots \partial z_d^{\alpha_d}}$ for $z = (z_1, \ldots, z_d) \in O$, $l \in \mathbb{N}$, $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d$, $K \in O$ means that K is a compact subset of O. Let A be a subring of the ring \mathbb{R}^{Λ} . We consider a solid ideal I_A of A. Put

$$\mathcal{X}_{p}(O) = \{(u_{\lambda})_{\lambda} \in [\mathbb{C}^{\infty}(O)]^{\Lambda} : \forall K \Subset O, \forall l \in \mathbb{N}, \ \left(N_{K,l}^{p}(u_{\lambda})\right)_{\lambda} \in |A|\},\$$
$$\mathcal{N}_{p}(O) = \{(u_{\lambda})_{\lambda} \in [\mathbb{C}^{\infty}(O)]^{\Lambda} : \forall K \Subset O, \forall l \in \mathbb{N}, \ \left(N_{K,l}^{p}(u_{\lambda})\right)_{\lambda} \in |I_{A}|\},\$$
$$\mathcal{A}_{p}(O) = \mathcal{X}_{p}(O)/\mathcal{N}_{p}(O).$$

The generalized derivation $D^{\alpha} : u(=[u_{\varepsilon}]) \mapsto D^{\alpha}u = [D^{\alpha}u_{\varepsilon}]$ provides $\mathcal{A}_p(O)$ with a differential algebraic structure.

For $p = +\infty$, $\mathcal{E}(O) = C^{\infty}(O)$ is endowed with the $\mathcal{P}(O)$ topology defined by the family of the seminorms

$$P_{K,l}(u_{\lambda}) = \sup_{|\alpha| \le l} P_{K,\alpha}(u_{\lambda}), \text{ with}$$
$$P_{K,\alpha}(u_{\lambda}) = \|D^{\alpha}u_{\lambda}(x)\|_{L^{\infty}(K)}, \ K \Subset O$$

Put

$$\mathcal{X}(O) = \{ (u_{\lambda})_{\lambda} \in [\mathbb{C}^{\infty}(O)]^{\Lambda} : \forall K \Subset O, \forall l \in \mathbb{N}, \ (P_{K,l}(u_{\lambda}))_{\lambda} \in |A| \}, \\ \mathcal{N}(O) = \{ (u_{\lambda})_{\lambda} \in [\mathbb{C}^{\infty}(O)]^{\Lambda} : \forall K \Subset O, \forall l \in \mathbb{N}, \ (P_{K,l}(u_{\lambda}))_{\lambda} \in |I_{A}| \}.$$

The generalized derivation $D^{\alpha} : u(=[u_{\varepsilon}]) \mapsto D^{\alpha}u = [D^{\alpha}u_{\varepsilon}]$ provides $\mathcal{A}(O) = \mathcal{X}(O)/\mathcal{N}(O)$ with a differential algebraic structure.

Remark 2.1. The $N_{K,l}^2$ norms are bounded by the $P_{K,l}$ norms. We have $\mathcal{A}(O) \subset \mathcal{A}_2(O)$.

Remark 2.2. $\mathcal{A}_p(O)$ have properties similar to those of $\mathcal{A}(O)$.

2.3. Stochastic analysis

We refer the reader to [11], [12], [10] and [9], for construction of white noise and the relation between the white noise and Wiener process on \mathbb{R}^d .

Let (Ω, Σ, μ) be a probability space. A generalized stochastic process on \mathbb{R}^d is a weakly measurable map

$$X:\Omega\to\mathcal{D}'\left(\mathbb{R}^d\right)$$

For any fixed test function $\varphi \in \mathcal{D}(\mathbb{R}^d)$, the map $\Omega \to \mathbb{R}$; $\omega \mapsto \langle X(\omega), \varphi \rangle$ is a random variable. The space of generalized stochastic processes is denoted by $\mathcal{D}'_{\Omega}(\mathbb{R}^d)$.

2.4. Algebras of generalized stochastic processes

Let O be an open set in \mathbb{R}^d , (Ω, Σ, μ) a probability space.

Definition 2.3. A mapping $U : \Omega \to \mathcal{A}(O)$ such that there is a representing function

$$u = R_U : \Lambda \times O \times \Omega \to \mathbb{R}$$

with the properties:

(i) for fixed $\lambda \in \Lambda$, the map $(x, \omega) \mapsto u(\lambda, x, \omega)$ is jointly measurable on $O \times \Omega$; (ii) almost surely in $\omega \in \Omega$, the map $\lambda \mapsto u(\lambda, \cdot, \omega)$ belongs to $\mathcal{X}(O)$ and it is a representative of $U(\omega)$, i.e. almost surely in $\omega \in \Omega$, $(U(\omega)_{\lambda})_{\lambda} = (u(\lambda, \cdot, \omega))_{\lambda} \in \mathcal{X}(O)$, is called a $\mathcal{A}(O)$ -generalized stochastic processes on the probability space (Ω, Σ, μ) .

The algebra of generalized stochastic processes is denoted by $\mathcal{A}^{\Omega}(O)$.

Definition 2.4. A map $U: \Omega \to \mathcal{A}_2(O)$ such that there is a representing function

$$u = R_U : \Lambda \times O \times \Omega \to \mathbb{R}$$

with the properties:

(i) for fixed $\lambda \in \Lambda$, the map $(x, \omega) \mapsto u(\lambda, x, \omega)$ is jointly measurable on $O \times \Omega$; (ii) almost surely in $\omega \in \Omega$, the map $\lambda \mapsto u(\lambda, \cdot, \omega)$ belongs to $\mathcal{X}_2(O)$ and it is a representative of $U(\omega)$, i.e. almost surely in $\omega \in \Omega$, $(U(\omega)_{\lambda})_{\lambda} = (u(\lambda, \cdot, \omega))_{\lambda} \in \mathcal{X}_2(O)$, is called a $\mathcal{A}_2(0)$ -generalized stochastic processes on the probability space (Ω, Σ, μ) .

The algebra of generalized stochastic processes is denoted by $\mathcal{A}_2^{\Omega}(O)$.

Remark 2.5. Let φ of the form $\varphi(x, y) = \chi(x)\chi(y)$ with $\chi \in \mathcal{D}(\mathbb{R})$ with the property

$$\int \chi(s)ds = 1; \int s^p \chi(s)ds = 0, 1 \le p \le 2.$$

Let $V \in \mathcal{D}'_{\Omega}(\mathbb{R}^d)$ be a generalized stochastic process. If $\lambda \in \Lambda$, then $V(\omega) * \varphi_{\lambda}$ is measurable with respect to $\omega \in \Omega$ and smooth with respect to $x \in \mathbb{R}^d$, hence jointly measurable. So, $(V(\omega) * \varphi_{\lambda})_{\lambda}$ belongs to $\mathcal{X}(\mathbb{R}^d)$. Then

$$R_V(\lambda, x, \omega) = (V(\omega) * \varphi_\lambda)(x) = V(\omega)_\lambda(x)$$

qualifies as a representative for a random generalized function. Thus we have an imbedding $\tau : \mathcal{D}'_{\Omega}(\mathbb{R}^d) \hookrightarrow \mathcal{A}^{\Omega}(\mathbb{R}^d)$.

3. Some nonlinear stochastic problems

3.1. A nonlinear stochastic problem with additive generalized stochastic process

Consider the Cauchy problem formally written:

(1)
$$(P): \frac{\partial U}{\partial t} = F(U) + W, \ U|_{\gamma} = f,$$

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic curve, $f \in \mathcal{A}^{\Omega}(\mathbb{R})$, $W \in \mathcal{A}^{\Omega}(\mathbb{R}^2)$ is a $\mathcal{A}(\mathbb{R}^2)$ -generalized stochastic process on a probability space (Ω, Σ, μ) . F is smooth, it can be non Lipschitz but F and all derivatives have polynomial growth and F(0) = 0. We look for a solution $(U: \Omega \to \mathcal{A}_2(\mathbb{R}^2)) \in \mathcal{A}_2^{\Omega}(\mathbb{R}^2)$. (For example, $F(U) = -U - U^2$ or $F(U) = -U^2$.)

Thus U is a solution to problem (P) if and only if for each $\omega \in \Omega$, $U(\omega)$ is solution to the formally written problem

$$(P(\omega)) \begin{cases} \frac{\partial U(\omega)}{\partial t} = F(U(\omega)) + W(\omega), \\ U(\omega)|_{\gamma} = f(\omega). \end{cases}$$

3.2. A nonlinear stochastic problem with multiplicative generalized stochastic process

Consider the Cauchy problem formally written:

(2)
$$(P'): \frac{\partial U}{\partial t} = F(U)W, U|_{\gamma} = f,$$

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic curve, $f \in \mathcal{A}^{\Omega}(\mathbb{R})$, $W \in \mathcal{A}^{\Omega}(\mathbb{R}^2)$ is a $\mathcal{A}(\mathbb{R}^2)$ -generalized stochastic process on a probability space (Ω, Σ, μ) . F is smooth, it can be non Lipschitz, but F and all derivatives have polynomial growth and F(0) = 0. We look for a solution $(U: \Omega \to \mathcal{A}_2(\mathbb{R}^2)) \in \mathcal{A}_2^{\Omega}(\mathbb{R}^2)$. (For example, $F(U) = -U^2$).

Thus U is a solution to problem (P) if and only if for each $\omega \in \Omega$, $U(\omega)$ is solution to the formally written problem

$$P'(\omega)) \begin{cases} \frac{\partial U(\omega)}{\partial t} = F(U(\omega))W(\omega), \\ U(\omega)|_{\gamma} = f(\omega). \end{cases}$$

3.3. Cut off procedure

Take $(r_{\eta})_{\eta}$ be in $\mathbb{R}^{(0,1]}_{*}$ such that $r_{\eta} > 0$ and $\lim_{\eta \to 0} r_{\eta} = +\infty$. Set $E_{\eta} = [-r_{\eta}, r_{\eta}]$.

Set a family of smooth one-variable functions $(h_{\eta})_{\eta}$ such that

(3)
$$\sup_{z \in I_{\eta}} |h_{\eta}(z)| = 1, \ h_{\eta}(z) = \begin{cases} 0, \text{ if } |z| \ge r_{\eta} \\ 1, \text{ if } -r_{\eta} + 1 \le z \le r_{\eta} - 1 \end{cases}$$

Suppose that $\frac{\partial^n h_{\eta}}{\partial z^n}$ is bounded on E_{η} for any integer n, n > 0. Set

$$\sup_{z \in E_{\eta}} \left| \frac{\partial^n h_{\eta}}{\partial z^n}(z) \right| = M_n.$$

Let $\phi_{\eta}(z) = zh_{\eta}(z)$. We approximate the function F by the family of functions $(F_{\eta})_{\eta}$ defined by

$$F_{\eta}(z) = F(\phi_{\eta}(z)) = F(zh_{\eta}(z))$$

Suppose that F(0) = 0. F is smooth, it can be non Lipschitz but F and all derivatives have polynomial growth. More precisely, we assume the existence of $p \in \mathbb{N}$ such that

$$\forall l \in \mathbb{N}, \exists c_l > 0, \sup_{z \in \mathbb{R}} \left| D^l F(z) \right| \le c_l (1 + |z|)^p.$$

Then

$$\forall l \in \mathbb{N}, \exists \mu_l > 0, \sup_{z \in \mathbb{R}; |\alpha| \le l} |D^{\alpha} F_{\eta}(z)| = \sup_{|z| \le r_{\eta}; |\alpha| \le l} |D^{\alpha} F(\phi_{\eta}(z))| \le a_l (1+r_{\eta})^p.$$

Thus, according to [3], [4], $\mathcal{A}(\mathbb{R})$ is stable under the family $(F_{\eta})_{\eta}$.

3.4. Construction of $\mathcal{A}(\mathbb{R}^2)$

Take $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ and

$$W(\omega)_{\varepsilon,\eta}(t,x) = \left(\phi_{\eta}(W(\omega) * \varphi_{\varepsilon})\right)(t,x),$$

 φ of the form $\varphi(t, x) = \chi(t)\chi(x), \ \chi \in \mathcal{D}(\mathbb{R})$ having the property

$$\int \chi(s)ds = 1; \int s^p \chi(s)ds = 0, 1 \le p \le 2$$

and $(\chi_{\varepsilon})_{\varepsilon}$ being a family of mollifiers such that $\varkappa_{\varepsilon}(x) = \frac{1}{\varepsilon}\chi(\frac{x}{\varepsilon})$, thus $\varphi_{\varepsilon}(t,x) = \varkappa_{\varepsilon}(t)\varkappa_{\varepsilon}(x)$. Take $f(\omega)_{\varepsilon} = f(\omega) * \chi_{\varepsilon}$.

We make the following assumptions to generate a convenient $(\mathcal{C}, \mathcal{E}, \mathcal{P})$ -algebra adapted to our problem.

$$(H_1): \exists p > 0, \forall n \in \mathbb{N}, \exists a_n > 0, \sup_{z \in \mathbb{R}; |\alpha| \le n} |D^{\alpha} F_{\eta}(z)| \le a_n (1 + r_{\eta})^p.$$

$$(H_2): \forall K \Subset \mathbb{R}^2, \forall n \in \mathbb{N}, \exists \rho_n > 0, P_{K,n}(W(\omega)_{\varepsilon,\eta}) \le \rho_n (1 + r_\eta)^p$$

$$(H_3) \begin{cases} \mathcal{C} = A/I_A \text{ is overgenerated by the following elements of } \mathbb{R}^{(0,1]}_{*} \\ (\varepsilon)_{\varepsilon,\eta}, (\eta)_{\varepsilon,\eta}, (r_{\eta})_{\varepsilon,\eta}, (\exp(1+r_{\eta}))_{\varepsilon,\eta}. \end{cases}$$
$$(H_4) \begin{cases} \mathcal{A}\left(\mathbb{R}^2\right) = \mathcal{X}(\mathbb{R}^2)/\mathcal{N}(\mathbb{R}^2) \text{ is built on } \mathcal{C} \text{ with} \\ (\mathcal{E}, \mathcal{P}) = \left(\mathbb{C}^{\infty}(\mathbb{R}^2), (P_{K,l})_{K \in \mathbb{R}^2, l \in \mathbb{N}}\right). \end{cases}$$

$$(H_5) \mathcal{A}_2 \left(\mathbb{R}^2 \right) = \mathcal{X}_2(\mathbb{R}^2) / \mathcal{N}_2(\mathbb{R}^2) \text{ is built on } \mathcal{C}$$

with $(\mathcal{E}, \mathcal{P}') = \left(C^{\infty}(\mathbb{R}^2), \left(N_{K,l}^2 \right)_{K \Subset \mathbb{R}^2, l \in \mathbb{N}} \right).$

3.5. Generalized differential problems associated to the formal ones

We give a meaning to the problems formally written as (P) and (P').

 F_{η} is defined above. Let \mathcal{F} be the generalized operator associated to F via the family $(h_{\eta})_{\eta}$. \mathcal{R}_{l} is the generalized second-size mapping associated with l [5].

3.5.1. Generalized differential problem associated to (P)

For ω fixed, the problem associated to $(P(\omega))$ can be written as the well-formulated problem

$$(P(\omega)_{gen}) \left\{ \begin{array}{l} \frac{\partial U(\omega)}{\partial t} = \mathcal{F}(U(\omega)) + [W(\omega)_{\varepsilon,\eta}], \\ \mathcal{R}_l\left(U(\omega)\right) = [f\left(\omega\right)_{\varepsilon}], \end{array} \right.$$

then

$$\begin{cases} \frac{\partial U(\omega)}{\partial t} = [F_{\eta}(U(\omega))] + [W(\omega)_{\varepsilon,\eta}], \\ U(\omega)|_{\gamma} = [f(\omega) * \chi_{\varepsilon}]. \end{cases}$$

In terms of representatives, and thanks to the stability and restriction hypothesis, if we find $U(\omega)_{\varepsilon,\eta} \in \mathbb{C}^{\infty}(\mathbb{R}^2)$ verifying

$$(P(\omega)_{(\varepsilon,\eta)}) \left\{ \begin{array}{l} \frac{\partial U(\omega)_{\varepsilon,\eta}}{\partial t}(t,x) = F_{\eta}(U(\omega)_{\varepsilon,\eta}(t,x)) + W(\omega)_{\varepsilon,\eta}(t,x), \\ U(\omega)_{\varepsilon,\eta}(t,l(t)) = f(\omega)_{\varepsilon}(t) = (f(\omega) * \chi_{\varepsilon})(t), \end{array} \right.$$

and if we prove that $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{X}_2(\mathbb{R}^2)$, thus $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ is a solution of $P(\omega)_{gen}$.

Let $V(\omega) = [V(\omega)_{\varepsilon,\eta}]$ be another solution to $P(\omega)_{gen}$. If $(V(\omega)_{\varepsilon,\eta} - U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{N}(\mathbb{R}^2)$ the solution to $P_{gen}(\omega)$ is unique.

Remark 3.1. Dependence on some regularizing family. The problem $P(\omega)_{gen}$ itself, so a solution of it, a priori depends on the family of cutoff functions and, in the case of irregular data, on the family of mollifiers [4].

Remark 3.2. F(U) is such that

$$F(U): \Omega \to \mathcal{A}(\mathbb{R}^2), \ \omega \mapsto [F_{\eta}(U(\omega)_{\varepsilon,\eta})]$$

and

$$F_{\eta}(U(\omega)_{\varepsilon,\eta}): \mathbb{R}^2 \to \mathbb{R}, \ (t,x) \mapsto F_{\eta}(U(\omega)_{\varepsilon,\eta}(t,x))$$

Moreover

$$R_U = u : \Lambda \times \mathbb{R}^2 \times \Omega \to \mathbb{R}; (\lambda, (t, x), \omega) \mapsto U(\omega)_{\varepsilon, \eta}(t, x) = u(\lambda, t, x, \omega),$$

with $\lambda = (\varepsilon, \eta)$.

3.5.2. Generalized differential problem associated to (P')

For ω fixed, the problem associated to $(P'(\omega))$ can be written as the well-formulated problem

$$(P'_{gen}(\omega)) \begin{cases} \frac{\partial U(\omega)}{\partial t} = \mathcal{F}(U(\omega)) \left[W(\omega)_{\varepsilon,\eta} \right], \\ \mathcal{R}_l \left(U(\omega) \right) = \left[f(\omega)_{\varepsilon} \right], \end{cases}$$

then

$$\begin{cases} \frac{\partial U(\omega)}{\partial t} = [F_{\eta}(U(\omega))] [W(\omega)_{\varepsilon,\eta}], \\ U(\omega)|_{\gamma} = [f(\omega) * \chi_{\varepsilon}]. \end{cases}$$

In terms of representatives, and thanks to the stability and restriction hypothesis, if we find $U(\omega)_{\varepsilon,\eta} \in \mathbb{C}^{\infty}(\mathbb{R}^2)$ verifying

$$(P'(\omega)_{(\varepsilon,\eta)}) \begin{cases} \frac{\partial U(\omega)_{\varepsilon,\eta}}{\partial t}(t,x) = F_{\eta}(U(\omega)_{\varepsilon,\eta}(t,x))W(\omega)_{\varepsilon,\eta}(t,x), \\ U(\omega)_{\varepsilon,\eta}(t,l(t)) = f(\omega)_{\varepsilon}(t) = (f(\omega) * \chi_{\varepsilon})(t), \end{cases}$$

and if we prove that $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{X}_2(\mathbb{R}^2)$, thus $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ is a solution of $(P'(\omega)_{gen})$.

3.6. Generalized problems

3.6.1. Solution to the parametrized regular problems

Fix ω , consider the regularized problems $(P(\omega)_{(\varepsilon,\eta)})$ and $(P'(\omega)_{(\varepsilon,\eta)})$. Under assumptions (H_1) , (H_2) and the assumptions

$$(H_{\varepsilon,\eta}) \begin{cases} a) & l \in \mathcal{C}^{\infty}(\mathbb{R}), \, l' > 0, \, l(\mathbb{R}) = \mathbb{R}, \\ b) & F_{\eta} \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}), \\ c) & f(\omega)_{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R}), \end{cases}$$

one can prove that $(P(\omega)_{(\varepsilon,\eta)})$ admits a unique smooth solution $U(\omega)_{\varepsilon,\eta}$ such that

$$U(\omega)_{\varepsilon,\eta}(t,x) = f(\omega)_{\varepsilon} (l^{-1}(x)) + \int_{l^{-1}(x)}^{t} \left(F_{\eta}(U(\omega)_{\varepsilon,\eta}(\zeta,x)) + W(\omega)_{\varepsilon,\eta}(\zeta,x)\right) d\zeta$$

and $(P'(\omega)_{(\varepsilon,\eta)})$ admits a unique smooth solution $U(\omega)_{\varepsilon,\eta}$ such that

$$U(\omega)_{\varepsilon,\eta}(t,x) = f(\omega)_{\varepsilon} (l^{-1}(x)) + \int_{l^{-1}(x)}^{t} (F_{\eta}(U(\omega)_{\varepsilon,\eta}(\zeta,x))W(\omega)_{\varepsilon,\eta}(\zeta,x)) d\zeta,$$

Theorem 3.3. Under assumptions $(H_{\varepsilon,\eta})$, (H_1) and (H_2) , problem $(P(\omega)_{(\varepsilon,\eta)})$ (resp. $(P'(\omega)_{(\varepsilon,\eta)})$)has a unique solution, $U(\omega)_{\varepsilon,\eta}$, in $C^{\infty}(\mathbb{R}^2)$.

See [1].

3.6.2. Solution to the problems

Theorem 3.4. Suppose that $U(\omega)_{\varepsilon,\eta}$ is the solution to problem $(P(\omega)_{(\varepsilon,\eta)})$ (resp. $(P'(\omega)_{(\varepsilon,\eta)})$) then problem $(P(\omega)_{gen})$ (resp. $(P'(\omega)_{gen})$) has a unique solution $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ in $\mathcal{A}(\mathbb{R}^2)$.

 $U(\omega)$ is the solution to $(P(\omega)_{(\varepsilon,\eta)})$ (resp. $(P'(\omega)_{(\varepsilon,\eta)}))$ if $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{X}(\mathbb{R}^2)$, that is

$$\forall K \Subset \mathbb{R}^2, \forall l \in \mathbb{N}, (P_{K,l}(U(\omega)_{\varepsilon,\eta}))_{\varepsilon,\eta} \in A.$$

The proof follows the same steps as the existence results which can be found in [3], replacing $u_{\varepsilon,\eta}$ by $U(\omega)_{\varepsilon,\eta}$ and $F_{\eta}(x, y, u_{\varepsilon,\eta}(x, y))$ by $F_{\eta}(U(\omega)_{\varepsilon,\eta}(x, y)) +$ $W(\omega)_{\varepsilon,\eta}(x, y)$ (resp. $F_{\eta}(U(\omega)_{\varepsilon,\eta}(x, y))W(\omega)_{\varepsilon,\eta}(x, y))$). An induction process on the order of the successive derivatives shows that $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta}$ belongs to $\mathcal{X}(\mathbb{R}^2)$. For the uniqueness, the Gronwall lemma is an essential tool.

Theorem 3.5. Suppose that $U(\omega)_{\varepsilon,\eta}$ is the solution to problem $(P(\omega)_{(\varepsilon,\eta)})$ (resp. $(P'(\omega)_{(\varepsilon,\eta)})$) then problem $(P(\omega)_{gen})$ (resp. $(P'(\omega)_{gen})$) has a unique solution $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ in $\mathcal{A}_2(\mathbb{R}^2)$. *Proof.* $U(\omega)$ is the solution to $(P(\omega)_{(\varepsilon,\eta)})$ if $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{X}_2(\mathbb{R}^2)$. We must prove that

$$\forall K \Subset \mathbb{R}^2, \forall l \in \mathbb{N}, \left(N_{K,l}^2(U(\omega)_{\varepsilon,\eta})\right)_{\varepsilon,\eta} \in A.$$

However

$$\left\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\right\|_{L^{2}(K)} \leq \left(\mu\left(K\right)\right)^{1/2} \left\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\right\|_{L^{\infty}(K)}$$

and, as $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{X}(\mathbb{R}^2)$, we have $\left(\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\|_{\infty}\right)_{\varepsilon,\eta} \in A$. Then

$$\left(\left\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\right\|_{L^{2}(K)}\right)_{\varepsilon,\eta} = \left(N^{2}_{K,l}(U(\omega)_{\varepsilon,\eta})\right)_{\varepsilon,\eta} \in A.$$

So $U(\omega) \in \mathcal{A}_2(\mathbb{R}^2)$ and it is the solution to problem $(P(\omega)_{gen})$ in $\mathcal{A}_2(\mathbb{R}^2)$. Set

$$U: \Omega \to \mathcal{A}_2(\mathbb{R}^2), \omega \mapsto U(\omega).$$

Thus $U \in \mathcal{A}_2^{\Omega}(\mathbb{R}^2)$.

Theorem 3.6. The mapping U is the solution to problem (P) (resp. (P')) and it is almost surely unique in $\mathcal{A}_2^{\Omega}(\mathbb{R}^2)$.

Proof. Since $U(\omega)$ is the unique solution to problem $(P(\omega)_{gen})$ in $\mathcal{A}_2(\mathbb{R}^2)$ then almost surely in $\omega \in \Omega$, the map $\lambda \mapsto R_U(\lambda, (\cdot, \cdot), \omega) = U(\omega)_\lambda$, $(\lambda = (\varepsilon, \eta))$, belongs to $\mathcal{X}_2(\mathbb{R}^2)$ and it is a representative of $U(\omega)$ (i.e. $U(\omega) = [U(\omega)_\lambda]$). For fixed $\lambda = (\varepsilon, \eta) \in \Lambda$, the map

$$((x, y), \omega) \mapsto R_U(\lambda, (x, y), \omega) = U(\omega)_\lambda(x, y) = u_\lambda((x, y), \omega)$$

is jointly measurable on $\mathbb{R}^2 \times \Omega$. Then U is the solution to problem (P) almost surely unique in $\mathcal{A}_2^{\Omega}(\mathbb{R}^2)$.

3.7. A special case

Consider the Cauchy problem formally written as

(2)
$$(S): \frac{\partial U}{\partial t} = W, U|_{\gamma} = f,$$

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic curve, $f \in \mathcal{A}^{\Omega}(\mathbb{R})$, $W \in \mathcal{A}^{\Omega}(\mathbb{R}^2)$ is a $\mathcal{A}(\mathbb{R}^2)$ -generalized stochastic process on a probability space (Ω, Σ, μ) .

This problem coincides with problem (P) for F = 0 and with problem (P') for F = 1. Problem (S) admits a solution U. $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ in $\mathcal{A}_2(\mathbb{R}^2)$ is defined, with the previous notations, by

$$U(\omega)_{\varepsilon,\eta}(t,x) = f(\omega)_{\varepsilon} (l^{-1}(x)) + \int_{l^{-1}(x)}^{t} W(\omega)_{\varepsilon,\eta}(\zeta,x) d\zeta$$

4. A nonlinear stochastic Cauchy problem with the white noise as data

Consider the Cauchy problems formally written:

(4)
$$(P_1): \frac{\partial U}{\partial t} = F(U), U|_{\gamma} = W,$$

and

(5)
$$(P_2): \frac{\partial V}{\partial t} = 0, V|_{\gamma} = W,$$

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic curve, $W \in \mathcal{A}^{\Omega}(\mathbb{R})$ is the white noise on \mathbb{R} . F is smooth, it can be non Lipschitz but F and all its derivatives have polynomial growth. We look for a solution $(U: \Omega \to \mathcal{A}(\mathbb{R}^2)) \in \mathcal{A}^{\Omega}(\mathbb{R}^2)$ and $(V: \Omega \to \mathcal{A}(\mathbb{R}^2)) \in \mathcal{A}^{\Omega}(\mathbb{R}^2)$.

U is a solution to problem (P_1) if and only if for every $\omega \in \Omega$, $U(\omega)$ is a solution to the formal problem

$$(P_1(\omega)): \frac{\partial U(\omega)}{\partial t} = F(U(\omega)), U(\omega)|_{\gamma} = W(\omega).$$

V is a solution to problem (P_2) if and only if, for any $\omega \in \Omega$, $V(\omega)$ is a solution to the formally problem

$$(P_2(\omega)): \frac{\partial V(\omega)}{\partial t} = 0, V(\omega)|_{\gamma} = W(\omega).$$

We make the same hypotheses and we take the same spaces $\mathcal{A}(\mathbb{R}^2)$ and $\mathcal{A}_2(\mathbb{R}^2)$ built for problems (P) and (P').

4.1. A generalized differential problem associated to the formal one

For ω fixed, the problem associated to $(P_1(\omega))$ can be written as the well-formulated problem

$$(P_{1gen}(\omega)) \begin{cases} \frac{\partial U(\omega)}{\partial t} = \mathcal{F}(U(\omega)), \\ \mathcal{R}_l(U(\omega)) = [W(\omega)_{\varepsilon}], \end{cases}$$

then

$$\left\{ \begin{array}{l} \frac{\partial U(\omega)}{\partial t} = \left[F_{\eta}(U(\omega))\right], \\ U(\omega)|_{\gamma} = \left[W\left(\omega\right) * \chi_{\varepsilon}\right]. \end{array} \right.$$

The problem associated to $(P_2(\omega))$ can be written as the well-formulated problem

$$(P_{2gen}(\omega)): \frac{\partial V(\omega)}{\partial t} = 0, \mathcal{R}_l(V(\omega)) = [W(\omega)_{\varepsilon}],$$

 \mathbf{SO}

$$\frac{\partial V(\omega)}{\partial t} = 0, V(\omega)|_{\gamma} = \left[W(\omega) * \chi_{\varepsilon}\right].$$

In terms of representatives, and thanks to the stability and restriction hypothesis, if we find $U(\omega)_{\varepsilon,\eta} \in \mathbb{C}^{\infty}(\mathbb{R}^2)$ verifying

$$(P_1(\omega)_{(\varepsilon,\eta)}) \begin{cases} \frac{\partial U(\omega)_{\varepsilon,\eta}}{\partial t}(t,x) = F_{\eta}(U(\omega)_{\varepsilon,\eta}(t,x)), \\ U(\omega)_{\varepsilon,\eta}(t,l(t)) = (W(\omega) * \chi_{\varepsilon})(t) \end{cases}$$

and if we prove that $\left(U(\omega)_{\varepsilon,\eta}\right)_{\varepsilon,\eta} \in \mathcal{X}_2(\mathbb{R}^2)$, then $U(\omega) = \left[U(\omega)_{\varepsilon,\eta}\right]$ is a solution of $(P_1(\omega)_{gen})$.

As $\frac{\partial V(\omega)}{\partial t} = 0$, we have

$$V(\omega)_{\varepsilon,\eta}(t,x) = W(\omega) * \chi_{\varepsilon}(l^{-1}(x))$$

4.2. Generalized problem

4.2.1. Solution to the parametrized regular problem

For ω fixed consider the family of regularized problems $(P_1(\omega)_{(\varepsilon,\eta)})$. We must prove that $(P_1(\omega)_{(\varepsilon,\eta)})$ has a unique smooth solution under the following assumptions

$$(H_{\varepsilon,\eta}) \begin{cases} a) & l \in \mathcal{C}^{\infty}(\mathbb{R}), l' > 0, \ l(\mathbb{R}) = \mathbb{R}, \\ b) & F_{\eta} \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}), \\ c) & W(\omega)_{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R}). \end{cases}$$
$$(H_{1}) : \exists p > 0, \forall l \in \mathbb{N}, \exists a_{l} > 0, \sup_{z \in \mathbb{R}; |\alpha| \le l} |D^{\alpha}F_{\eta}(z)| \le a_{l}(1 + r_{\eta})^{p}.$$

one can prove that $(P_1(\omega)_{(\varepsilon,\eta)})$ admits a unique smooth solution $U(\omega)_{\varepsilon,\eta}$ such that

$$U(\omega)_{\varepsilon,\eta}(t,x) = (W(\omega) * \chi_{\varepsilon}) (l^{-1}(x)) + \int_{l^{-1}(x)}^{t} F_{\eta}(U(\omega)_{\varepsilon,\eta}(\zeta,x)) d\zeta$$

Theorem 4.1. Under assumptions $(H_{\varepsilon,\eta})$, (H_1) , problem $(P_1(\omega)_{(\varepsilon,\eta)})$ has a unique solution, $U(\omega)_{\varepsilon,\eta}$, in $C^{\infty}(\mathbb{R}^2)$.

4.2.2. Solution to (P_1)

Theorem 4.2. Suppose that $U(\omega)_{\varepsilon,\eta}$ is the solution to problem $(P_1(\omega)_{(\varepsilon,\eta)})$ then problem $(P_1(\omega)_{gen})$ has a unique solution $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ in $\mathcal{A}(\mathbb{R}^2)$.

The proof follows the same steps as the existence results which can be found in [3] (replacing $u_{\varepsilon,\eta}$ by $U(\omega)_{\varepsilon,\eta}$ and $F_{\eta}(x, y, u_{\varepsilon,\eta}(x, y))$ by $F_{\eta}(U(\omega)_{\varepsilon,\eta}(x, y))$).

Theorem 4.3. Suppose that $U(\omega)_{\varepsilon,\eta}$ is the solution to problem $(P_1(\omega)_{(\varepsilon,\eta)})$ then problem $(P_1(\omega)_{gen})$ has a unique solution $U(\omega) = [U(\omega)_{\varepsilon,\eta}]$ in $\mathcal{A}_2(\mathbb{R}^2)$. *Proof.* $U(\omega)$ is the solution to $(P_1(\omega)_{(\varepsilon,\eta)})$ if $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{X}_2(\mathbb{R}^2)$. We must prove that

$$\forall K \Subset \mathbb{R}^2, \forall l \in \mathbb{N}, \left(N_{K,l}^2(U(\omega)_{\varepsilon,\eta})\right)_{\varepsilon,\eta} \in A.$$

However

$$\left\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\right\|_{L^{2}(K)} \leq \left(\mu\left(K\right)\right)^{1/2} \left\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\right\|_{L^{\infty}(K)}$$

and, as $(U(\omega)_{\varepsilon,\eta})_{\varepsilon,\eta} \in \mathcal{X}(\mathbb{R}^2)$, we have $(\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\|_{\infty})_{\varepsilon,\eta} \in A$. Then

$$\left(\left\|D^{\alpha}(U(\omega)_{\varepsilon,\eta})\right\|_{L^{2}(K)}\right)_{\varepsilon,\eta} = \left(N^{2}_{K,l}(U(\omega)_{\varepsilon,\eta})\right)_{\varepsilon,\eta} \in A.$$

Thus $U(\omega) \in \mathcal{A}_2(\mathbb{R}^2)$ and it is the solution to problem $(P_1(\omega)_{gen})$ in $\mathcal{A}_2(\mathbb{R}^2)$. Set

$$U: \Omega \to \mathcal{A}_2\left(\mathbb{R}^2\right), \omega \mapsto U(\omega).$$

Thus $U \in \mathcal{A}_2^{\Omega}(\mathbb{R}^2)$.

Theorem 4.4. The mapping U is the solution to problem (P_1) and it is almost surely unique in $\mathcal{A}_2^{\Omega}(\mathbb{R}^2)$.

Proof. Since $U(\omega)$ is the unique solution to problem $(P_1(\omega)_{gen})$ in $\mathcal{A}_2(\mathbb{R}^2)$ thus almost surely in $\omega \in \Omega$, the map $\lambda \mapsto R_U(\lambda, (\cdot, \cdot), \omega) = U(\omega)_\lambda$, $(\lambda = (\varepsilon, \eta))$, belongs to $\mathcal{X}_2(\mathbb{R}^2)$ and it is a representative of $U(\omega)$ (i.e. $U(\omega) = [U(\omega)_\lambda]$). For fixed $\lambda = (\varepsilon, \eta) \in \Lambda$, the map

$$((x, y), \omega) \mapsto R_U(\lambda, (x, y), \omega) = U(\omega)_\lambda(x, y)$$

is jointly measurable on $\mathbb{R}^2 \times \Omega$. Then U is the solution to problem (P_1) almost surely unique in $\mathcal{A}_2^{\Omega}(\mathbb{R}^2)$.

4.3. Limiting behavior of the solution

See [11], [12]. Take $W_{\varepsilon} = (W(\omega) * \chi_{\varepsilon})$. We have $E(W_{\varepsilon}) = 0$ and $V(W_{\varepsilon}) = \sigma_{\varepsilon}^2 = \|\chi_{\varepsilon}\|_{L^2(\mathbb{R})}^2$. Then the variance of W_{ε} tends to infinity as ε tends to 0. That implies

Theorem 4.5. There is a subsequence $\varepsilon_k \to 0$ such that μ -almost surely in $\omega \in \Omega$,

$$\lim_{k \to 0} |R_V((\varepsilon_k, \eta), (t, x), \omega)| = \lim_{k \to 0} |V(\omega)_{\varepsilon_k, \eta}(t, x)| = \infty$$

for almost all $(x, y) \in \mathbb{R}^2$.

Proof. See [11] Corollary 1 and [12].

Suppose that $\lim_{|z|\to\infty} F(z) = L$. Define the function $M: \mathbb{R}^2 \to \mathbb{R}$ by M(t,x) = tL.

 \square

Theorem 4.6. Under the assumptions above, every subsequence of $\varepsilon \to 0$ has a subsequence $\varepsilon_k \to 0$ such that for any compact set $K \in \mathbb{R}^2$

$$\lim_{k \to 0} \|R_U((\varepsilon_k, \eta), (\cdot, \cdot), \omega) - R_V((\varepsilon_k, \eta), (\cdot, \cdot), \omega) - M\|_{L^1(K)} = 0$$

 μ -almost surely.

That is

$$\lim_{k \to 0} \left\| U(\omega)_{\varepsilon_k, \eta} - V(\omega)_{\varepsilon_k, \eta} - M \right\|_{L^1(K)} = 0$$

 μ -almost surely.

Proof. Take $\lambda = (\varepsilon, \eta)$. We have

$$\frac{\partial \left(U(\omega)_{\lambda} - V(\omega)_{\lambda} - M \right)}{\partial t} = \frac{\partial \left(U(\omega)_{\lambda} \right)}{\partial t} - \frac{\partial \left(V(\omega)_{\lambda} + M \right)}{\partial t}$$

and

$$\begin{aligned} \frac{\partial \left(U(\omega)_{\lambda}\right)}{\partial t} &- \frac{\partial \left(V(\omega)_{\lambda} + M\right)}{\partial t} \\ &= F(U(\omega)_{\lambda}) - L \\ &= \left(F(U(\omega)_{\lambda}) - F(V(\omega)_{\lambda} + M)\right) + \left(F(V(\omega)_{\lambda} + M) - L\right) \\ &= \left(U(\omega)_{\lambda} - V(\omega)_{\lambda} - M\right) \int_{0}^{1} \frac{\partial F}{\partial z} \left(U(\omega)_{\lambda} + \sigma \left(U(\omega)_{\lambda} - V(\omega)_{\lambda} - M\right)\right) d\sigma \\ &+ \left(F(V(\omega)_{\lambda} + M) - L\right). \end{aligned}$$

 So

$$\begin{split} & \left\| \frac{\partial \left(U(\omega)_{\lambda} - V(\omega)_{\lambda} - M \right)}{\partial t} \right\|_{L^{1}(K)} \\ & \leq \left\| U(\omega)_{\lambda} - V(\omega)_{\lambda} - M \right\|_{L^{1}(K)} \left\| \frac{\partial F}{\partial z} \right\|_{L^{\infty}(\mathbb{R})} + \left\| F(V(\omega)_{\lambda} + M) - L \right\|_{L^{1}(K)} \end{split}$$

By Theorem 4.5, there is a subsequence $\varepsilon_k \to 0$ such that μ -almost surely in $\omega \in \Omega$ almost everywhere $((t, x) \in \mathbb{R}^2)$, $\lim_{k \to 0} |V(\omega)_{\varepsilon_k,\eta}(t, x)| = \infty$. As $\lim_{|z|\to\infty} F(z) = L$, we deduce that

$$\lim_{k \to 0} \|F(V(\omega)_{\lambda} + M) - L\|_{L^{1}(K)} = 0$$

almost everywhere.

Hence by Lebesgue's theorem and Gronwall's lemma the assertion follows. $\hfill \Box$

Theorem 4.7. Let $V \in \mathcal{D}'_{\Omega}(\mathbb{R}^2)$ be the distributional solution to the free equation (P_2) . Then the representative $U(\omega)_{\varepsilon,\eta}$ of the generalized solution to the nonlinear problem (P_1) converges to V + M with respect to the strong topology of $\mathcal{D}'(\mathbb{R}^2)$, in probability as $\varepsilon \to 0$.

Proof. Let q be one of the defining seminorms of the strong topology of $\mathcal{D}'(\mathbb{R}^2)$. According to Theorem 4.6, every subsequence of $\varepsilon \to 0$ has a subsequence $\varepsilon_k \to 0$ such that for any compact set $K \in \mathbb{R}^2$

$$q(R_U((\varepsilon_k,\eta),(\cdot,\cdot),\omega) - R_V((\varepsilon_k,\eta),(\cdot,\cdot),\omega) - M) \to 0$$

almost surely. This is equivalent to convergence in probability.

References

- DELCROIX, A., DÉVOUÉ, V., AND MARTI, J.-A. Generalized solutions of singular differential problems. Relationship with classical solutions. J. Math. Anal. Appl. 353, 1 (2009), 386–402.
- [2] DELCROIX, A., DÉVOUÉ, V., AND MARTI, J.-A. Well-posed problems in algebras of generalized functions. Appl. Anal. 90, 11 (2011), 1747–1761.
- [3] DÉVOUÉ, V. Generalized solutions to a non Lipschitz-Cauchy problem. J. Appl. Anal. 15, 1 (2009), 1–32.
- [4] DÉVOUÉ, V. Generalized solutions to a non-Lipschitz Goursat problem. Differ. Equ. Appl. 1, 2 (2009), 153–178.
- [5] DÉVOUÉ, V. Some nonlinear stochastic cauchy problems with stochastic generalized processes. *International Journal of Analysis 2016* (2016), 11 pages.
- [6] MARTI, J.-A. Fundamental structures and asymptotic microlocalization in sheaves of generalized functions. *Integral Transform. Spec. Funct.* 6, 1-4 (1998), 223–228. Generalized functions—linear and nonlinear problems (Novi Sad, 1996).
- [7] MARTI, J.-A. (C, E, P)-sheaf structures and applications. In Nonlinear theory of generalized functions (Vienna, 1997), vol. 401 of Chapman & Hall/CRC Res. Notes Math. Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 175–186.
- [8] MARTI, J.-A. Multiparametric algebras and characteristic cauchy problem. In Non-linear algebraic analysis and applications (2004), Proceeding of the International Conference on Generalized functions (ICGF 2000), Cambridge Sci. Publ. Ltd., Cambridge, pp. 181–192.
- [9] NEDELJKOV, M., AND RAJTER, D. Nonlinear stochastic wave equation with Colombeau generalized stochastic processes. *Math. Models Methods Appl. Sci.* 12, 5 (2002), 665–688.
- [10] NEDELJKOV, M., AND RAJTER, D. Nonlinear stochastic wave equation with colombeau stochastic generalized processes. *Math. Models Methods Appl. Sci.* 12, 5 (2002), 665–688.
- [11] OBERGUGGENBERGER, M., AND RUSSO, F. Nonlinear stochastic wave equations. In *Generalized functions—linear and nonlinear problems (Novi Sad, 1996)*, vol. 6. 1998, pp. 71–83.
- [12] OBERGUGGENBERGER, M., AND RUSSO, F. Singular limiting behavior in nonlinear stochastic wave equations. In *Stochastic analysis and mathematical physics*, vol. 50 of *Progr. Probab.* Birkhäuser Boston, Boston, MA, 2001, pp. 87–99.

Received by the editors August 10, 2020 First published online December 28, 2020