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On Huang, Jaggi-Das, Khan and Abbas type results in
the context of F-metric spaces and applications to

integral equations
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Abstract. The purpose of this paper is to present some fixed point
results in F -complete F -metric spaces. Our results are generalizations of
Banach contraction principle and many other ones in exiting literature.
Also, some examples and an application to an integral equation are given
to illustrate the usefulness of the obtained results.
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1. Introduction and Preliminaries

Fixed point theory plays a pivotal role in functional and nonlinear analysis.
The Banach contraction principle is an important result of the fixed point the-
ory. In recent years, various extensions of metric spaces have been introduced
(see e.g. [2, 3, 4, 5, 7, 8, 14, 17, 16, 18, 19, 20] and references therein). The
notion of an F-metric space was firstly introduced and studied by Jleli and
Samet in [12] (see e.g. [6, 10, 15] and references therein).

In this paper, we also prove and extend some results of Huang et al.[9],
Jaggi et al.[11], Khan[13] and Abbas et al.[1] to the context of F-metric spaces.
We recall some of the basic definitions and results in the sequel.
Let F be the set of functions f : (0,+∞)→ R such that
F1) f is non-decreasing, i.e., 0 < s < t implies f(s) ≤ f(t).
F2) For every sequence {tn} ⊂ (0,+∞), we have

lim
n→+∞

tn = 0 if and only if lim
n→+∞

f(tn) = −∞.

Definition 1.1. [12] Let X be a (nonempty) set. A function D : X × X →
[0,+∞) is called an F-metric on X if there exists (f, α) ∈ F × [0,+∞) such
that for all x, y ∈ X the following conditions hold:
(D1) D(x, y) = 0 if and only if x = y.
(D2) D(x, y) = D(y, x).
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(D3) For every N ∈ N, N ≥ 2 and for every {ui}Ni=1 ⊂ X with (u1, uN ) = (x, y),
we have

D(x, y) > 0 implies f(D(x, y)) ≤ f(

N−1∑
i=1

D(ui, ui+1)) + α.

In this case, the pair (X,D) is called an F-metric space.

Example 1.2. [12] Let X = R and D : X×X → [0,+∞) be defined as follows:

D(x, y) =

{
(x− y)2 (x, y) ∈ [0, 3]× [0, 3],

|x− y| otherwise,

and let f(t) = ln(t) for all t > 0 and α = ln(3). Then, D is an F-metric on X.
Since D(1, 3) = 4 ≥ D(1, 2) +D(2, 3) = 2, Then D is not a metric on X.

Example 1.3. [12] Let X = R and D : X×X → [0,+∞) be defined as follows:

D(x, y) =

{
e|x−y| x 6= y,

0 x = y.

Then, D is an F-metric on X. Since D(1, 3) = e2 ≥ D(1, 2) + D(2, 3) = 2e,
Then D is not a metric on X.

Definition 1.4. [12] Let (X,D) be an F-metric space and {xn} be a sequence
in X.
1) A sequence {xn} is called F-convergent to x ∈ X, if limn→+∞D(xn, x) = 0.
2) A sequence {xn} is F-Cauchy, if and only if limn,m→+∞D(xn, xm) = 0.
3) An F-metric space (X,D) is said to be F-complete, if every F-Cauchy
sequence in X is F-convergent to some element in X.

Lemma 1.5. [15] Let (X,D) be an F-metric space . Let {xn} be a sequence
in (X,D) such that

D(xn, xn+1) ≤ λD(xn−1, xn), n ∈ N,

for λ, 0 ≤ λ < 1. Then {xn} is an F-Cauchy sequence in (X,D).

Theorem 1.6. [12] Let (X,D) be F-complete F-metric space and let T : X →
X be a self-mapping satisfying

D(Tx, Ty) ≤ λD(x, y),(1.1)

for all x, y ∈ X where 0 ≤ λ < 1, then T has a unique fixed point.

Huang et al. [9] proved the following fixed point result in the setting of
b-metric spaces.
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Theorem 1.7. Let (X, d) be a b-complete b-metric space with parameter s ≥ 1
and T : X → X be a self-mapping such that for all x, y ∈ X

d(Tx, Ty) ≤ λ1d(x, y) + λ2
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ λ3

d(x, Ty)d(y, Tx)

1 + d(x, y)

+ λ4
d(x, Tx)d(x, Ty)

1 + d(x, y)
+ λ5

d(y, Ty)d(y, Tx)

1 + d(x, y)
,(1.2)

where λ1 + λ2 + λ3 + sλ4 + sλ5 < 1. Then T has a unique fixed point.

Jaggi et al. [11], proved the following results.

Theorem 1.8. Let (X, d) be a complete metric space. If a map T : X → X
satisfies

d(Tx, Ty) ≤ λ1d(x, y) + λ2
d(x, Tx)d(y, Ty)

d(x, y) + d(x, Ty) + d(y, Tx)
(1.3)

for all x, y ∈ X, where 0 ≤ λ1 + λ2 < 1, Then T has a unique fixed point.

Khan [13] proved the following fixed point result for complete metric spaces.

Theorem 1.9. Let (X, d) be a complete metric space and let T : X → X be a
self-mapping such that

d(Tx, Ty) ≤ λd(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

d(x, Ty) + d(y, Tx)
,(1.4)

for all x, y ∈ X, where 0 ≤ λ < 1. Then T has a unique fixed point.

Definition 1.10. [1] Let T and S be self maps of a set X. Two self-mappings
T and S are said to be weakly compatible if they commute at their coincidence
points; i.e., if Tx = Sx for some x ∈ X, then TSx = STx.

Proposition 1.11. [1] Let T and S be weakly compatible self maps of a set
X. If T and S have a unique point of coincidence w = Tx = Sx, then w is the
unique common fixed point of T and S.

Abbas et al. [1] proved following common fixed point theorem in a normal
cone metric space.

Theorem 1.12. Let (X, d) be a cone metric space and P a normal cone with
normal constant K. Suppose the mappings f, g : X → X satisfy

d(fx, fy) ≤ kd(gx, gy),

for all x, y ∈ X, where k ∈ [0, 1) is a constant. If the range of g contains the
range of f and g(X) is a complete subspace of X, then f and g have a unique
point of coincidence in X. Moreover if f and g are weakly compatible, f and g
have a unique common fixed point.
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2. Main results

In this section, we prove several fixed point theorems for mappings defined
on an F-metric space.

Theorem 2.1. Let (X,D) be an F-complete F-metric space and let T be a
self-mapping on X satisfying

D(Tx, Ty) ≤ λ1D(x, y) + λ2
D(x, Tx)D(y, Ty)

1 +D(x, y)
+ λ3

D(x, Ty)D(y, Tx)

1 +D(x, y)
,(2.1)

for all x, y ∈ X, where 0 ≤ λ1 + λ2 + λ3 < 1. Then T has a unique fixed point.

Proof. Let x0 be an arbitrary point in X. We can define a sequence {xn}
such that xn+1 = Txn for each n ∈ N ∪ {0}. In case xm = xm+1 for some
m ∈ N ∪ {0}, then it is clear that xm is a fixed point of T . So assume that
xn 6= xn+1 for all n ∈ N ∪ {0}. From (2.1), we have

D(xn, xn+1) = D(Txn−1, Txn)

≤ λ1(xn−1, xn) + λ2
D(xn−1, Txn−1)D(xn, Txn)

1 +D(xn−1, xn)

+ λ3
D(xn−1, Txn)D(xn, Txn−1)

1 +D(xn−1, xn)

= λ1D(xn−1, xn) + λ2
D(xn−1, xn)D(xn, xn+1)

1 +D(xn−1, xn)

+ λ3
D(xn−1, xn+1)D(xn, xn)

1 +D(xn−1, xn)
,

for all n ∈ N. Then, we have D(xn, xn+1) ≤ λD(xn−1, xn), for all n ∈ N,
where λ = λ1

1−λ2
< 1. By Lemma 1.5, {xn} is a Cauchy sequence. Since X

is complete, then there exists x∗ ∈ X such that limn→+∞D(xn, x
∗) = 0. We

shall prove that x∗ is a fixed point of T . Suppose D(Tx∗, x∗) > 0. From D3

for all n ∈ N, we have

f(D(Tx∗, x∗)) ≤ f(D(Tx∗, Txn) +D(Txn, x
∗)) + α.

Using (2.1) and (F1), we obtain

f(D(Tx∗, x∗) ≤ f(λ1D(x∗, xn) + λ2
D(x∗, Tx∗)D(xn, Txn)

1 +D(x∗, xn)

+ λ3
D(x∗, Txn)D(xn, Tx

∗)

1 +D(x∗, xn)
+D(Txn, x

∗)) + α.

Since

lim
n→+∞

(λ1D(x∗, xn) + λ2
D(x∗, Tx∗)D(xn, Txn)

1 +D(x∗, xn)

+λ3
D(x∗, Txn)D(xn, Tx

∗)

1 +D(x∗, xn)
+D(Txn, x

∗)) = 0,
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from (F2) we have

lim
n→+∞

f(λ1D(x∗, xn) + λ2
D(x∗, Tx∗)D(xn, Txn)

1 +D(x∗, xn)

+λ3
D(x∗, Txn)D(xn, Tx

∗)

1 +D(x∗, xn)
+D(Txn, x

∗)) + α = −∞,

which is a contradiction. Then, we have D(Tx∗, x∗) = 0, that is Tx∗ = x∗.
Finally, we shall show that the fixed point is unique. To this end, we assume
that there exists another fixed point z∗ and D(x∗, z∗) > 0. From (2.1), we have

D(x∗, z∗) =D(Tx∗, T z∗)

≤λ1D(x∗, z∗) + λ2
D(x∗, Tx∗)D(z∗, T z∗)

1 +D(x∗, z∗)
+ λ3

D(x∗, T z∗)D(z∗, Tx∗)

1 +D(x∗, z∗)

≤(λ1 + λ3)D(x∗, z∗)

< D(x∗, z∗),

which is a contradiction and hence x∗ = z∗.

If λ2 = λ3 = 0, Theorem 2.1 reduces to the Banach contraction principle in
an F-metric space.

Corollary 2.2. Let (X,D) be an F-complete F-metric space and T : X → X
be a self-mapping satisfying

D(Tx, Ty) ≤ λD(x, y)(2.2)

for all x, y ∈ X, where 0 ≤ λ < 1. Then T has a unique fixed point.

Example 2.3. Let X = [0,+∞) be endowed with the F-metric given in Ex-
ample 1.3. Define T : X → X by

Tx =

{
9
8x x ∈ [0, 12 ],

0 x /∈ [0, 12 ].

Set λ1 = 3
4 , λ2 = 7

8 and λ3 = 0. Hence, all the conditions of Theorem 2.1 are
satisfied and T has a unique fixed point in X.

Theorem 2.4. Let (X,D) be an F-complete F-metric space and T be a self-
mapping on X satisfying

D(Tx, Ty) ≤ λ1D(x, y) + λ2
D(x, Tx)D(y, Ty)

D(x, y) +D(x, Ty) +D(y, Tx)
,(2.3)

for all x, y ∈ X where λ1 + λ2 < 1. Then T has a unique fixed point.
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Proof. Let x0 be an arbitrary point in X. We can define a sequence {xn} such
that xn+1 = Txn for each n ≥ 0. Without loss of generality, we assume that
xn 6= xn+1 for all n ∈ N ∪ {0}. From (2.3), we have

D(xn, xn+1) =D(Txn−1, Txn)

≤λ1D(xn−1, xn)

+ λ2
D(xn−1, Txn−1)D(xn, Txn)

D(xn−1, xn) +D(xn−1, Txn) +D(xn, Txn−1)

=λ1D(xn−1, xn) + λ2D(xn, xn+1).

for all n ∈ N. Then, we get D(xn, xn+1) ≤ λD(xn−1, xn), where λ = λ1

1−λ2
< 1.

Applying Lemma 1.5, {xn} is an F-Cauchy sequence. Since X is F-complete,
then there exists x∗ ∈ X such that limn→+∞D(xn, x

∗) = 0. Now, we show
that x∗ is a fixed point of T . Suppose D(Tx∗, x∗) > 0. From D3 we get

f(D(Tx∗, x∗)) ≤ f(D(Tx∗, Txn) +D(Txn, x
∗)) + α,

for all n ∈ N. Using (2.3) and F1, we obtain

f(D(Tx∗, x∗)) ≤ f(λ1D(x∗, xn) + λ2
D(x∗, Tx∗)D(xn, Txn)

D(x∗, xn) +D(x∗, Txn) +D(xn, Tx∗)

+D(Txn, x
∗)) + α.

Since

lim
n→+∞

(λ1D(x∗, xn) + λ2
D(x∗, Tx∗)D(xn, Txn)

D(x∗, xn) +D(x∗, Txn) +D(xn, Tx∗)
+D(Txn, x

∗)) = 0,

from (F2), we have

lim
n→+∞

f(αD(x∗, xn) + λ2
D(x∗, Tx∗)D(xn, Txn)

D(x∗, xn) +D(x∗, Txn) +D(xn, Tx∗)
+D(Txn, x

∗)) + α = −∞,

which is a contradiction. Then, we have D(Tx∗, x∗) = 0, that is, Tx∗ = x∗.
We show that the fixed point is unique. Assume on the contrary that Tz∗ = z∗,
D(x∗, z∗) > 0. From (2.3), we have

D(x∗, z∗) = D(Tx∗, T z∗)

≤ λ1D(x∗, z∗) + λ2
D(x∗, Tx∗)D(z∗, T z∗)

D(x∗, z∗) +D(x∗, T z∗) +D(z∗, Tx∗)

≤ λ1D(x∗, z∗)

< D(x∗, z∗),

which is a contradiction and hence x∗ = z∗.

Theorem 2.5. Let (X,D) be F-complete F-metric space and T be a self-
mapping on X satisfying

D(Tx, Ty) ≤ λ1D(x, y) + λ2
D(x, Tx)D(x, Ty) +D(y, Ty)D(y, Tx)

D(x, Ty) +D(y, Tx)
,(2.4)

for all x, y ∈ X, where λ1 + λ2 < 1. Then T has a unique fixed point.
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Proof. The proof is similar to Theorem 2.4, therefore we omit it.

Corollary 2.6. If λ2 = 0, Theorem 2.4 and Theorem 2.5, reduced to Banach
contraction principle.

Example 2.7. Let X = [0,+∞) be endowed with the F-metric given in Ex-
ample 1.2. Define T : X → X by Tx = 1

ex+1 . We discuss two possible cases.
Case 1) If (x, y) ∈ [0, 3]× [0, 3],

D(Tx, Ty) = (
1

ex+1
− 1

ey+1
)2.

By the Mean Value Theorem, there exists a real number c between x and y,
such that

D(Tx, Ty) = (− 1

ec+1
)2|x− y|2

≤ 1

e
|x− y|2

=
1

e
D(x, y)

Case 2) If (x, y) /∈ [0, 3]× [0, 3], we have

D(Tx, Ty) = (
1

ex+1
− 1

ey+1
)2

≤ | 1

ex+1
− 1

ey+1
|.

By the Mean Value Theorem, there exists a real number c between x and y,
such that

D(Tx, Ty) ≤ | − 1

ec+1
||x− y|

≤ 1

e
|x− y|

=
1

e
D(x, y).

Therefore, we deduce that

D(Tx, Ty) ≤ 1

e
D(x, y)

Hence for λ1 = 1
e and λ2 = 0, all the conditions of Theorem 2.4 and Theorem

2.5 are satisfied and hence T has a unique fixed point in X.

Theorem 2.8. Let (X,D) be an F-metric space and T, S : X → X be self-
mappings on X which satisfy

D(Tx, Ty) ≤ λD(Sx, Sy),(2.5)

for x, y ∈ X, where 0 < λ < 1. If T (X) ⊆ S(X) and S(X) is an F-complete
subspace of X, then T and S have a unique point of coincidence in X. Also,
if T and S are weakly compatible, then T and S have a unique common fixed
point.



8 Masoumeh Cheraghi, Hamid Faraji

Proof. Let x0 be an arbitrary point in X. Since T (X) ⊆ S(X), we choose a
point x1 in X such that Tx0 = Sx1. Inductively, we can define a sequence
{xn} in X such that Txn = Sxn+1 for all n ∈ N ∪ {0}. Using (2.5), we obtain

D(Sxn+1, Sxn) = D(Txn, Txn−1)

≤ λD(Sxn, Sxn−1),

for all n ∈ N, where λ < 1. By Lemma 1.5, {Sxn} is a Cauchy sequence. By
the completeness of S(X) there is some p ∈ X such that

limn→+∞Sxn = Sp.(2.6)

Using (D3), we have

f(D(Tp, Sp)) ≤ f(D(Sxn, Sp) +D(Sxn, Tp)) + α, n ∈ N.

Applying (2.5) and (F1), we get

f(D(Tp, Sp)) = f(D(Sxn, Sp) +D(Sxn, Tp)) + α

= f(D(Sxn, Sp) +D(Txn−1, Tp)) + α

≤ f(D(Sxn, Sp) + λD(Sxn−1, Sp)) + α,

for all n ∈ N. On the other hand, using (F2) and (2.6), we obtain

lim
n→+∞

f(D(Sxn, Sp) + λD(Sxn−1, Sp)) + α = −∞.

This is a contradiction, unless D(Tp, Sp) = 0, i.e. Tp = Sp and p is a co-
incidence point of T and S. For uniqueness, assume that there exists an-
other point q ∈ X such that Tq = Sq with p 6= q. Using (2.5), we have
D(Sp, Sq) = D(Tp, Tq) ≤ λD(Sp, Sq), a contradiction. Applying Proposition
1.11, T and S have a unique common fixed point.

Corollary 2.9. If S = I (the identity mapping on X), we obtain the Banach
contraction principle.

Example 2.10. Let X = [0,+∞) be endowed with the F-metric given in
Example 1.2. Define T, S : X → X by Tx = 1

ex+3 and Sx = x
e . For λ = 1

e , all
conditions of Theorem 2.8 are satisfied and then T and S have a unique point
of coincidence in X.

3. Application to integral equation

Let X = C[a, b] be the set of all real continuous functions on [a, b] equipped
with the F-metric

D(u, v) = ||u− v||∞.
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It is well known that (X,D) is an F−complete F−metric space with f(t) = lnt
and α = 0. We consider the integral equation:

u(t) =

∫ b

a

k(t, s, u(s))ds,(3.1)

where k : [a, b]× [a, b]× R→ R. Let T : X → X be a mapping defined by:

Tu(t) =

∫ l

0

k(t, s, u(s)), u ∈ X, t, s ∈ [a, b].

Theorem 3.1. Assume that the following conditions are satisfied:
(1) k : [a, b]× [a, b]× R→ R is continuous;
(2) for all u, v ∈ X and t, s ∈ [a, b], we have

|k(t, s, u(s)))− k(t, s, v(s))|2 ≤ G(t, s)ln(
|u(s)− v(s)|2

4
+ 1).

where G : [a, b] × [a, b] → R is continuous function and for all t, s ∈ [a, b], we
have: ∫ b

a

G(t, s)2ds ≤ 1

b− a
.

Then, the integral equation (3.1) has a solution in X.

Proof. Let u, v ∈ X. Using condition (2) and the Cauchy Schwarz inequality,
we have

|Tu(t)− Tv(t)|2 =
( ∫ b

a

|k(t, s, u(s))− k(t, s, v(s))ds|
)2

≤
∫ b

a

12ds

∫ b

a

|k(t, s, u(s))− k(t, s, v(s))|2ds

≤ (b− a)

∫ b

a

G(t, s)ln(
|u(s)− v(s)|2

4
+ 1)ds

≤ (b− a)

∫ b

a

G(t, s)ln(
D(u, v)2

4
+ 1)ds

≤ (b− a)
( ∫ b

a

G(t, s)ds
)
ln(

D(u, v)2

4
+ 1)

< ln(
D(u, v)2

4
+ 1)

≤ D(u, v)2

4

So, we get

D(Tu, Tv) ≤ D(u, v)

2
.

Hence for λ1 = 1
2 and λ2 = 0, all the conditions of Theorem 2.4 and Theorem

2.5 are satisfied and hence T has a unique fixed point in X.
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