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Study of nonlinear stochastic Cauchy problems in (C, E ,P)-algebras

Victor Dévoué1

Abstract. We use the framework of the (C, E ,P)-algebras of J-A.
Marti to study some nonlinear stochastic Cauchy problems for a simple
equation, namely the transport equation in basic form, with stochastic
generalized processes. Until now such studies were made in Colombeau-
type algebras.
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1. Introduction

To study some nonlinear stochastic Cauchy problems we reformulate them
in the framework of the (C, E ,P)-algebras of J.-A. Marti [6, 7, 8], [2]. These
algebras allow us to treat singular processes in stochastic analysis following
the example of Colombeau algebras. In this article we use the notations and
concepts of our previous paper, [5].

The plan of this article is as follows. This section is followed by Section 2,
which introduces the definitions and properties for stochastic analysis, (C, E ,P)-
algebras and algebras of generalized stochastic processes. We refer the reader
to [5] in which we make similar studies.

In Section 3, we examine the following Cauchy problems associated to a
simple equation, namely the transport equation in basic form, formally written:

(P ) :
∂U

∂t
= F (U) +W, U |γ = f,

and

(P ′) :
∂U

∂t
= F (U)W, U |γ = f,

with a smooth function F on the right-hand side. F can be non Lipschitz (in U)
but F and all its derivatives have polynomial growth. γ is a monotonic curve
with the equation x = l(t), γ is not a characteristic curve, f is a generalized
stochastic process on R, W a generalized process on R2. That is, f and W are
weakly measurable maps of some probability space (Ω,Σ, µ) with values in the
distribution space D′(R), respectively D′(R2).

For ω fixed, ω in Ω, using regularizations and cutoff techniques, we define
a well formulated problem (P (ω)gen) (resp. (P ′(ω)gen)) associated to problem
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(P ) (resp. (P ′)) in a convenient algebra. We must use two parameters. The
first parameter is used to regularize the data and the second one to replace
the problem by a family of Lipschitz problems. We prove that problem (P )
(resp. (P ′)) has a unique solution in some algebras of generalized stochastic
processes.
Section 4, is devoted to a nonlinear stochastic Cauchy problem with the white
noise as initial data

(P1) :
∂U

∂t
= F (U), U |γ = W,

where γ is the curve of equation x = l(t), γ is not a characteristic curve, W is
the white noise on R. The function F is smooth, it can be non Lipschitz but
F and all derivatives have polynomial growth. We study problem (P1) as the
previous ones and we examine the limiting behavior of the generalized solution.

2. Algebra of generalized stochastic processes

2.1. The presheaves of (C, E ,P)-algebras

We refer the reader to the references [3], [4], [5], for the definition and the
properties of (C, E ,P)-algebras, the notion of overgenerated rings, the relation-
ship with distribution theory and the association process, the notion of algebra
A(Ω) stable under the family (Fη)λ [2], the definition of the generalized oper-
ator F associated to the family (Fη)λ, the definition of the generalized second
side restriction mapping Rg associated to the function g.

We use the same notations and the same notions as the references. All these
elements of the theory of the (C, E ,P)-algebras are now well-known.

2.2. Algebras Ap(O), p ∈ N∗ and A(O)

Take E = C∞, X = Rd for d = 1, 2, E = D′ and Λ a set of indices, λ ∈ Λ.
Take p ∈ N∗. For any open set O in RdE(O) = C∞(O), is endowed with the
Pp(O) topology defined by the family of the seminorms

Np
K,l(uλ) = sup

|α|≤l
Np
K,α(uλ), with

Np
K,α(uλ) = ‖Dαuλ(x)‖Lp(K) ,K b O,

and Dα =
∂α1+...+αd

∂zα1
1 ...∂zαdd

for z = (z1, . . . , zd) ∈ O, l ∈ N, α = (α1, ..., αd) ∈ Nd,

K b O means that K is a compact subset of O. Let A be a subring of the ring
RΛ. We consider a solid ideal IA of A. Put

Xp(O) = {(uλ)λ ∈ [C∞(O)]
Λ

: ∀K b O, ∀l ∈ N,
(
Np
K,l(uλ)

)
λ
∈ |A|},

Np(O) = {(uλ)λ ∈ [C∞(O)]
Λ

: ∀K b O, ∀l ∈ N,
(
Np
K,l(uλ)

)
λ
∈ |IA|},

Ap(O) = Xp(O)/Np(O).
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The generalized derivation Dα : u(= [uε]) 7→ Dαu = [Dαuε] provides Ap(O)
with a differential algebraic structure.

For p = +∞, E(O) = C∞(O) is endowed with the P(O) topology defined
by the family of the seminorms

PK,l(uλ) = sup
|α|≤l

PK,α(uλ), with

PK,α(uλ) = ‖Dαuλ(x)‖L∞(K) , K b O

Put

X (O) = {(uλ)λ ∈ [C∞(O)]
Λ

: ∀K b O, ∀l ∈ N, (PK,l(uλ))λ ∈ |A|},

N (O) = {(uλ)λ ∈ [C∞(O)]
Λ

: ∀K b O, ∀l ∈ N, (PK,l(uλ))λ ∈ |IA|}.

The generalized derivation Dα : u(= [uε]) 7→ Dαu = [Dαuε] provides A(O) =
X (O)/N (O) with a differential algebraic structure.

Remark 2.1. The N2
K,l norms are bounded by the PK,l norms. We have A(O) ⊂

A2(O).

Remark 2.2. Ap(O) have properties similar to those of A(O).

2.3. Stochastic analysis

We refer the reader to [11], [12], [10] and [9], for construction of white noise
and the relation between the white noise and Wiener process on Rd.

Let (Ω,Σ, µ) be a probability space. A generalized stochastic process on Rd
is a weakly measurable map

X : Ω→ D′
(
Rd
)

For any fixed test function ϕ ∈ D
(
Rd
)
, the map Ω → R; ω 7→ 〈X(ω), ϕ〉

is a random variable. The space of generalized stochastic processes is denoted
by D′Ω

(
Rd
)
.

2.4. Algebras of generalized stochastic processes

Let O be an open set in Rd, (Ω,Σ, µ) a probability space.

Definition 2.3. A mapping U : Ω → A (O) such that there is a representing
function

u = RU : Λ×O × Ω→ R

with the properties:
(i) for fixed λ ∈ Λ, the map (x, ω) 7→ u(λ, x, ω) is jointly measurable on O×Ω;
(ii) almost surely in ω ∈ Ω, the map λ 7→ u(λ, ·, ω) belongs to X (O) and it is a
representative of U(ω), i.e. almost surely in ω ∈ Ω, (U(ω)λ)λ = (u(λ, ·, ω))λ ∈
X (O), is called a A (O)-generalized stochastic processes on the probability
space (Ω,Σ, µ).
The algebra of generalized stochastic processes is denoted by AΩ(O).
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Definition 2.4. A map U : Ω → A2 (O) such that there is a representing
function

u = RU : Λ×O × Ω→ R

with the properties:
(i) for fixed λ ∈ Λ, the map (x, ω) 7→ u(λ, x, ω) is jointly measurable on O×Ω;
(ii) almost surely in ω ∈ Ω, the map λ 7→ u(λ, ·, ω) belongs to X2(O) and it is a
representative of U(ω), i.e. almost surely in ω ∈ Ω, (U(ω)λ)λ = (u(λ, ·, ω))λ ∈
X2(O), is called a A2(0)-generalized stochastic processes on the probability
space (Ω,Σ, µ).
The algebra of generalized stochastic processes is denoted by AΩ

2 (O).

Remark 2.5. Let ϕ of the form ϕ(x, y) = χ(x)χ(y) with χ ∈ D (R) with the
property ∫

χ(s)ds = 1;

∫
spχ(s)ds = 0, 1 ≤ p ≤ 2.

Let V ∈ D′Ω
(
Rd
)

be a generalized stochastic process. If λ ∈ Λ, then V (ω) ∗ϕλ
is measurable with respect to ω ∈ Ω and smooth with respect to x ∈ Rd, hence
jointly measurable. So, (V (ω) ∗ ϕλ)λ belongs to X (Rd). Then

RV (λ, x, ω) = (V (ω) ∗ ϕλ) (x) = V (ω)λ(x)

qualifies as a representative for a random generalized function. Thus we have
an imbedding τ : D′Ω

(
Rd
)
↪→ AΩ(Rd).

3. Some nonlinear stochastic problems

3.1. A nonlinear stochastic problem with additive generalized sto-
chastic process

Consider the Cauchy problem formally written:

(1) (P ) :
∂U

∂t
= F (U) +W, U |γ = f,

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic
curve, f ∈ AΩ(R), W ∈ AΩ(R2) is a A

(
R2
)
-generalized stochastic process

on a probability space (Ω,Σ, µ). F is smooth, it can be non Lipschitz but
F and all derivatives have polynomial growth and F (0) = 0. We look for a
solution

(
U : Ω→ A2

(
R2
))
∈ AΩ

2 (R2). (For example, F (U) = −U − U2 or
F (U) = −U2.)

Thus U is a solution to problem (P ) if and only if for each ω ∈ Ω, U(ω) is
solution to the formally written problem

(P (ω))

 ∂U(ω)

∂t
= F (U(ω)) +W (ω),

U(ω)|γ = f(ω).
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3.2. A nonlinear stochastic problem with multiplicative generalized
stochastic process

Consider the Cauchy problem formally written:

(2) (P ′) :
∂U

∂t
= F (U)W, U |γ = f,

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic
curve, f ∈ AΩ(R) , W ∈ AΩ(R2) is a A

(
R2
)
-generalized stochastic process on

a probability space (Ω,Σ, µ). F is smooth, it can be non Lipschitz, but F and
all derivatives have polynomial growth and F (0) = 0. We look for a solution(
U : Ω→ A2

(
R2
))
∈ AΩ

2 (R2). (For example, F (U) = −U2).
Thus U is a solution to problem (P ) if and only if for each ω ∈ Ω, U(ω) is

solution to the formally written problem

P ′(ω))

 ∂U(ω)

∂t
= F (U(ω))W (ω),

U(ω)|γ = f(ω).

3.3. Cut off procedure

Take (rη)η be in R(0,1]
∗ such that rη > 0 and lim

η→0
rη = +∞. Set Eη =

[−rη, rη].
Set a family of smooth one-variable functions (hη)η such that

(3) sup
z∈Iη
|hη(z)| = 1, hη(z) =

{
0, if |z| ≥ rη

1, if − rη + 1 ≤ z ≤ rη − 1

Suppose that
∂nhη
∂zn

is bounded on Eη for any integer n, n > 0. Set

sup
z∈Eη

∣∣∣∣∂nhη∂zn
(z)

∣∣∣∣ = Mn.

Let φη(z) = zhη(z). We approximate the function F by the family of functions
(Fη)η defined by

Fη(z) = F (φη(z)) = F (zhη(z)).

Suppose that F (0) = 0. F is smooth, it can be non Lipschitz but F and all
derivatives have polynomial growth. More precisely, we assume the existence
of p ∈ N such that

∀l ∈ N,∃cl > 0, sup
z∈R

∣∣DlF (z)
∣∣ ≤ cl(1 + |z|)p.

Then

∀l ∈ N,∃µl > 0, sup
z∈R;|α|≤l

|DαFη(z)| = sup
|z|≤rη ;|α|≤l

|DαF (φη(z))| ≤ al(1 + rη)p.

Thus, according to [3], [4], A(R) is stable under the family (Fη)η.
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3.4. Construction of A(R2)

Take U(ω) = [U(ω)ε,η] and

W (ω)ε,η(t, x) = (φη(W (ω) ∗ ϕε)) (t, x) ,

ϕ of the form ϕ (t, x) = χ(t)χ(x), χ ∈ D (R) having the property∫
χ(s)ds = 1;

∫
spχ(s)ds = 0, 1 ≤ p ≤ 2

and (χε)ε being a family of mollifiers such that κε(x) = 1
εχ(xε ), thus ϕε(t, x) =

κε(t)κε(x). Take f (ω)ε = f (ω) ∗ χε.
We make the following assumptions to generate a convenient (C, E ,P)-

algebra adapted to our problem.

(H1) : ∃p > 0,∀n ∈ N,∃an > 0, sup
z∈R;|α|≤n

|DαFη(z)| ≤ an(1 + rη)p.

(H2) : ∀K b R2,∀n ∈ N,∃ρn > 0, PK,n(W (ω)ε,η) ≤ ρn(1 + rη)p.

(H3)

{
C = A/IA is overgenerated by the following elements of R(0,1]

∗

(ε)ε,η , (η)ε,η , (rη)ε,η , (exp(1 + rη))ε,η.

(H4)

{
A
(
R2
)

= X (R2)/N (R2) is built on C with

(E ,P) =
(

C∞(R2), (PK,l)KbR2,l∈N

)
.

(H5)A2

(
R2
)

= X2(R2)/N2(R2) is built on C

with (E ,P ′) =
(

C∞(R2),
(
N2
K,l

)
KbR2,l∈N

)
.

3.5. Generalized differential problems associated to the formal ones

We give a meaning to the problems formally written as (P ) and (P ′).
Fη is defined above. Let F be the generalized operator associated to F via

the family (hη)η. Rl is the generalized second-size mapping associated with l

[5].

3.5.1. Generalized differential problem associated to (P )

For ω fixed, the problem associated to (P (ω)) can be written as the well-
formulated problem

(P (ω)gen)

{
∂U(ω)

∂t
= F(U(ω)) + [W (ω)ε,η] ,

Rl (U(ω)) = [f (ω)ε] ,
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then  ∂U(ω)

∂t
= [Fη(U(ω))] + [W (ω)ε,η] ,

U(ω)|γ = [f (ω) ∗ χε] .
In terms of representatives, and thanks to the stability and restriction hypoth-
esis, if we find U(ω)ε,η ∈ C∞

(
R2
)

verifying

(P (ω)(ε,η))

{
∂U(ω)ε,η

∂t
(t, x) = Fη(U(ω)ε,η(t, x)) +W (ω)ε,η(t, x),

U(ω)ε,η(t, l(t)) = f (ω)ε (t) = (f (ω) ∗ χε) (t) ,

and if we prove that (U (ω)ε,η)ε,η ∈ X2(R2), thus U(ω) = [U (ω)ε,η] is a solution
of P (ω)gen.

Let V (ω) = [V (ω)ε,η] be another solution to P (ω)gen.
If (V (ω)ε,η − U(ω)ε,η)ε,η ∈ N (R2) the solution to Pgen(ω) is unique.

Remark 3.1. Dependence on some regularizing family. The problem P (ω)gen
itself, so a solution of it, a priori depends on the family of cutoff functions and,
in the case of irregular data, on the family of mollifiers [4].

Remark 3.2. F (U) is such that

F (U) : Ω→ A
(
R2
)
, ω 7→ [Fη(U (ω)ε,η)]

and
Fη(U (ω)ε,η) : R2 → R, (t, x) 7→ Fη(U(ω)ε,η(t, x)).

Moreover

RU = u : Λ× R2 × Ω→ R; (λ, (t, x), ω) 7→ U(ω)ε,η(t, x) = u (λ, t, x, ω) ,

with λ = (ε, η).

3.5.2. Generalized differential problem associated to (P ′)

For ω fixed, the problem associated to (P ′(ω)) can be written as the well-
formulated problem

(P ′gen(ω))

{
∂U(ω)

∂t
= F(U(ω)) [W (ω)ε,η] ,

Rl (U(ω)) = [f (ω)ε] ,

then  ∂U(ω)

∂t
= [Fη(U(ω))] [W (ω)ε,η] ,

U(ω)|γ = [f (ω) ∗ χε] .
In terms of representatives, and thanks to the stability and restriction hypoth-
esis, if we find U(ω)ε,η ∈ C∞

(
R2
)

verifying

(P ′(ω)(ε,η))

{
∂U(ω)ε,η

∂t
(t, x) = Fη(U(ω)ε,η(t, x))W (ω)ε,η(t, x),

U(ω)ε,η(t, l(t)) = f (ω)ε (t) = (f (ω) ∗ χε) (t) ,

and if we prove that (U (ω)ε,η)ε,η ∈ X2(R2), thus U(ω) = [U (ω)ε,η] is a solution
of (P ′(ω)gen).
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3.6. Generalized problems

3.6.1. Solution to the parametrized regular problems

Fix ω, consider the regularized problems (P (ω)(ε,η)) and (P ′(ω)(ε,η)).
Under assumptions (H1), (H2) and the assumptions

(Hε,η)

 a) l ∈ C∞(R), l′ > 0, l(R) = R,
b) Fη ∈ C∞(R,R),
c) f (ω)ε ∈ C∞(R),

one can prove that (P (ω)(ε,η)) admits a unique smooth solution U(ω)ε,η such
that

U(ω)ε,η(t, x) = f (ω)ε (l−1(x)) +

∫ t

l−1(x)

(Fη(U(ω)ε,η(ζ, x)) +W (ω)ε,η(ζ, x)) dζ

and (P ′ (ω)(ε,η)) admits a unique smooth solution U(ω)ε,η such that

U(ω)ε,η(t, x) = f (ω)ε (l−1(x)) +

∫ t

l−1(x)

(Fη(U(ω)ε,η(ζ, x))W (ω)ε,η(ζ, x)) dζ,

Theorem 3.3. Under assumptions (Hε,η), (H1) and (H2), problem (P (ω)(ε,η))

(resp. (P ′ (ω)(ε,η)))has a unique solution, U(ω)ε,η, in C∞(R2).

See [1].

3.6.2. Solution to the problems

Theorem 3.4. Suppose that U(ω)ε,η is the solution to problem (P (ω)(ε,η))

(resp. (P ′ (ω)(ε,η))) then problem (P (ω)gen) (resp. (P ′ (ω)gen)) has a unique

solution U(ω) = [U(ω)ε,η] in A
(
R2
)
.

U(ω) is the solution to (P (ω)(ε,η)) (resp. (P ′ (ω)(ε,η))) if (U(ω)ε,η)ε,η ∈
X (R2), that is

∀K b R2,∀l ∈ N, (PK,l(U(ω)ε,η))ε,η ∈ A.

The proof follows the same steps as the existence results which can be found
in [3], replacing uε,η by U(ω)ε,η and Fη(x, y, uε,η(x, y)) by Fη(U(ω)ε,η(x, y)) +
W (ω)ε,η (x, y) (resp. Fη(U(ω)ε,η(x, y))W (ω)ε,η (x, y)). An induction process
on the order of the successive derivatives shows that (U(ω)ε,η)ε,η belongs to

X (R2). For the uniqueness, the Gronwall lemma is an essential tool.

Theorem 3.5. Suppose that U(ω)ε,η is the solution to problem (P (ω)(ε,η))

(resp. (P ′ (ω)(ε,η))) then problem (P (ω)gen) (resp. (P ′ (ω)gen)) has a unique

solution U(ω) = [U(ω)ε,η] in A2

(
R2
)
.
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Proof. U(ω) is the solution to (P (ω)(ε,η)) if (U(ω)ε,η)ε,η ∈ X2(R2). We must
prove that

∀K b R2,∀l ∈ N,
(
N2
K,l(U(ω)ε,η)

)
ε,η
∈ A.

However

‖Dα(U(ω)ε,η)‖L2(K) ≤ (µ (K))
1/2 ‖Dα(U(ω)ε,η)‖L∞(K)

and, as (U(ω)ε,η)ε,η ∈ X (R2), we have
(
‖Dα(U(ω)ε,η)‖∞

)
ε,η
∈ A. Then

(‖Dα(U(ω)ε,η)‖L2(K))ε,η =
(
N2
K,l(U(ω)ε,η)

)
ε,η
∈ A.

So U(ω) ∈ A2

(
R2
)

and it is the solution to problem (P (ω)gen) in A2

(
R2
)
. Set

U : Ω→ A2

(
R2
)
, ω 7→ U(ω).

Thus U ∈ AΩ
2 (R2).

Theorem 3.6. The mapping U is the solution to problem (P ) (resp. (P ′))
and it is almost surely unique in AΩ

2 (R2).

Proof. Since U(ω) is the unique solution to problem (P (ω)gen) in A2

(
R2
)

then
almost surely in ω ∈ Ω, the map λ 7→ RU (λ, (·, ·) , ω) = U(ω)λ, (λ = (ε, η)),
belongs to X2(R2) and it is a representative of U(ω) (i.e. U(ω) = [U(ω)λ]). For
fixed λ = (ε, η) ∈ Λ, the map

((x, y) , ω) 7→ RU (λ, (x, y) , ω) = U(ω)λ(x, y) = uλ((x, y) , ω)

is jointly measurable on R2×Ω. Then U is the solution to problem (P ) almost
surely unique in AΩ

2 (R2).

3.7. A special case

Consider the Cauchy problem formally written as

(2) (S) :
∂U

∂t
= W, U |γ = f,

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic
curve, f ∈ AΩ(R) , W ∈ AΩ(R2) is a A

(
R2
)
-generalized stochastic process on

a probability space (Ω,Σ, µ).

This problem coincides with problem (P ) for F = 0 and with problem (P ′)
for F = 1. Problem (S) admits a solution U . U(ω) = [U(ω)ε,η] in A2

(
R2
)

is
defined, with the previous notations, by

U(ω)ε,η(t, x) = f (ω)ε (l−1(x)) +

∫ t

l−1(x)

W (ω)ε,η(ζ, x)dζ.
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4. A nonlinear stochastic Cauchy problem with the white
noise as data

Consider the Cauchy problems formally written:

(4) (P1) :
∂U

∂t
= F (U), U |γ = W,

and

(5) (P2) :
∂V

∂t
= 0, V |γ = W,

where γ is a monotonic curve of equation x = l(t), γ is not a characteristic
curve, W ∈ AΩ(R) is the white noise on R. F is smooth, it can be non
Lipschitz but F and all its derivatives have polynomial growth. We look for a
solution

(
U : Ω→ A

(
R2
))
∈ AΩ(R2) and

(
V : Ω→ A

(
R2
))
∈ AΩ(R2).

U is a solution to problem (P1) if and only if for every ω ∈ Ω, U(ω) is a
solution to the formal problem

(P1(ω)) :
∂U(ω)

∂t
= F (U(ω)), U(ω)|γ = W (ω).

V is a solution to problem (P2) if and only if, for any ω ∈ Ω, V (ω) is a solution
to the formally problem

(P2(ω)) :
∂V (ω)

∂t
= 0, V (ω)|γ = W (ω).

We make the same hypotheses and we take the same spaces A
(
R2
)

andA2

(
R2
)

built for problems (P ) and (P ′).

4.1. A generalized differential problem associated to the formal one

For ω fixed, the problem associated to (P1(ω)) can be written as the well-
formulated problem

(P1gen (ω))

{
∂U(ω)

∂t
= F(U(ω)),

Rl (U(ω)) = [W (ω)ε] ,

then  ∂U(ω)

∂t
= [Fη(U(ω))] ,

U(ω)|γ = [W (ω) ∗ χε] .

The problem associated to (P2(ω)) can be written as the well-formulated prob-
lem

(P2gen (ω)) :
∂V (ω)

∂t
= 0,Rl (V (ω)) = [W (ω)ε] ,

so
∂V (ω)

∂t
= 0, V (ω)|γ = [W (ω) ∗ χε] .
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In terms of representatives, and thanks to the stability and restriction hypoth-
esis, if we find U(ω)ε,η ∈ C∞

(
R2
)

verifying

(P1(ω)(ε,η))

{
∂U(ω)ε,η

∂t
(t, x) = Fη(U(ω)ε,η(t, x)),

U(ω)ε,η(t, l(t)) = (W (ω) ∗ χε) (t)

and if we prove that
(
U (ω)ε,η

)
ε,η
∈ X2(R2), then U(ω) =

[
U (ω)ε,η

]
is a

solution of (P1(ω)gen).

As
∂V (ω)

∂t
= 0, we have

V (ω)ε,η(t, x) = W (ω) ∗ χε(l−1(x)).

4.2. Generalized problem

4.2.1. Solution to the parametrized regular problem

For ω fixed consider the family of regularized problems
(
P1(ω)(ε,η)

)
. We must

prove that
(
P1(ω)(ε,η)

)
has a unique smooth solution under the following as-

sumptions

(Hε,η)

 a) l ∈ C∞(R), l′ > 0, l(R) = R,
b) Fη ∈ C∞(R,R),
c) W (ω)ε ∈ C∞(R).

(H1) : ∃p > 0,∀l ∈ N,∃al > 0, sup
z∈R;|α|≤l

|DαFη(z)| ≤ al(1 + rη)p.

one can prove that (P1(ω)(ε,η)) admits a unique smooth solution U(ω)ε,η
such that

U(ω)ε,η(t, x) = (W (ω) ∗ χε) (l−1(x)) +

∫ t

l−1(x)

Fη(U(ω)ε,η(ζ, x))dζ

Theorem 4.1. Under assumptions (Hε,η), (H1), problem (P1 (ω)(ε,η)) has a

unique solution, U(ω)ε,η, in C∞(R2).

4.2.2. Solution to (P1)

Theorem 4.2. Suppose that U(ω)ε,η is the solution to problem (P1 (ω)(ε,η))

then problem (P1(ω)gen) has a unique solution U(ω) = [U(ω)ε,η] in A
(
R2
)
.

The proof follows the same steps as the existence results which can be found
in [3] (replacing uε,η by U(ω)ε,η and Fη(x, y, uε,η(x, y)) by Fη(U(ω)ε,η(x, y))).

Theorem 4.3. Suppose that U(ω)ε,η is the solution to problem (P1 (ω)(ε,η))

then problem (P1(ω)gen) has a unique solution U(ω) = [U(ω)ε,η] in A2

(
R2
)
.
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Proof. U(ω) is the solution to (P1 (ω)(ε,η)) if (U(ω)ε,η)ε,η ∈ X2(R2). We must
prove that

∀K b R2,∀l ∈ N,
(
N2
K,l(U(ω)ε,η)

)
ε,η
∈ A.

However

‖Dα(U(ω)ε,η)‖L2(K) ≤ (µ (K))
1/2 ‖Dα(U(ω)ε,η)‖L∞(K)

and, as (U(ω)ε,η)ε,η ∈ X (R2), we have
(
‖Dα(U(ω)ε,η)‖∞

)
ε,η
∈ A. Then

(‖Dα(U(ω)ε,η)‖L2(K))ε,η =
(
N2
K,l(U(ω)ε,η)

)
ε,η
∈ A.

Thus U(ω) ∈ A2

(
R2
)

and it is the solution to problem (P1(ω)gen) in A2

(
R2
)
.

Set

U : Ω→ A2

(
R2
)
, ω 7→ U(ω).

Thus U ∈ AΩ
2 (R2).

Theorem 4.4. The mapping U is the solution to problem (P1) and it is almost
surely unique in AΩ

2 (R2).

Proof. Since U(ω) is the unique solution to problem (P1(ω)gen) in A2

(
R2
)

thus
almost surely in ω ∈ Ω, the map λ 7→ RU (λ, (·, ·) , ω) = U(ω)λ, (λ = (ε, η)),
belongs to X2(R2) and it is a representative of U(ω) (i.e. U(ω) = [U(ω)λ]). For
fixed λ = (ε, η) ∈ Λ, the map

((x, y) , ω) 7→ RU (λ, (x, y) , ω) = U(ω)λ(x, y)

is jointly measurable on R2×Ω. Then U is the solution to problem (P1) almost
surely unique in AΩ

2 (R2).

4.3. Limiting behavior of the solution

See [11], [12]. Take Wε = (W (ω) ∗ χε). We have E(Wε) = 0 and V (Wε) =

σ2
ε = ‖χε‖2L2(R). Then the variance of Wε tends to infinity as ε tends to 0. That

implies

Theorem 4.5. There is a subsequence εk → 0 such that µ-almost surely in
ω ∈ Ω,

lim
k→0
|RV ((εk, η) , (t, x) , ω)| = lim

k→0
|V (ω)εk,η(t, x)| =∞

for almost all (x, y) ∈ R2.

Proof. See [11] Corollary 1 and [12].

Suppose that lim
|z|→∞

F (z) = L. Define the function M : R2 → R by

M(t, x) = tL.
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Theorem 4.6. Under the assumptions above, every subsequence of ε→ 0 has
a subsequence εk → 0 such that for any compact set K b R2

lim
k→0
‖RU ((εk, η) , (·, ·) , ω)−RV ((εk, η) , (·, ·) , ω)−M‖L1(K) = 0

µ-almost surely.

That is
lim
k→0
‖U(ω)εk,η − V (ω)εk,η −M‖L1(K) = 0

µ-almost surely.

Proof. Take λ = (ε, η). We have

∂ (U(ω)λ − V (ω)λ −M)

∂t
=
∂ (U(ω)λ)

∂t
− ∂ (V (ω)λ +M)

∂t

and

∂ (U(ω)λ)

∂t
− ∂ (V (ω)λ +M)

∂t
= F (U(ω)λ)− L
= (F (U(ω)λ)− F (V (ω)λ +M)) + (F (V (ω)λ +M)− L)

= (U(ω)λ − V (ω)λ −M)

∫ 1

0

∂F

∂z
(U(ω)λ + σ (U(ω)λ − V (ω)λ −M)) dσ

+ (F (V (ω)λ +M)− L) .

So∥∥∥∥∂ (U(ω)λ − V (ω)λ −M)

∂t

∥∥∥∥
L1(K)

≤ ‖U(ω)λ − V (ω)λ −M‖L1(K)

∥∥∥∥∂F∂z
∥∥∥∥
L∞(R)

+ ‖F (V (ω)λ +M)− L‖L1(K)

By Theorem 4.5, there is a subsequence εk → 0 such that µ-almost surely
in ω ∈ Ω almost everywhere

(
(t, x) ∈ R2

)
, lim
k→0
|V (ω)εk,η(t, x)| =∞.

As lim
|z|→∞

F (z) = L, we deduce that

lim
k→0
‖F (V (ω)λ +M)− L‖L1(K) = 0

almost everywhere.
Hence by Lebesgue’s theorem and Gronwall’s lemma the assertion follows.

Theorem 4.7. Let V ∈ D′Ω
(
R2
)
be the distributional solution to the free

equation (P2). Then the representative U(ω)ε,η of the generalized solution to the
nonlinear problem (P1) converges to V +M with respect to the strong topology
of D′

(
R2
)
, in probability as ε→ 0.
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Proof. Let q be one of the defining seminorms of the strong topology of D′
(
R2
)
.

According to Theorem 4.6, every subsequence of ε → 0 has a subsequence
εk → 0 such that for any compact set K b R2

q(RU ((εk, η) , (·, ·) , ω)−RV ((εk, η) , (·, ·) , ω)−M)→ 0

almost surely. This is equivalent to convergence in probability.
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