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Common e-soft fixed points of soft set-valued maps

Akbar Azam1 and Mohammed Shehu Shagari23

Abstract. Recently, a new type of set-valued mapping called soft set-
valued map was introduced in the literature as a generalization of the
concepts of fuzzy set-valued and multi-valued mappings. The present
article extends the new notion by establishing, among others, the idea
of common e-soft fixed point of soft set-valued maps. From application
point of view, one of our obtained results is employed to establish novel
sufficient conditions for the existence of fuzzy number-valued solution
of fuzzy Volterra integral equation. Non-trivial examples are further
provided to support the hypotheses of our results. The presented idea
herein includes several fixed point theorems on point-to-point and point-
to-set valued mappings as consequences. A few of these special cases are
highlighted and discussed.
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1. Introduction

Fixed point theory is one of the most active research fields in modern nonlin-
ear functional analysis. In general, fixed point problem is of the form Tx = x,
where T is a self-mapping on a non-empty set X. This problem can be re-
formulated as g(x) = 0, where g(x) = x − Tx. As simple as this problem
statement is, finding its solution may be extremely difficult and sometimes it
is not obtainable. The earliest affirmative response to this problem was pre-
sented by Banach [8] under some suitable conditions: when T is a contraction
and X is equipped with a norm such that the corresponding topology yields
completeness. So far, fixed point techniques have gained enormous applications
in diverse areas such as biology, economics, chemistry, physics, engineering and
so on. In 1969, Kannan[19] gave an analogue sort of contractive condition
that demonstrated the existence of fixed point. The basic distinction between
Banach fixed point theorem (BFT) and that of Kannan contraction is that
continuity of contraction is not required in the later. Similar well-known im-
provements of the BFT were established by Chatterjea [11] and Edelstein [14].
In the last five decades, the above results have been generalized in different
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directions. For a comprehensive survey on this subject, the interested reader
may consult Rhoades [27], Smart [31] or Taskovic [33].

Along the line, the area of applied mathematics witnessed tremendous de-
velopments as a result of the introduction of soft set theory by Molodstov [22].
The method of handling problems in classical mathematics is the opposite of
the technique of soft set theory. In conventional mathematics, to describe any
system or object, we first construct its mathematical model and then attempt
to obtain the exact solution. If the exact solution is too complicated, then
we define the notion of approximate solution. On the other hand, in soft set
theory, the initial description of an object takes an approximate nature with
no restriction, and the notion of exact solution is not essential. In other words,
to describe an object in soft set theory, any convenient parametrization tools
which may be words, sentences, numbers, mappings, functions, to mention a
few, may be used. Thereby, the theory becomes easier and more flexible in
terms of applications in everyday life. In [22], Moldstov highlighted several
directions for the applications of soft sets, such as smoothness of functions,
game theory, Riemann-integration, operation research, probability and so on.
Currently, the concept of soft set is gaining more than a handful of extensions
and applications in different fields of studies. For example, see [10, 12, 15, 28]
and references therein.

It is well-known that set-valued analysis has enormous applications in con-
trol theory, game theory, biomathematics, qualitative physics, viability theory,
and so on. In this continuation, not long ago, Shagari and Azam [21, 30] stud-
ied the concept of soft set-valued maps and introduced the notions of e-soft
fixed points and E-soft fixed points of maps whose range set is a family of
soft sets. It is shown in [21] that every fuzzy mapping is a particular kind of
soft set-valued map. Since every fuzzy mapping has its corresponding multi-
function analogue (see [16, Theorem 2.2]), hence, the idea of e-soft fixed point
theorems is a generalization of the concept of fuzzy fixed points and fixed points
of multi-valued maps. In this manuscript, we extend the main result in [21].
In particular, the concept of common e-soft fixed point of soft set-valued maps
is initiated, among others. From application point of view, one of our obtained
results is employed to establish new sufficient conditions for the existence of
fuzzy number-valued solution of fuzzy Volterra integral equation. Examples
are supplied to validate the hypotheses of our results.

2. Preliminaries

In this section, we recall specific concepts of soft sets and soft set-valued
maps from [21, 30, 22]. Let X be the universal set and E be the universe of
discourse of all parameters related to the elements in X. In this case, each
parameter is a word, sentence or function. Let P (X) be the power set of X.
Molodstov [22] defined the concept of soft set in the following manner.

Definition 2.1. [22] A pair (F,A) is called a soft set over X, where A ⊆ E
and F is a set- valued mapping F : A −→ P (X). In this way, a soft set over
X is a parameterized family of subsets of X.
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Example 2.2. Suppose the soft set (F,E) describes the structures of certain
number of men. Let the universal set of all men be

X = {x1, x2, x3, x4, x5}

and the universe of all parameters be represented by

E = {e1, e2, e3, e4} = {fat, tall,muscular, lanky}.

In this case, to define a soft set means to point out fat men, tall men, muscular
men, and lanky men. Thus, we may define F : E −→ P (X) by F (e1) =
{x1, x2, x5} , F (e2) = {x2, x4, x5}, F (e3) = {x5}, F (e4) = empty. So, the soft
set (F,E) is a parameterized family {F (ei) : i = 1, 2, 3, 4} of P (X).

Shagari and Azam [21] initiated the idea of soft-valued maps and e-soft
fixed points via the following preliminary concepts.

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed
and bounded subsets of X. Denote by [P (X)]E the family of all soft sets over
X under E. Then consider two soft sets (F,A) and (G,B), (a, b) ∈ A × B.

Assume that F (a), G(b) ∈ CB(X). For ε > 0, define Nd(ε, F (a)), S
(a,b)
EX (F,G)

and Ed(Fa,Gb), respectively, as follows:

Nd(ε, F (a)) = {x ∈ X : d(x, y) < ε, for some y ∈ F (a)}

Ed(Fa,Gb) = {ε > 0 : F (a) ⊆ Nd(ε,G(b)), G(b) ⊆ Nd(ε, F (a))},
and

S
(a,b)
EX (F,G) = inf Ed(Fa,Gb),

Let R+ = [0,∞) and define a distance function S∞EX : [P (X)]E × [P (X)]E −→
R+ by

S∞EX(F,G) = sup
(a,b)∈A×B

S
(a,b)
EX (F,G), where

A×B = {(a, b) ∈ A×B : F (a), G(b) ∈ CB(X)}.

Definition 2.3. [21] A mapping T : X −→ [P (X)]E is called a soft set-valued
map. A point x ∈ X is called an e-soft fixed point of T if x ∈ (Tx)(e), for
some e ∈ E. This is also written as x ∈ Tx, for short. If DomTx = E and
x ∈ (Tx)(e) for all e ∈ E, then x is said to be an E-soft fixed point of T .

We shall denote the set of all E-soft fixed points of a soft set-valued map T
by EFix(T ). The domain of T , written as DomT , is given as

DomT = {x ∈ X : (Tx)(e) ⊆ X, e ∈ E}.

Notice that if T : X −→ [P (X)]E is a soft set-valued map, then (Tx,E) is
a soft set over X, for all x ∈ X. In the remaining part of this paper, if
T : X −→ [P (X)]E is a soft set-valued map, then the set (Tx)(e) shall be
written as (Tex).

Several examples of soft set-valued maps have been provided in [21, 30].
However, we give an additional example as follows.
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Example 2.4. Let X = {6, 7, 8} and E = {1, 2}. For all x ∈ X, define
T : X −→ [P (X)]E as follows:

(Tex) =

{
{6, 8}, if e = 1

{7, 8}, if e = 2.

Then T is a soft set-valued map. Notice that 6 ∈ (Te6) for e = 1 and
7 ∈ (Te7) for e = 2; hence, 6 and 7 are e-soft fixed points of T . But, 7 /∈ (Te7)
and 6 /∈ (Te6) for e = 1 and e = 2, respectively. It follows that 6 and 7 are not
E-soft fixed points of T . On the other hand, 8 ∈ (Te8) for all e ∈ E; thus, the
set of all E-soft fixed points of T is given by EFix(T ) = {8}. The map T can
be represented as in Figure 1. Notice that in Figure 1, the dots represent other
subsets of X.

Figure 1: Graphical representation of the soft set-valued map in Example 2.4

3. Main results

We start this section with the following definitions.

Definition 3.1. Let S, T : X −→ [P (X)]E be soft set-valued maps.

(i) A point x is called an e-soft coincidence point of S and T if (Sx)(a(x)) =
(Tx)(a(x)) for some a(x) = e ∈ E. A point y ∈ X such that y ∈
(Sx)(a(x)) = (Tx)(a(x)) is said to be an e-soft point of coincidence of S
and T .
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(ii) A point x ∈ X is known as a common e-soft fixed point of S and T if
x ∈ (Sx)(a(x)) ∩ (Tx)(a(x)), for some a(x) ∈ E. Similarly, x is called a
common E-soft fixed point of S and T if DomSx = DomTx = E and
x ∈ (Sx)(a(x)) ∩ (Tx)(a(x)) for all a(x) = e ∈ E.

Remark 3.2. Note that “a(x)” is a notation (and not a function of x) repre-
senting an element in the parameter set E with regards to an element x in the
universal set X. Whenever there is danger of confusion, we write a(x) = e ∈ E.

Theorem 3.3. Let (X, d) be a complete metric space, g : X −→ X be a
surjection with gx = x̄, E be the parameter set and S, T : X −→ [P (X)]E any
two soft set-valued maps. Suppose that for each x ∈ X there exist a(x) = e ∈
DomSx and a(x) = e ∈ DomTx such that (Sx)(a(x)), (Tx)(a(x)) ∈ CB(X).
If there exists ρ ∈ (0, 1) such that for all x, y ∈ X,

(3.1) S
(a(x),a(y))
EX (Sx, Ty) ≤ ρd(x̄, ȳ),

then there exists ū ∈ X such that ū ∈ (Su)(a(u)) ∩ (Tu)(a(u)), for some
a(u) = e ∈ E.

Proof. Let x0 be an arbitrary but fixed element of X, then by the hypothe-
ses, there exists a(x0) ∈ DomS(x0) such that (Sx0)(a(x0)) is a nonempty
closed and bounded subset of X. Let gx1 = x̄1 ∈ (Sx0)(a(x0)), it follows that
(Sx0)(a(x0)) ∈ CB(X). Hence, for this x̄1, we can find x̄2 ∈ X such that x̄2 ∈
(Sx1)(a(x1)). Without loss of generality, assume that x̄n ∈ (Sxn−1)(a(xn−1)),
for all n ∈ N. We shall show that x̄n+1 ∈ (Txn)(a(xn)), for all n ∈ N. If there
exists n∗ ∈ N such that x̄n∗+1 = x̄n∗ ∈ (Sxn∗) ∩ (Txn∗)(a(xn∗)), for some
a(xn∗) ∈ E, then ū = x̄n∗ is a common e-soft fixed of S and T . So assume that
x̄n+1 6= x̄n for all n ∈ N. Setting x̄ = x̄0 and ȳ = x̄1 in (3.1) with λ =

√
ρ, and

κ = λd(x̄0, x̄1), we have

S
(a(x0),a(x1))
EX (Sx0, Tx1) ≤ ρd(x̄0, x̄1) < κ.

Then κ ∈ Ed((Sx0)(a(x0)),(Tx1)(a(x1))). This means

(Sx0)(a(x0)) ⊆ Nd (κ, (Tx1)(a(x1))) and (Tx1)(a(x1)) ⊆ Nd (κ, (Sx0)(a(x0))) .

This implies that x̄1 ∈ Nd (κ, (Tx1)(a(x1))) and hence, there exists some x̄2 ∈
(Tx1)(a(x1)) such that

(3.2) d(x̄1, x̄2) < κ.

Again, take x̄ = x̄1 and ȳ = x̄2 in (3.9) with λ =
√
ρ and κ2 = λd(x̄1, x̄2) to

have

S
(a(x1),a(x2)
EX (Sx1, Tx2) ≤ ρd(x̄1, x̄2) < κ2.

It follows that κ2 ∈ Ed((Sx1)(a(x1)),(Tx2)(a(x2))). In other words,

(Sx1)(a(x1)) ⊆ Nd
(
κ2, (Tx2)(a(x2))

)
and (Tx2)(a(x2)) ⊆ Nd

(
κ2, (Sx1)(a(x1))

)
.
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By our assumption, it follows that x̄2 ∈ Nd
(
κ2, (Tx2)(a(x2))

)
. Thus, there

exists x̄3 ∈ (Tx2)(a(x2)) such that

(3.3) d(x̄2, x̄3) < κ2 ≤ λ2d(x̄0, x̄1).

Continuing this process repeatedly, for x̄n ∈ (Sxn−1)(a(xn−1)), we can find
x̄n+1 ∈ (Txn)(a(xn)) such that

(3.4) d(x̄n, x̄n+1) < κn ≤ λnd(x̄0, x̄1), for all n ∈ N.

From (3.4), by the triangle inequality, for all ξ ≥ 1, we have

d(x̄n, x̄n+ξ) ≤ d(x̄n, x̄n+1) + d(x̄n+1, x̄n+2)

+ · · · d(x̄n+ξ−1, x̄n+ξ)

≤
n+ξ−1∑
j=n

λjd(x̄0, x̄1) −→ 0 as n −→∞.

This implies that {x̄n}n∈N is a Cauchy sequence in X. Since (X, d) is complete,
there exists ū ∈ X such that

(3.5) lim
n−→∞

d(x̄n, u) = 0.

Now, by the triangle inequality and using the contractive condition (3.1), we
have

d(ū, (Su)(a(u))) ≤ d(ū, x̄n+1) + d(x̄n+1, (Su)(a(u)))

≤ d(ū, x̄n+1) + d((Txn)(a(xn)), (Su)(a(u)))

≤ d(ū, x̄n+1) + inf Ed(Txn,Su)

= d(ū, x̄n+1) + S
(a(xn),a(u))
EX (Txn, Su)

≤ d(ū, x̄n+1) + ρd(x̄n, ū).

(3.6)

Letting n −→∞ in (3.6), gives d(ū, (Su)(a(u))) ≤ 0. Therefore, ū ∈ (Su)(a(u)).
By similar steps, using

d(ū, (Tu)(a(u))) ≤ d(ū, x̄n) + d(x̄n, (Tu)(a(u))),

we can show that ū ∈ (Tu)(a(u)). Consequently, ū ∈ (Su)(a(u)) ∩ (Tu)(a(u)).

Example 3.4. Let E = [0, 1] and X = R+ be endowed with the usual metric.
Then (X, d) is a complete metric space. For each x ∈ X and e = a(x) ∈ E,
define two soft set-valued maps S, T : X −→ [P (X)]E by

(Sx)(a(x)) =


[0, 8x], if 0 ≤ a(x) ≤ 1

10(
1
2 , 4x

)
, if 1

10 < a(x) ≤ 1
6

∅, if 1
6 < a(x) ≤ 1,
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(Tx)(a(x)) =


(0, 6x), if 0 < a(x) < 1

25

[0, 8x], if 1
25 ≤ a(x) ≤ 1

13(
1
3 , 8x

]
, if 1

13 < a(x) ≤ 1.

Define g : X −→ X by gx = 9x = x̄. Clearly, the mapping g is surjective.
Then for each x ∈ X there exist a(x) ∈

[
0, 1

10

]
and a(x) ∈

[
1
25 ,

1
13

]
such that

(Sx)(a(x)) = [0, 8x] ∈ CB(X) and (Tx)(a(x)) = [0, 8x] ∈ CB(X).

Thus, for two soft sets (Sx,E) and (Ty,E), we have the following two cases:

Case I : If x = y, then

Ed(Sx,Ty) = [0,∞).

Case II : If x 6= y, then

Ed(Sx,Ty) = [8x− 8y,∞).

Hence, from case II (there is nothing to show in case I), we have

S
(a(x),a(y))
EX (Sx, Ty) ≤ S∞EX(Sx, Ty)

= |8x− 8y|

≤ 8

9
|9x− 9y|

≤ 8

9
|x̄− ȳ|

≤ ρd(x̄, ȳ), (where ρ ∈ (0, 1)) .

Consequently, all conditions of Theorem 3.3 are satisfied to find g0 = 0̄ ∈
(S0)(e) ∩ (T0)(e) for some a(x) = e ∈ E.

Corollary 3.5. Let (X, d) be a complete metric space, IX : X −→ X be the
identity mapping on X, E be the parameter set and S, T : X −→ [P (X)]E be
any two soft set-valued maps. Suppose that for each x ∈ X there exist a(x) ∈
DomSx and a(x) ∈ DomTx such that (Sx)(a(x)), (Tx)(a(x)) ∈ CB(X). If
there exists ρ ∈ (0, 1) such that for all x, y ∈ X,

(3.7) S
(a(x),a(y))
EX (Sx, Ty) ≤ ρd(x, y),

then there exists u ∈ X such that u ∈ (Su)(a(u)) ∩ (Tu)(a(u)), for some
a(u) ∈ E.

Corollary 3.6. [21, Thrm 3.1] Let (X, d) be a complete metric space, g : X −→
X be a surjection with gx = x̄, E be the parameter set and S : X −→ [P (X)]E

a soft set-valued map. Suppose that for each x ∈ X there exist a(x) ∈ DomSx
such that (Sx)(a(x)) ∈ CB(X). If there exists ρ ∈ (0, 1) such that for all
x, y ∈ X,

(3.8) S
(a(x),a(y))
EX (Sx, Sy) ≤ ρd(x̄, ȳ),

then there exists ū ∈ X such that ū ∈ (Su)(a(u)), for some a(u) ∈ E.
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Proof. Put S = T in Theorem 3.3.

Corollary 3.7. Let (X, d) be a complete metric space, g : X −→ X be a
surjection with gx = x̄, E be the parameter set and S, T : X −→ [P (X)]E

any two soft set-valued maps. Suppose that for each x ∈ X there exist a(x) ∈
DomSx and a(x) ∈ DomTx such that (Sx)(a(x)), (Tx)(a(x)) ∈ CB(X). If
there exists ρ ∈ (0, 1) such that for all x, y ∈ X,

(3.9) S
(a(x),a(y))
EX (Sx, Ty) ≤ ρ

(
d(x̄, ȳ)

1 + d(x̄, ȳ)

)
,

then there exists ū ∈ X such that ū ∈ (Su)(a(u)) ∩ (Tu)(a(u)), for some
a(u) ∈ E.

Proof. Since

S
(a(x),a(y))
EX (Sx, Ty) ≤ ρ

(
d(x̄, ȳ)

1 + d(x̄, ȳ)

)
≤ ρd(x̄, ȳ),

the conclusion follows from Theorem 3.3.

Corollary 3.8. Let (X, d) be a complete metric space, g : X −→ X be a
surjection with gx = x̄, E be the parameter set and S, T : X −→ [P (X)]E

be soft set-valued maps. Suppose for each x ∈ X, there exists a(x) ∈ DomSx
and a(x) ∈ DomTx such that (Sx)(a(x)), (Tx)(a(x)) ∈ CB(X). If there exists
ρ ∈ (0, 1) such that for all x, y ∈ X,

(3.10) S∞EX(Sx, Ty) ≤ ρd(x̄, ȳ)),

then there exists ū ∈ X such that ū ∈ (Su)(a(u)) ∩ (Tu)(a(u)), for some
a(u) ∈ E.

Proof. As

S
(a(x),a(y))
EX (Sx, Ty) ≤ S∞EX (Sx, Ty) ,

the proof follows directly by applying Theorem 3.3.

Corollary 3.9. [21] Let (X, d) be a complete metric space, g : X −→ X be
a surjection with gx = x̄, E be the parameter set and S : X −→ [P (X)]E a
soft set-valued map. Suppose for x ∈ X, there exists a(x) ∈ DomSx such that
(Sx)(a(x)) ∈ CB(X). If there exists β ∈ (0, 1) such that for all x, y ∈ X,

(3.11) S∞EX(Sx, Sy) ≤ βd(x̄, ȳ)),

then there exists ū ∈ X such that ū ∈ (Au)(a(u)), for some a(u) ∈ E.
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4. Fixed points of fuzzy and multivalued mappings

As a generalization of the notion of crisp sets, fuzzy sets was introduced by
Zadeh [35]. Since then, to use this concept, many authors have progressively
extended the theory and its applications to other branches of sciences, social
sciences and engineering. In 1981, Heilpern [17] used the idea of fuzzy set to
initiate a class of fuzzy set-valued maps and proved a fixed point theorem for
fuzzy contraction mappings which is a fuzzy analogue of the fixed point theorem
of Nadler [23]. Subsequently, several authors have studied the existence of fixed
points of fuzzy set-valued maps, for example, Al-Mazrooei etal [2], Abu-Donia
[1], Azam et al [5, 6, 4], Bose and Sahani [9], Qiu and Shu [26], and so on. For
convenience, we recall some specific concepts of fuzzy sets and fuzzy mappings
as follows.

Definition 4.1. [35] Let X be a universal set. A fuzzy set in X is a function
with domain X and values in [0, 1] = I. If A is a fuzzy set in X, then the
function value A(x) is called the grade of membership of x in A. The α-level
set of a fuzzy set A is denoted by [A]α and is defined as follows:

[A]α = {x ∈ X : A(x) ≥ α}, if α ∈ (0, 1]

[A]0 = {x ∈ X : A(x) > 0},
where by M , we mean the closure of the crisp set M . Denote by IX , the
collection of all fuzzy sets in X.

Let (X, d) be a metric space. For [A]α, [B]α ∈ CB(X), the function H :
CB(X)× CB(X) −→ R+, defined by

H([A]α, [B]α) = max

{
sup
x∈[A]α

d(x, [B]α), sup
x∈[B]α

d(x, [A]α)

}
is called the Hausdorff-Pompeiu metric on CB(X) induced by the metric d,
where

d(x, [A]α) = inf
y∈[A]α

d(x, y).

Definition 4.2. [17] A fuzzy set A in a metric linear space X is said to be
an approximate quantity if and only if [A]α is compact and convex in V and
supx∈V A(x) = 1.

We denote the collection of all approximate quantities in X by W (X). If
there exists an α ∈ [0, 1] such that [A]α, [B]α ∈W (X), then define

pα(A,B) = inf
x∈[A]α,y∈[B]α

d(x, y).

Dα(A,B) = H([A]α, [B]α).

p(A,B) = sup
α
pα(A,B)

d∞(A,B) = sup
α
Dα(A,B).
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Definition 4.3. [17] Let X be an arbitrary set and Y be a metric space. A
mapping z : X −→ IY is called a fuzzy mapping. A fuzzy mapping z is a
fuzzy subset of X × Y . The function z(x)(y) is the degree of membership of
y in z(x). An element u in X is said to be a fuzzy fixed point of z if there
exists an α ∈ I such that u ∈ [zu]α.

We recall that a set-valued mapping Θ : X −→ CB(X) is called a multi-
valued map. A point x ∈ X is said to be a fixed point of Θ if x ∈ Θx. In
1969, Nadler [23] first gave a generalization of the Banach contraction princi-
ple for multivalued map by using the Hausdorff metric. Since then, a number
of generalizations in various frames of Nadler’s fixed point theorem have been
investigated by several authors; see, for example, [7, 20, 24] and the references
therein.

In this section, as an application of Theorem 3.3, we deduce the conclusions
of some common fixed point theorems of Heilpern [17] and Nadler [23] type. Our
main aim here is to further illustrate the connections between fuzzy mappings,
multi-valued mappings and the concepts of soft set-valued maps. First, recall
that in [21], it is shown that every fuzzy mapping z : X −→ IX can be
considered as a soft set-valued map Tz : X −→ [P (X)]E=[0,1], defined by

Tz(x)(e) = {t ∈ X : (zx)(t) ≥ e}.

Similarly, X 7−→ P (X) is embedding by x −→ {x} and P (X) −→ IX is
embedding by M −→ χM , for every subset M of P (X); where χM is the char-
acteristic function of the crisp set M . In the like manner, IX −→ [P (X)][0,1]

is embedding by U −→ ΥU , for every U in IX ; where

ΥU (e) = Ue = {t ∈ X : U(t) ≥ e}.

Theorem 4.4. Let X be a complete linear metric space and z1,z2 : X −→
W (X) be fuzzy mappings . If there exists ρ ∈ (0, 1) such that

d∞ (z1x,z2y) ≤ ρd(x, y), for each x, y ∈ X,

then there exists u ∈ X such that χ{u} ⊂ z1(u) and χ{u} ⊂ z2(u).

Proof. Consider two soft set-valued maps Ωz1 ,Ωz2 : X −→ [P (X)]E=[0,1],
defined by

Ωz1
x(e) = {t ∈ X : (z1x)(t) ≥ e} = [z1x]e.

and
Ωz2

x(e) = {t ∈ X : (z2x)(t) ≥ e} = [z2x]e.

Then,

S
(1,1)
EX (Ωz1

x,Ωz2
y) = inf Ed((z1x)(1),(z2y)(1))

= H ([z1x]1, [z2y]1)

≤ d∞ (z1x,z2y)

≤ ρd(x, y).
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Hence, Theorem 3.3 can be applied with g = IX , the identity mapping on X,
to find u ∈ X such that u ∈ (Ωz1

u) (1) = [z1u]1 and u ∈ (Ωz2
u) (1) = [z2u]1.

It follows that χ{u} ⊂ z1(u) and χ{u} ⊂ z2(u).

Corollary 4.5. [17] Let X be a complete linear metric space and z : X −→
W (X) be a fuzzy mapping. If there exists β ∈ (0, 1) such that

d∞ (zx,zy) ≤ ρd(x, y), for each x, y ∈ X,

then there exists u ∈ X such that χ{u} ⊂ z(u).

Proof. Put z1 = z2 = z in Theorem 4.4.

Theorem 4.6. Let (X, d) be a complete metric space and

Θ,Λ : X −→ CB(X)

be multi-valued mappings satisfying the following conditions: there exists ρ ∈
(0, 1) such that

H(Θx,Λy) ≤ ρd(x, y).

Then there exists u ∈ X such that u ∈ Θu ∩ Λu.

Proof. Let E = {e1, e2} and consider two soft set-valued maps

T1, T2 : X −→ [P (X)]{e1,e2},

defined by

T1x(e) =

{
X, if e = e2

Θx, if e = e1.

and

T2x(e) =

{
Λx, if e = e2

X if e = e1.

Then,

S
(e1(x),e2(y))
EX (T1x, T2y) = inf Ed((T1x)(e1(x)),(T2y)(e2(y)))

= inf Ed(Θx,Λy)

= H (Θx,Λy)

≤ ρd(x, y).

Therefore, by Theorem 3.3 there exits u ∈ X such that

u ∈ T1u(e1(u)) = Θu and u ∈ T2u(e2(u)) = Λu.
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Corollary 4.7. [23] Let (X, d) be a complete metric space and

Θ : X −→ CB(X)

be a multi-valued mapping satisfying the following conditions: there exists ρ ∈
(0, 1) such that

H(Θx,Θy) ≤ ρd(x, y).

Then there exists u ∈ X such that u ∈ Θu.

Proof. Put Θ = Λ in Theorem 4.6.

5. Application to fuzzy Volterra integral equations

Fuzzy Volterra integral equations have been studied extensively due to their
applications in diverse fields such as medical diagnosis, predator-prey model
and in modeling of dynamical behaviour of several physical processes. The
notion of fuzzy integral equations was introduced by Kaleva [18] and Seikkala
[29]. Several authors applied different fixed point theorems such as the classical
Banach contraction principle [32], Shauder fixed point theorem [3], and some
fixed point theorems on partially ordered spaces [34]. In the recent time, the
above techniques have been extended in various ways. Thus, in this section,
we study such existence theorems of fuzzy number-valued Volterra integral
equations by using the ideas of fuzzy integrals presented by Puri and Ralescu
[25]. Our investigation offers, for the first time, an existence theorem for fuzzy
number-valued Volterral integral equations in which the idea of soft set-valued
maps is utilized. In what follows, we give some notations and preliminary
concepts which are needed in the sequel. For these basic concepts, we follow
[13, 18, 25, 32].

Let PC(Rn) denotes the family of all nonempty, compact and convex subsets
of Rn. Addition and multiplication in PC(Rn) are defined as usual, i.e. for
A,B ∈ PC(Rn) and scalar λ ∈ R, we have A+B = {a+ b : a ∈ A and b ∈ B}
and λA = {λa : a ∈ A}. The space of fuzzy numbers (see [13]), denoted by
Fn, is the set of functions u : R −→ [0, 1] satisfying the following properties:

(i) u is normal, that is, there exists t0 ∈ R such that u(t0) = 1;

(ii) u is fuzzy convex, that is, u(λt1 + (1 − λ)t2) ≥ min{u(t1), u(t2)}, for all
t1, t2 ∈ R;

(iii) u is upper semicontinuous, that is, [u]α is closed for all α ∈ [0, 1];

(iv) [u]0 = {t ∈ R : u(t) > 0}, where M denotes the closure of M .

For α ∈ (0, 1], the α-level set of u in Fn is defined as

[u]α = {t ∈ R : u(t) > α}.

For u, v ∈ Fn and λ ∈ R, we define the addition u + v and multiplication λu
as:

[u+ v]α = [u]α + [v]α and [λu]α = λ[u]α.
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Every real number can be embedded in Fn via the rule λ −→ λ̂(t), where

λ̂(t) =

{
1, for t = λ

0, otherwise.

Let d∗ : Fn ×Fn −→ [0,∞) be defined by

d∗(u, v) = sup
0≤α≤1

H ([u]α, [v]α) ,

where H is the Hausdorff distance in PC(Rn). Then d∗ is a metric on Fn and
(Fn, d∗) is a complete metric space (see [18, 25]). Also, for every u, v ∈ Fn,
we have

d∗(u+ w, v + w) = d∗(u, v) and d∗(λu, λv) = λd∗(u, v),

for all λ ∈ R. By using H(A + B,C + D) ≤ H(A,C) + H(B,D), it can be
verified directly that

d∗(u+ v, w + z) ≤ d∗(u,w) + d∗(v, z).

Definition 5.1. [18] A mapping T : [0, 1] −→ Fn is said to be integrably
bounded if there exists an integrable function f such that ‖x‖ ≤ f(t) for all
x ∈ T (t).

Definition 5.2. [18] We say that a mapping T : [0, 1] −→ Fn is strongly
measurable if for all α ∈ [0, 1], the set-valued mapping Tα : [0, 1] −→ PC(Rn)
defined by

Tα(t) = [T (t)]
α
,

is (Lebesgue) measurable, when PC(Rn) is equipped with the Haudorff metric.

We recall that a function f defined on some collection X of nonempty sets
is said to be a selection for X if it belongs to the direct product of X.

Definition 5.3. [25] The integral of a fuzzy number-valued mapping T :
[0, 1] −→ Fn is defined levelwise by[∫

[0,1]

T (t)dt

]α
=

∫
[0,1]

Tα(t)dt

=

{∫
[0,1]

f(t)dt : f : [0, 1] −→ Rn

is a measurable selection for Tα for α ∈ (0, 1]

}
.

A strongly measurable and integrably bounded mapping T : [0, 1] −→ Fn is
said to be integrable over [0, 1] if

∫
[0,1]

T (t)dt ∈ Fn.
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Definition 5.4. [18] Let S, T : [0, 1] −→ Fn be integrable and λ ∈ R. Then

(i)
∫

(S + T ) =
∫
S +

∫
T

(ii)
∫
λT = λ

∫
T

(iii) d∗(S, T ) is integrable

(i v) d∗(
∫
S,
∫
T ) ≤

∫
d∗(S, T ).

Next, we prove an existence theorem for a fuzzy number-valued Volterra
integral equation, given by

(5.1) x(t) = σ

∫ t

a

L(t, s)x(s)ds+ h(t), σ > 1.

Theorem 5.5. Consider (5.1). Assume that L : [a, b] × [a, b] −→ Rn and h :
[a, b] −→ Fn are continuous functions. If ‖L(t, s)‖ ≤ 1

(b−a) for all t, s ∈ [a, b],

then (5.1) has at least one fuzzy number-valued solution.

Proof. Let E = (0,∞) and X = C ([a, b],Fn) be the space of all continuous
fuzzy number-valued functions defined on [a, b]. We metricize X by setting

d∗(x, y) = sup
0≤α≤1

H ([x]α, [y]α) ,

for all x, y ∈ X, where H is the Hausdorff metric defined on PC(Rn). Then
d∗ is a metric on X and (X, d∗) is a complete metric space (see [18, 25]).
Moreover, for x ∈ X, take

πx(t) = σ

∫ t

a

L(t, s)x(s)ds+ h(t).

Then, define a soft set-valued map T : X −→ [P (X)](0,∞) by

(Tex) =


{x ∈ X : x(t) < πx(t)}, if 0 < e < 5

{x ∈ X : x(t) = πx(t)}, if 5 ≤ e ≤ 10

∅, if 10 < e <∞.

Thus, for x ∈ X, there exists a(x) = e ∈ [5, 10] such that

(Tex) = {πx(t)} ∈ CB(X).

Further, take a number σ ∈ (1,∞) such that

S∞EX(Tx, Ty) ≤ 1

σ2
d∗(πx(t), πy(t)),

where
S∞EX(Tx, Ty) = sup

(a(x),a(y))∈E×E
S

(a(x),a(y))
EX (Tx, Ty)
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and d∗ is as defined earlier. Then, for all x, y ∈ X, we have

S
(a(x),a(y))
EX (Tx, Ty)

≤ sup
(a(x),a(y))∈E×E

S
(a(x),a(y))
EX (Tx, Ty)

≤ 1

σ2
d∗(πx(t), πy(t))

≤ 1

σ2
d∗
(
σ

∫ t

a

L(t, s)x(s)ds+ h(t), σ

∫ t

a

L(t, s)y(s)ds+ h(t)

)
≤ 1

σ2
d∗
(
σ

∫ t

a

L(t, s)x(s)ds, σ

∫ t

a

L(t, s)y(s)ds

)
≤

(
1

σ

)
d∗
(∫ t

a

L(t, s)x(s)ds,

∫ t

a

L(t, s)y(s)ds

)
≤ 1

σ(b− a)
max

{∫ t

a

d∗(x(s), y(s))ds : t ∈ [a, b]

}
≤ 1

σ
d∗(x(s), y(s)) = κd∗(x, y),

where κ = 1
σ ∈ (0, 1). Therefore, all the hypotheses of Corollary 3.5 are satisfied

with S = T . Consequently, the fuzzy Volterra integral equation (5.1) has at
least one fuzzy number-valued solution in X.

Example 5.6. Consider the fuzzy number-valued Volterra integral equation

(5.2) x(t) = 126

∫ t

8

sin(t2) cos(s3)x(s)ds+ h(t),

where h : [8, 9] −→ F1 is given by

(5.3) h(t)(x) =


tx
5 , if x ∈

[
0,
(

1
t2

)]
1
13 , if x ∈

[(
1
t2

)
, 1−

(
1
t2

)]
0, elsewhere.

Then

[h(t)]
α

=
[( α
t2

)
, 1−

( α
t2

)]
for 0 < α ≤ 1

and [h(t)]0 = [0, 1]. Obviously, the fuzzy number-valued function h : [8, 9] −→
F1 defined by (5.3) is continuous. Further, from (5.2), we see that

‖K(t, s)‖ =
∥∥sin(t2) cos(s3)

∥∥ ≤ 1

b− a
,

where a = 8 and b = 9. Hence, by Theorem 5.5, there exists at least one fuzzy
number-valued solution of problem 5.2.
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