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Some aspects of quasi-uniform box products
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Abstract. The quasi-uniform box product is a topology on the product
of countably many copies of a quasi-uniform space that is finer than the
Tychonov product topology but coarser than the uniform box product.
In this paper, we present completeness, connectedness and some separa-
tion properties in quasi-uniform box products.
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1. Introduction

The quasi-uniform box product is a topology on the product of countably
many copies of a quasi-uniform space that sits between the Tychonov product
topology and the uniform box product. This topology was introduced in [13].
In this article, we showed that the quasi-uniform box product is generated by a
quasi-uniformity called the constant quasi-uniformity whose symmetrised uni-
formity coincides with constant uniformity in the sense of Bell [1]. In [15], we
introduced infinite games of two players, played in a quasi uniform space and
used these games to show that the quasi-uniform box product of a Fort-Space is
collectionwise normal, collectionwise Hausdorff and countably paracompact. In
this article, we continue investigating this concept of quasi-uniform box prod-
ucts. In particular, we first show that the quasi-uniform box product is coarser
than the uniform box product and finer than the Tychonov product topol-
ogy. We then consider some results on quotient spaces associated with the
quasi-uniform box product. Thereafter, we observe that the quasi-uniform box
product is a particular case of the topology of quasi-uniform convergence. We
then use this fact to adapt some results on completeness in the quasi-uniformity
of uniform convergence to the framework of quasi-uniform box products. Fur-
thermore, we observe that the quasi-uniform box product is a bitopological
space in its own right and, thereafter, present some separation properties of
a quasi uniform space that are preserved by its quasi-uniform box product.
Finally, we present connectedness in quasi-uniform box products.
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2. Quasi-uniform box products

In this section, we present the quasi-uniform box product, a concept that
generalises the uniform box product to the framework of quasi-uniform spaces.
This concept was introduced in [13]. In this section, we show that the quasi-
uniform box product is finer than the Tychonov product topology but coarser
than the uniform box product. We also observe that the quasi-uniform box
product is a particular case of the topology of quasi-uniform convergence.

Definition 2.1. [9] A quasi-uniformity U on a set X is a filter on X ×X such
that

(i) each member U of U contains the diagonal 4 = {(x, x) : x ∈ X} of X,

(ii) for each U ∈ U there is V ∈ U such that V 2 ⊆ U where V 2 = V ◦ V =
{(x, z) ∈ X ×X : there is y ∈ X such that (x, y) ∈ V, (y, z) ∈ V }.

The members U ∈ U are called entourages of U and the elements of X are
called points. The pair (X,U) is called a quasi-uniform space.

If U is a quasi-uniformity on a set X, then the filter U−1 = {U−1 : U ∈ U}
on X ×X is also a quasi-uniformity on X. The quasi-uniformity U−1 is called
the conjugate of U . A quasi-uniformity that is equal to its conjugate is called
a uniformity. The union of a quasi-uniformity U and its conjugate U−1 yields
a subbase of the coarsest uniformity, denoted Us, finer than U . If U ∈ U , the
elements of Us are of the form U ∩ U−1 and are denoted by Us. For U ∈ U ,
x ∈ X and Z ⊂ X, put U(x) = {y ∈ X : (x, y) ∈ U} and U(Z) =

⋃
{U(z) :

z ∈ Z}. A quasi-uniformity U generates a topology τ(U) on X for which the
family of sets {U(x) : U ∈ U} is a base of neighbourhoods of any point x ∈ X.

A subset A of X belongs to τ(U) if and only if for each x ∈ A, there is
an entourage U ∈ U such that U(x) ⊂ A. Thus for each x ∈ X and U ∈ U ,
U(x) is a τ(U)-neighbourhood of x. Note that U(x) need not be τ(U)-open in
general. However, there is always a base B for U such that for each B ∈ B and
x ∈ X, B(x) ∈ τ(U).

Definition 2.2. [13] Let (X,U) be a quasi-uniform space and
∏
n∈NX be the

product of countably many copies of X. Then U = {U : U ∈ U} is a filter base
generating the quasi-uniformity on

∏
n∈NX, where

U =

{
(x, y) ∈

∏
n∈N

X ×
∏
n∈N

X : (x(n), y(n)) ∈ U whenever n ∈ N
}
.

The quasi-uniformity U is called constant quasi-uniformity on the product∏
n∈NX and the pair

(∏
n∈NX,U

)
is called quasi-uniform box product.

One can use the following facts to verify that U is indeed a quasi-uniformity
on
∏
n∈NX :
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(i) for all U, V ∈ U , U ∩ V = U ∩ V

(ii) for all U, V ∈ U , U ◦ V ⊃ U ◦ V

Also, it is clear that a τ(U)-neighbourhood of an arbitrary x ∈
∏
n∈NX is of

the form

U(x) = {y ∈
∏
n∈N

X : (x, y) ∈ U}

= {y ∈
∏
n∈N

X : y(n) ∈ U(x(n)) for all n ∈ N}

Remark 2.3. If (X,U) is a quasi-uniform space and

(∏
n∈NX,U

)
is its quasi-

uniform box product. Then quasi-uniform space

(∏
n∈NX,U−1

)
is again a

quasi-uniform box product of (X,U), where U−1 = {U−1 : U ∈ U} is again a
filter base generating a quasi-uniformity on

∏
n∈NX. Thus the triple(∏

n∈NX,U ,U−1

)
is a bitopological space in the sense of Kelly [7]. Also,

U−1 ∨ U = Us is a filter base generating a uniformity on
∏
n∈NX and the pair(∏

n∈NX,U
s
)

is a uniform box product of the uniform space (X,U) which

corresponds to the uniform box product in the sense of Bell (see [1, Definition
3.2]).

We now present the supremum T0-quasi-metric and show how it is related
to the constant quasi-uniformity.

Proposition 2.4. (Supremum T0-quasi-metric) Suppose (X, d) is a T0-quasi-
metric space and

∏
n∈NX is the product of countably many copies of X. Then

q, defined by
q(x, y) = sup{d(x(n), y(n)) : n ∈ N},

is a T0-quasi metric on
∏
n∈NX.

Remark 2.5. Let (X, d) be a T0-quasi-metric space and
∏
n∈NX be the product

of countably many copies of X. Then q−1, defined by q−1(x, y) = q(y, x), is
a T0-quasi-metric on

∏
n∈NX. Furthermore, qs = max{q, q−1} is a metric on∏

n∈NX.

Theorem 2.6. Suppose (X, d) is a T0-quasi-metric space and
∏
n∈NX is the

product of countably many copies of X. Then the topology generated by the
T0-quasi-metric q, defined by q(x, y) = sup{d(x(n), y(n)) : n ∈ N}, is finer
than the Tychonov product topology on the product of (X, ds).

Proof. Suppose x ∈
∏
n∈NX. Let U =

∏
n∈N Un be a basic τ(ds)-open set in

the Tychonov product topology on
∏
n∈NX with x ∈ U . Then there exists

a finite subset J0 of N such that if n ∈ N \ J0, then Un = X. If n ∈ J0,
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then because Un is a τ(ds)-open subset of X and x(n) ∈ Un, there is some
0 ≤ εn < 1 such that Bds(x(n), εn) ⊆ Un. Let ε = min

n∈J0
εn. If qs(x, y) < ε, then

ds(x(n), y(n)) < ε for all n ∈ N and this implies that ds(x(n), y(n)) < εn for
all n ∈ J0. It follows that d(x(n), y(n)) < εn for all n ∈ J0. This implies that
y(n) ∈ Bd(x(n), εn) ⊆ Un for all n ∈ J0. Also, if n ∈ N \ J0, then Un = X
and it follows that y(n) ∈ Un. Therefore, if y ∈ Bq(x, ε), then y ∈ U , and
this implies that Bq(x, ε) ⊆ U . It follows that the topology generated by q on∏
n∈NX is finer than the Tychonov product topology on

∏
n∈NX.

The supremum T0-quasi-metric and the constant quasi-uniformity are re-
lated in the following way. Note that this was observed by Bell [1] in the
framework of uniform box products.

Example 2.7. Suppose (X, d) is a T0-quasi-metric space, and U = {Un : n ∈
N}, where

Un = {(x, y) : d(x, y) < 2−n},

is a filter base generating a quasi-uniformity on X. Let U be the constant
quasi-uniformity on

∏
n∈NX. Also, let q be the T0-quasi-metric on

∏
n∈NX.

From q, we define the following quasi-uniformity on
∏
n∈NX:

S = {Sn : n ∈ N}, where Sn = {(x, y) : q(x, y) < 2−n}.

We show that U and S generate the same quasi-uniformity on
∏
n∈NX.

Suppose (x, y) ∈ Sn. Then sup{d(x(i), y(i)) : i ∈ N} < 2−n. Thus for
all i ∈ N, d(x(i), y(i)) < 2−n. Hence (x, y) ∈ Un and so Sn ⊆ Un. Suppose
(x, y) ∈ Un+1. Then for all i ∈ N, d(x(i), y(i)) < 2−(n+1). Thus

q(x, y) = sup{d(x(i), y(i)) : i ∈ N} ≤ 2−(n+1) < 2−n

so that (x, y) ∈ Sn. Therefore, Un+1 ⊆ Sn.

Remark 2.8. From Theorem 2.6 and Example 2.7, we conclude that the quasi-
uniform box product is finer than the Tychonov product topology. Also, from
Remark 2.3, we see that the quasi-uniform box product is coarser than the
uniform box product.

We now turn our attention to the quasi-uniformity of uniform convergence
and show how it is related to the quasi-uniform box product.

Definition 2.9. [9] Let (X, τ) be a topological space and (Y,V) be a quasi-
uniform space. Furthermore, let D be a family of maps from X to Y . If A is a
family of subsets of X, we denote by VA the quasi-uniformity on D which has,
as subbase, the family of all relations of the form

(A,U) = {(f, g) ∈ D ×D : (f(x), g(x)) ∈ U whenever x ∈ A}

whenever A ∈ A and U ∈ V. The quasi-uniformity VA is called the quasi-
uniformity of uniform convergence of A.
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Note that if X = N in the definition above, then the quasi-uniformity of
uniform convergence is just the constant quasi-uniformity.

Example 2.10. [9] We note the following:

(i) If A = {X}, VA is called the quasi-uniformity of uniform convergence and
is denoted by VX .

(ii) If A = {K ⊆ X : K is a compact subset of (X, τ)}, VA is called the quasi-
uniformity of compact convergence and is denoted by VK .

(iii) If A = {F ⊆ X : F is a finite subset of X}, then VA is called the quasi-
uniformity of pointwise convergence and is denoted by Vp. Note that on
the product space Y X , Vp agrees with the product quasi-uniformity.

In this paper, we are going to present results on function spaces with the
quasi-uniformity of uniform convergence that can be adapted to quasi-uniform
box products.

Let us first look at quotient spaces in quasi-uniform box products.

3. Quotient spaces

In [16], Williams introduced the concept of the nabla product on the box
product to prove that the countable box product of compact spaces is para-
compact if and and only if its nabla product is paracompact. However, this
approach is not useful on uniform box products. Therefore, in [2], Bell defined
an equivalence relation on the uniform box product in order to study connec-
tions between the nabla product on the uniform box product and this new
equivalence relation. In this section we are going to extend the results of Bell
[2] to quasi-uniform spaces.

The following definition was first introduced in [16] and it does not depend
on the uniformity. Therefore, we keep it in the context of quasi-uniform spaces.

Definition 3.1. (compare [2, Definition 5.3]) Suppose (X,U) is a quasi-uniform
space and x, y ∈

∏
n∈NX. Then x ≈ y if and only if the set {n ∈ N : x(n) 6=

y(n)} is finite.

Remark 3.2. Obviously, the relation ≈ is an equivalence relation on
∏
n∈NX

and its quotient space is called the nabla product ([16, Definition 5.3]). Fur-
thermore, if x ≈ y, then we say x and y are mod-finite equivalent (see [2]).
This equivalence relation was used in [2] on uniform box products.

The following definition is an extension of [16, Definition 3.1] to quasi-
uniform spaces.

Definition 3.3. (compare [2, Definition 5.3]) Suppose (X,U) is a quasi-uniform
space and x, y ∈

∏
n∈NX. Then we define the relation ∼ by

x ∼ y if and only if the set {n ∈ N : (x(n), y(n)) /∈ U ∩ U−1} is finite

whenever U ∈ U .
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The following result can be compared to [2, Proposition 5.4] but it has some
variations. Therefore, we need to prove it.

Lemma 3.4. Let (X,U) be a quasi-uniform space. Then the relation ∼ in
Definition 3.3, is an equivalence relation on

∏
n∈NX and we call the relation

∼ the quasi-uniform equivalence on
∏
n∈NX.

Proof. Let x, y, z ∈
∏
n∈NX. We have that x ∼ x since the set

{n ∈ N : (x(n), x(n)) /∈ U ∩ U−1} = ∅ is finite

whenever U ∈ U .
Suppose x ∼ y. Then observe that

{n ∈ N : (x(n), y(n)) ∈ U ∩ U−1} = {n ∈ N : (y(n), x(n)) ∈ U ∩ U−1}

whenever U ∈ U . It follows by taking the complement that

{n ∈ N : (y(n), x(n)) /∈ U ∩ U−1} = {n ∈ N : (x(n), y(n)) /∈ U ∩ U−1} is finite.

Hence y ∼ x.
If x ∼ y and y ∼ z, then for any U ∈ U , there exists V ∈ U such that

V 2 ⊆ U . We have

{n ∈ N : (x(n), y(n)) ∈ V ∩ V −1} ∩ {n ∈ N : (y(n), z(n)) ∈ V ∩ V −1}

⊆ {n ∈ N : (x(n), z(n)) ∈ (V ∩ V −1) ◦ (V ∩ V −1)}.
Moreover, since (V ∩ V −1) ◦ (V ∩ V −1) ⊆ V 2 ∩ V −2. It follows that

{n ∈ N : (x(n), y(n)) ∈ V ∩ V −1} ∩ {n ∈ N : (y(n), z(n)) ∈ V ∩ V −1}

⊆ {n ∈ N : x(n), z(n)) ∈ V 2 ∩ V −2} ⊆ {n ∈ N : x(n), z(n)) ∈ U ∩ U−1}.
By taking the complement, we have

{n ∈ N : (x(n), z(n)) /∈ U ∩ U−1}

⊆ {n ∈ N : (x(n), y(n)) /∈ V ∩V −1}∪{n ∈ N : (y(n), z(n)) /∈ V ∩V −1} is finite.

Thus x ∼ z. Therefore, ∼ is an equivalence relation.

Remark 3.5. Observe that if U = U−1 whenever U ∈ U , then U is a uniformity
on X. Therefore, the equivalence relation ∼ in Definition 3.3 coincides with
the uniform equivalence relation in [2, Definition 5.3].

Lemma 3.6. Suppose (X,U) is a quasi-uniform space and x, y ∈
∏
n∈NX. If

x is mod-finite equivalent to y, then x is equivalent to y with respect to ∼.

Proof. Suppose that x is mod-finite equivalent to y i.e. x ≈ y. If U ∈ U , then
the set

{n ∈ N : (x(n), y(n)) /∈ U ∩ U−1} ⊆ {n ∈ N : x(n) 6= y(n)} is finite.

It follows that x is quasi-uniform equivalent to y.
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Definition 3.7. Let (X,U) be a quasi-uniform space and

(∏
n∈NX,U

)
be

its quasi-uniform box product. If G ⊆
∏
n∈NX and G is τ(U)-open, then we

define:

[G]≈ :=

{
y ∈

∏
n∈N

X : there existsx ∈ G such thatx ≈ y
}

and

[G]∼ :=

{
y ∈

∏
n∈N

X : there existsx ∈ G such thatx ∼ y
}
.

Proposition 3.8. (compare [2, Proposition 5.7]) Let (X,U) be a quasi-uniform

space and

(∏
n∈NX,U

)
be its quasi-uniform box product. If G is τ(U)-open,

then [G]≈ = [G]∼. Moreover, [G]∼ is τ(U)-open.

Proof. Suppose G is τ(U)-open. Then we need to prove that [G]≈ = [G]∼.

Suppose y ∈ [G]∼. Then there exists x ∈ G such that x ∼ y. It follows that
there exists U ∈ U such that U(x) ⊆ G since G is τ(U)-open. Consider a point
z ∈

∏
n∈NX such that

z(n) =

{
x(n) if (x(n), y(n)) /∈ U ∩ U−1

y(n) elsewhere.

It follows that (x(n), z(n)) ∈ U ∩ U−1 whenever n ∈ N. Therefore, z(n) ∈
U(x(n)) whenever n ∈ N and so z ∈ U(x) ⊆ G. For every V ∈ U , we have
that {n ∈ N : (x(n), y(n)) /∈ V ∩ V −1} is finite since x ∼ y. This implies that
the set {n ∈ N : z(n) = x(n) 6= y(n)} is finite. Hence z ≈ y. Thus y ∈ [G]≈
since z ∈ G and z ≈ y. Therefore, [G]∼ ⊆ [G]≈. Furthermore, we have that
[G]≈ ⊆ [G]∼ from Lemma 3.6 and so [G]≈ = [G]∼.

Secondly, we prove that [G]≈ is τ(U)-open whenever G is τ(U)-open. Let
y ∈ [G]≈. We need to prove that there exists U ∈ U such that U(y) ⊆ [G]≈.

Since y ∈ [G]≈, there exists x ∈ G such the set {n ∈ N : x(n) 6= y(n)}
is finite. Hence there exists m ∈ N such that whenever n > m, we have
x(n) = y(n). As x ∈ G, a τ(U)-open set, there exists U ∈ U such that
U(x) ⊆ G. Let u ∈ U(y). This implies that (y, u) ∈ U and so (y(n), u(n)) ∈ U
for all n ∈ N. Consider a point v ∈

∏
n∈NX such that

v(n) =

{
u(n) if n > m;
x(n) if n ≤ m.

If n ≤ m, then v(n) = x(n) and (x(n), v(n)) ∈ U . If n > m, then v(n) =
u(n) and x(n) = y(n). Thus (x(n), v(n)) = (y(n), u(n)) ∈ U . This implies that
the set {n ∈ N : v(n) 6= u(n)} is finite. Hence v ≈ u and (x(n), v(n)) ∈ U
whenever n ∈ N. Furthermore, v ∈ U(x) ⊆ G. Hence u ∈ [G]≈ since v ∈ G
and v ≈ u. Therefore, U(y) ⊆ [G]≈.
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Proposition 3.9. Let (X,U) be a quasi-uniform space and

(∏
n∈NX,U

)
be

its quasi-uniform box product. Then for all x ∈
∏
n∈NX, we have that [x]∼ is

τ(U)-closed and τ(U−1
)-closed. Furthermore, clτ(Us

)[x]≈ = [x]∼.

Proof. We are going to prove that [x]∼ is τ(U)-closed and the proof that [x]∼

is τ(U−1
)-closed will follow by similar arguments.

Suppose y /∈ [x]∼. Then y is not quasi-uniformly equivalent to x. This
implies that there exists U ∈ U such that the set

{n ∈ N : (x(n), y(n)) /∈ U ∩ U−1}

is infinite. It follows that there exists V ∈ U such that V 2 ⊆ U since U ∈ U .
We are going to show that (V ∩ V −1)(y) ∩ [x]∼ = ∅. Let z ∈ (V ∩ V −1)(y).
Then (y, z) ∈ V ∩V −1 and so (z, y) ∈ V ∩V −1. This implies that (z(n), y(n)) ∈
V ∩V −1 whenever n ∈ N. If m ∈ N is such that (x(m), z(m)) ∈ V ∩V −1, then
(x(m), y(m)) ∈ V 2 ⊆ U . Thus

{m ∈ N : (x(m), z(m)) ∈ V ∩ V −1} ⊆ {m ∈ N : (x(m), y(m)) ∈ U ∩ U−1}.

Hence

{m ∈ N : (x(m), y(m)) /∈ U ∩ U−1} ⊆ {m ∈ N : (x(m), z(m)) /∈ V ∩ V −1}.

Therefore, the set {n ∈ N : (x(n), z(n)) /∈ V ∩ V −1} is infinite since the set
{n ∈ N : (x(n), y(n)) /∈ U ∩ U−1} is infinite. Hence z /∈ [x]∼.

Since x ≈ y implies x ∼ y, we have [x]≈ ⊂ [x]∼ and so clτ(Us
)[x]≈ ⊂ [x]∼

since [x]∼ is τ(U)-closed and τ(U−1
)-closed. Suppose y ∈ [x]∼ and U ∈ U .

Choose V ∈ U such that V ◦ V ⊆ U . Define z ∈
∏
n∈NX by

z(n) =

{
x(n) if (x(n), y(n)) ∈ V ∩ V −1

y(n) else.

Since y ∼ x, {n : (x(n), y(n)) /∈ V ∩ V −1} is finite. Therefore, {n : (x(n) 6=
z(n)} is finite and so z ≈ x. But z ∈ (V ∩ V −1)(y) ⊆ (U ∩ U−1)(y) so that
(U ∩ U−1)(y) ∩ [x]≈ 6= ∅. Therefore, y ∈ clτ(Us

)[x]≈.

Proposition 3.10. Let (X,U) be a quasi-uniform space and ∼ be the quasi-

uniform equivalence relation on its quasi-uniform box product

(∏
n∈NX,U

)
.

Then Ũ is a quasi-uniformity on the quotient space
∏
n∈NX/ ∼=:

∏̃
n∈NX,

where

Ũ = {Ũ : U ∈ U} and Ũ = {([x]∼, [y]∼) : (x, y) ∈ U}

whenever U ∈ U .
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4. Completeness in quasi-uniform box products

In this section, we discuss completeness in quasi-uniform box products.
These results generalise the result on completeness in uniform box products in
[16] to the quasi-uniform setting. In [13], we considered C-completeness and D-
Completeness in quasi-uniform box products. In this section, we present other
forms of completeness in quasi-uniform box products. The results presented in
this section were initially observed by [11] and [12] for general function spaces
and the quasi-uniformity of uniform convergence. We adapt these results to
quasi-uniform box products.

We begin by recalling the following definitions:

Definition 4.1. [12] A net (xλ)λ∈Λ in a quasi-uniform space (X,U) is said to
converge to a point x ∈ X iff for each U ∈ U , xλ is eventually in U(x).

Definition 4.2. [12] A net (xλ)λ∈Λ in a quasi-uniform space (X,U) is said to
be Cauchy iff for each U ∈ U there exists an x ∈ X such that xλ is eventually
in U(x).

Definition 4.3. A quasi-uniform space (X,U) is said to be complete if every
Cauchy net in X converges to a point in X.

Theorem 4.4. Let (X,U) be a quasi-uniform space and

(∏
n∈NX,U

)
be its

quasi-uniform box product. If (X,U) is complete and (xλ)λ∈Λ is a Cauchy net
in
∏
n∈NX, then there is (y(n))n∈N in

∏
n∈NX such that (xλ(n))λ∈Λconverges

to y(n) for all n ∈ N.

Proof. Since (xλ)λ∈Λ is a Cauchy net in
∏
n∈NX, then for each U ∈ U , there

exists (x(n))n∈N in
∏
n∈NX such that for each n ∈ N, xλ(n) is eventually in

U(x(n)). This shows that for each n ∈ N, (xλ(n))λ∈Λ is a Cauchy net in (X,U)
and since (X,U) is complete, (xλ(n))λ∈Λ converges to a point in (X,U) which
we call y(n).

Theorem 4.5. Let (X,U) be a quasi-uniform space and

(∏
n∈NX,U

)
be its

quasi-uniform box product. If (X,U) is complete and Hausdorff, then(∏
n∈NX,U

)
is complete.

Proof. Let (xλ)λ∈Λ be a Cauchy net in
∏
n∈NX. Then we need to show that

(xλ)λ∈Λ converges quasi-uniformly to a point in
∏
n∈NX. Let (y(n))n∈N be

defined as in Theorem 4.4 above. Since (xλ)λ∈Λ is a Cauchy net in
∏
n∈NX,

then for each U ∈ U , there exists (x(n))n∈N in
∏
n∈NX such that for all n ∈ N,

xλ(n) is eventually in U(x(n)). We claim that (x(n))n∈N = (y(n))n∈N. Suppose
to the contrary that (x(n))n∈N 6= (y(n))n∈N. Then there exists n0 ∈ N such
that x(n0) 6= y(n0). Since (X,U) is Hausdorff, there exists V ∈ U such that
U(x(n0)) ∩ V (y(n0)) = ∅. By Theorem 4.4, xλ(n0) is eventually in V (y(n0))
which contradicts the fact that xλ(n0) is eventually in U(x(n0)). Therefore,
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(xλ)λ∈Λ converges to (y(n))n∈N quasi-uniformly and

(∏
n∈NX,U

)
is com-

plete.

Remark 4.6. Notice that the proof of Theorem 4.5 relies on the Hausdorff
property of the factor space. Therefore, the result cannot hold if the factor
space is not Hausdorff.

In [11], Künzi and Romaguera studied the completeness of the quasi-unifor-
mity of uniform convergence with the aim of obtaining an appropriate quasi-
uniform generalisation of the classical result that if X is a topological space
and (Y,U) is a complete uniform space, then the uniformity of uniform con-
vergence is complete. Künzi and Romaguera [11] observed that the notions of
quasi-uniform completeness based on the convergence of several types of sta-
ble filters provide satisfactory results and that the other known quasi-uniform
completeness appear more intractable in this setting. Since the constant quasi-
uniformity is a particular case of the quasi-uniformity of uniform convergence,
we adapt the results of Künzi and Romaguera [11] to the framework of quasi-
uniform box products. We first recall the following definitions:

Let (X,U) be a quasi-uniform space and F be a filter on X. Then F is
called:

(i) a U-stable filter if for each U ∈ U ,
⋂
{U(F ) : F ∈ F} ∈ F [3].

(ii) a Cauchy filter if for each U ∈ U , there is x ∈ X such that U(x) ∈ F [6].

(iii) a left K-Cauchy filter if for each U ∈ U there is F ∈ F such that U(x) ∈ F
for all x ∈ F [14].

(iv) a right K-Cauchy filter if it is left K-Cauchy on (X,U−1)[14].

(v) a Us-Cauchy filter if it is a Cauchy filter on the uniform space (X,Us)
[3].

Let (F ,G) be an ordered pair of filters on X. Then the pair (F ,G) is called:

(vi) a Cauchy filter pair if (F ,G) → 0, where (F ,G) → 0 provided that for
each U ∈ U there exists F ∈ F and G ∈ G such that F ×G ⊆ U [4].

(vii) a stable pair of filters if G is U-stable and F is U−1-stable [4].

Let (X,U) be a quasi-uniform space. Then

(i) (X,U) is convergent complete provided that each Cauchy filter is τ(U)-
convergent [3].

(ii) (X,U) is left (right) K-complete provided that each left (right) K-Cauchy
filter is τ(U) convergent [14].

(iii) (X,U) is half complete provided that each Us-Cauchy filter is τ(U)-con-
vergent [4].
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(iv) (X,U) is bicomplete provided that the uniform space (X,Us) is complete
[3].

(v) (X,U) is called C-complete provided that each Cauchy filter pair (F ,G)
converges, that is, G is τ(U)-convergent to x and F is τ(U−1)-convergent
to x [5].

(vi) (X,U) is D-complete provided that if (F ,G) → 0, then the filter G is
τ(U)-convergent [5].

(vii) (X,U) is strongly D-complete provided that if (F ,G)→ 0, then the filter
F has a τ(U)-cluster point [8].

(viii) (X,U) is S-complete provided that each stable Cauchy pair of filters
(F ,G) converges to a point x ∈ X, that is, G is τ(U)-convergent to x
and F is τ(U−1)-convergent to x [4].

(ix) (X,U) is U -complete provided that each stable Cauchy pair of ultrafilters
is convergent to a point x ∈ X [4].

Suppose (X,U) is a quasi-uniform space and

(∏
n∈NX,U

)
is its quasi-uniform

box product. Then following [11], we have that:

(i) if F is a filter on
∏
n∈NX, F ∈ F , n ∈ N and Fn = {x(n) : (x(n))n∈N ∈

F}, then Fn = {Fn : F ∈ F} is a filter on X.

(ii) If F is a filter on X, F ∈ F and j ∈ F , we denote by (xj(n))n∈N a se-
quence such that xj(n) = j for all n ∈ N. Suppose B(F ) = {(xj(n))n∈N ∈∏
n∈NX : j ∈ F}. Then B(F) = {B(F ) : F ∈ F} is a filterbase on∏
n∈NX.

Theorem 4.7. Suppose (X,U) is a quasi-uniform space and

(∏
n∈NX,U

)
is

its quasi-uniform box product. Then

(i)

(∏
n∈NX,U

)
is half complete if and only if (X,U) is half complete.

(ii)

(∏
n∈NX,U

)
is bicomplete if and only if (X,U) is bicomplete.

(iii)

(∏
n∈NX,U

)
is right K-complete if and only if (X,U) is right K-

complete.

(iv)

(∏
n∈NX,U

)
is S-complete if and only if (X,U) is S-complete.

(v)

(∏
n∈NX,U

)
is U -complete if and only if (X,U) is U -complete.
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Proof.

(i) Suppose (X,U) is half complete. Let F be a Us-Cauchy filter on
∏
n∈NX.

Then for each U ∈ U , there is F ∈ F such that F × F ⊆ U . Fix n ∈ N.
Then Fn is a Us-Cauchy filter on X. Since (X,U) is half complete,
Fn is τ(U)-convergent to a point x0(n) ∈ X. Thus, we have defined
x0 ∈

∏
n∈NX and we need to show that F converges to x0 with respect

to τ(U). Given U ∈ U , choose V ∈ U with V 2 ⊆ U . Then there is
F ∈ F such that F × F ⊆ V . Now let n ∈ N. Then there is some
G ∈ F with Gn ⊆ V (x0(n)). Thus for each x ∈ F and y ∈ F ∩G, we get
(y(n), x(n)) ∈ V . Since y(n) ∈ V (x0(n)) implies that (x0(n), y(n)) ∈ V ,
we have (x0(n), x(n)) ∈ V 2 ⊆ U . Therefore, x ∈ U(x0) and so F is
τ(U)-convergent to x0. Conversely, suppose that F is a Us-Cauchy filter
on X. Then for each U ∈ U there is F ∈ F such that F × F ⊆ U .
Thus, B(F )×B(F ) ⊆ U . Therefore, B(F) is a Us Cauchy filter base on∏
n∈NX so that it is convergent to x0 ∈

∏
n∈NX with respect to τ(U).

Fix n0 ∈ N and let x0(n0) = j0. It follows that F is τ(U)-convergent to
j0.

(ii) The necessity for (ii) follows similarly to (i). We now prove the sufficiency.
Since (X,Us) is a complete uniform space, it follows that the uniform

box product

(∏
n∈NX,U

s
)

is complete. Therefore

(∏
n∈NX,U

)
is

bicomplete.

(iii) The necessity for (iii) follows similarly to (i). We now prove the sufficiency
of (iii). Suppose (xα)α∈Λ is a right K-Cauchy net in

∏
n∈NX. Then for

each U ∈ U , there is λ ∈ Λ such that (xα, xβ) ∈ U whenever λ ≤ β ≤ α.
Fix n ∈ N. Then it follows that (xα(n))α∈Λ is a right K-Cauchy net in
(X,U) and so it is τ(U)-convergent to a point x(n) ∈ X. Thus we have
defined x ∈

∏
n∈NX and we need to show that (xα)α∈Λ converges to x

with respect to τ(U). Given U ∈ U , choose V ∈ U such that V 2 ⊆ U .
Then there is α0 ∈ Λ such that (xα, xβ) ∈ V whenever α0 ≤ β ≤ α.
We want to show that (x, xα) ∈ U for all α ∈ Λ with α0 ≤ α. In fact,
for such an α and any n ∈ N, there is α(n) ∈ Λ with α ≤ α(n) and
(x(n), xα(n))(n)) ∈ V . Since (xα(n))(n), xα(n)) ∈ V , we conclude that

(x(n), xα(n)) ∈ V 2 ⊆ U and so (x, xα) ∈ U . Therefore,

(∏
n∈NX,U

)
is

right K-complete.

(iv) We prove (iv) and (v) in parallel. Suppose (X,U) is (U -complete) S-
complete. Let (F ,G) be a stable Cauchy pair of (ultra)filters on

∏
n∈NX.

Fix n ∈ N. Then (Fn,Gn) is a stable Cauchy pair of (ultra)filters on
(X,U) . Hence (Fn,Gn) converges to some point x0(n) ∈ X. Thus we
have defined x0 ∈

∏
n∈NX and we must show that the (ultra)filter G

converges to x0 with respect to τ(U). Suppose U ∈ U . Choose V ∈
U such that V 2 ⊆ U . Since G is U-stable, there is H ∈ G such that
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H ⊆ V (G) for all G ∈ G. Now let n ∈ N. Then there is G′ ∈ G
such that G′n ⊆ V (x0(n)). Since for all y ∈ H there is x ∈ G′ such
that (x, y) ∈ V and (x0(n), x(n)) ∈ V , it follows that (x0(n), y(n)) ∈
V 2 ⊆ U . We conclude that H ⊆ U(x0), so that G converges to x0 with
respect to τ(U). Similarly, we can show that the (ultra)filter F converges

to x0 with respect to τ(U−1
). Conversely, suppose that

(∏
n∈NX,U

)
is (U -complete) S-complete and let (F ,G) be a stable Cauchy pair of
(ultra)filters on (X,U). Then for each U ∈ U , there is F ∈ F and
G ∈ G such that F × G ⊆ U . Thus B(F ) × B(G) ⊆ U . Denote by

F1 and G1 the two (ultra)filters generated on

(∏
n∈NX,U

)
by B(F)

and B(G) respectively. Then (F1,G1) is a Cauchy pair of (ultra)filters on(∏
n∈NX,U

)
. Furthermore, G1 is U -stable and F1 is U

−1
-stable. Hence

(F1,G1) converges to x0. Fix n0 ∈ N. Then it follows that the pair of
(ultra)filters (F ,G) converges to x0(n0).

The following example shows that quietness cannot be omitted from Theo-
rem 4.7.

Example 4.8. Suppose (X, d) is a quasi-metric space, where X is a set of
positive integers and d(n,m) = 1 if n < m, d(n,m) = (1/2)((1/n) + (1/m)) if
n > m and m 6= 1, d(n, 1) = 1/n if n 6= 1, and d(n, n) = 0 for all n ∈ X. Then
τ(d) is the discrete topology on X. We now show that the quasi-uniformity
generated by d is D-complete. Suppose (F ,G) is a Cauchy filter pair on X. For
the case when F is generated by a singleton, G is τ(d)-convergent. Therefore,
we consider the other case. Since F1×G1 ⊆ {(n,m) ∈ X×X : d(n,m) < 1} for
some F1 ∈ F and G1 ∈ G, the filter G contains necessarily a finite set. Let E
be such a set of minimal cardinality. If its cardinality is greater than 1, then it
contains a point n different from 1. This contradicts that (F ,G) → 0 because
the filter F does not contain a singleton {n}. So E is a singleton and the filter
G is τ(d)-convergent.

Now consider the quasi-uniform box product

(∏
n∈NX,U

)
, where U is the

natural quasi-uniformity inherited from d. Consider the sequences {xm}m∈N
and {ym}m∈N on

∏
n∈NX defined as follows: x0(n) = x1(n) = y0(n) = y1(n) =

1 for all n ∈ N, xm(n) = m if n < m, xm(n) = m+ 1 if n = m, xm(n) = n+ 1
if n > m, ym(n) = 1 if n < m− 1 and ym(n) = m if n ≥ m− 1.

A computation of different cases shows that d(xm(n), yi(n)) ≤ 1/k for all
i,m > k and for all n ∈ N. Thus the filter G generated on

∏
n∈NX by the

sequence {yn}n∈N is D-Cauchy. Suppose G converges to y0 ∈
∏
n∈NX. Then

y0(n) = 1 for all n ∈ N. Now for any m ∈ N, choose ε > 0 such that ε < 1
m .

Thus for all n ∈ N, d(ym(n), y0(n)) = 1
ym(n) = 1

m > ε and this implies that G



56 O. Olela Otafudu, H. Sabao

is not convergent to y0 with respect to τ(U). Therefore, we conclude that the

quasi-uniform box product

(∏
n∈NX,U

)
is not D-complete.

If the quasi-uniformity (X,U) is strongly D-complete, then quietness can
be omitted as the next result shows.

Proposition 4.9. Suppose (X,U) is a strongly D-complete quasi-uniform space

and

(∏
n∈NX,U

)
is its quasi-uniform box product. Then

(∏
n∈NX,U

)
is D-

complete.

Proof. Let (F ,G) be a Cauchy pair of filters on

(∏
n∈NX,U

)
. Fix n ∈ N.

Then (Fn,Gn) is a Cauchy pair of filters on (X,U) so that Fn has a τ(U)-cluster
point x0(n) ∈ X. Thus we have defined x0 ∈

∏
n∈NX and we need to show

that the filter G is τ(U)-convergent to x0. Suppose U ∈ U . Choose V ∈ U such
that V 2 ⊆ U . Then there are F ′ ∈ F and G′ ∈ G such that F ′ × G′ ⊆ V .
We shall show that G′ ⊆ U(x0). Let y ∈ G′ and n ∈ N. Since x0(n) is a
τ(U)-cluster point of Fn, there exists x ∈ F ′ such that x(n) ∈ V (x0(n)). Since
(x(n), y(n)) ∈ V , we obtain that (x0(n), y(n)) ∈ V 2 ⊆ U . We conclude that

y ∈ U(x0). Hence

(∏
n∈NX,U

)
is D-complete.

5. Topological properties of quasi-uniform box products

In this section, we present some topological properties of quasi-uniform box
products. We begin the section by presenting some separation properties of
a quasi-uniform space that are preserved by its quasi-uniform box product.
Thereafter, we present connectedness in quasi-uniform box products.

The following result was observed by [12] for the quasi-uniformity of uniform
convergence. We adapt this result to quasi-uniform box products.

Lemma 5.1. Suppose (X,U) is a quasi-uniform space and

(∏
n∈NX,U

)
is

its quasi-uniform box product. If (X,U) is a Ti space (for i = 1, 2), then(∏
n∈NX,U

)
is a Ti space (for i = 1, 2).

We now extend this result to quasi-uniform box products in the framework
of bitopological spaces.

Definition 5.2. A bitopological space (X,P,Q) is pairwise T1 iff for each
pair x, y of distinct points of X, there is a P-open set U and a Q-open set V
such that x ∈ U , y /∈ U and y ∈ V , x /∈ V.

Lemma 5.3. Let (X,U) be a quasi-uniform space and

(∏
n∈NX,U

)
be its

quasi-uniform box product. If (X, τ(U), τ(U−1)) is pairwise T1, then(∏
n∈NX, τ(U), τ(U−1

)

)
is pairwise T1 as well.
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Proof. Suppose (x(n))n∈N and (y(n))n∈N are distinct elements in
∏
n∈NX.

Then for a fixed n0 ∈ N, xn0
6= yn0

. Since (X, τ(U), τ(U−1)) is pairwise T1,
there exist G ∈ τ(U) and M ∈ τ(U−1) such that xn0

∈ G, yn0
/∈ G and

yn0
∈M , xn0

/∈M . Suppose xn0
∈ G, yn0

/∈ G. Then there exists U ∈ U such
that U(xn0) ⊂ G, U(yn0) is not a subset of G since G is τ(U)-open. It follows
that U((x(n))n∈N) contains a τ(U)-open set say G such that (x(n))n∈N ∈ G,
(y(n))n∈N ∈ G. One can use the same argument to show the existence of a

τ(U−1
)-open set M such that (y(n))n∈N ∈M , (x(n))n∈N ∈M .

Definition 5.4. A bitopological space (X,P,Q) is pairwise T2 (or pairwise
Hausdorff) iff for each pair of distinct points x and y in X there is a P-open
set U and a Q-open set V disjoint from U such that x ∈ U , y ∈ V .

Proposition 5.5. Let (X,U) be a quasi-uniform space and

(∏
n∈NX,U

)
be

its quasi-uniform box product. If (X, τ(U), τ(U−1)) is pairwise T2, then(∏
n∈NX, τ(U), τ(U−1

)

)
is pairwise T2 as well.

Proof. Suppose (x(n))n∈N and (y(n))n∈N are two distinct points in
∏
n∈NX

then there exists n0 ∈ N such that xn0
6= yn0

. Since (X, τ(U), τ(U−1)) is
pairwise T2, there exist G ∈ τ(U) and M ∈ τ(U−1) such that xn0

∈ G and
yn0
∈M and G∩M = ∅. Therefore, there exist U ∈ U and V ∈ U−1 such that

U(x0) ⊂ G and V (yn0) ⊂M . It follows that

U(xn0) ∩ V (yn0) = ∅.

This implies that ∏
n∈N

U(x(n)) ∩
∏
n∈N

V (y(n)) = ∅,

and so

U((x(n))n∈N) ∩ V ((y(n))n∈N) = ∅.

Thus U((x(n))n∈N) contains a τ(U) open set say G such that (x(n))n∈N ∈ G
and V ((y(n))n∈N) contains a τ(U−1

) open set say M such that (y(n))n∈N ∈M .
Clearly G ∩M = ∅

We now present connectedness in quasi-uniform box products. We present
two types of connectedness; uniform connectedness and topological connected-
ness. Let us start with uniform connectedness.

Definition 5.6. ([10, p.243]) Let (X,U) be a quasi-uniform space. Then

(i) (X,U) is called bounded provided that for each U ∈ U , there exists a
positive integer m such that Um = X ×X.

(ii) (X,U) is called uniformly strongly connected if for all U ∈ U and x, y ∈ X,
there exists m ∈ N such that (x, y) ∈ Um.
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Remark 5.7. Note that Definition 5.6 (i) was introduced by Bushaw in the
context of uniform spaces while Definition 5.6 (ii) is motivated by a similar
terminology in graph theory and in the setting of uniform spaces it is called
uniform connectedness.

Proposition 5.8. Suppose (X,U) is a quasi-uniform space and

(∏
n∈NX,U

)
is its quasi-uniform box product. Then the following are equivalent:

(i) (X,U) is bounded

(ii)

(∏
n∈NX,U

)
is bounded

(iii)

(∏
n∈NX,U

)
is uniformly strongly connected.

Proof. (i) ⇒ (ii) Suppose U ∈ U . Then there exists m ∈ N such that Um =
X ×X. Therefore,

U
m

= Um = X ×X =
∏

n∈N
X ×

∏
n∈N

X.

(ii)⇒ (iii) Follows from the fact that any bounded quasi-uniform space is
uniformly strongly connected.

(iii) ⇒ (i) Suppose U ∈ U and x, y ∈
∏
n∈NX. Suppose to the contrary

that Um 6= X×X for all m ∈ N. Then one can choose x, y ∈
∏
n∈NX such that

(x(m), y(m)) /∈ Um for all m ∈ N. This implies that (x, y) /∈ Um for all m ∈ N

contradicting that

(∏
n∈NX,U

)
is uniformly strongly connected. Therefore,

we must have Um = X ×X.

We now show that topological connectedness is preserved by quasi-uniform
box products. Let us first recall the definition of a totally bounded quasi-
uniform space.

Definition 5.9. [6] A quasi -uniformity U on a set X is called totally bounded
provided that for each U ∈ U , there exists a cover A of X such that A×A ⊂ U
whenever A ∈ A.

It has been observed by [6] that total boundedness is preserved by arbitrary
products of quasi-uniform spaces. Therefore, we have the following result.

Corollary 5.10. Let (X,U) be a quasi-uniform space and

(∏
n∈N

X,U
)

be its

quasi-uniform box product. If (X,U) is totally bounded, then

(∏
n∈N

X,U
)

is

totally bounded.
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The following was observed by Bell in uniform box products (see [2, The-
orem 4.1]). Since there are variations in the proof, we prove the result in the
quasi-uniform setting.

Theorem 5.11. Let (X,U) be a totally bounded quasi-uniform space and(∏
n∈N

X,U
)

be its quasi-uniform box product. If (X,U) is connected, then(∏
n∈N

X,U
)

is connected.

Proof. Let P = {A1, A2, · · · , An} be a finite partition of natural numbers and∏
P =

{
x ∈

∏
n∈N

X : ∀i ≤ n ∀j1, j2 ∈ Ai x(j1) = x(j2)

}
. Note that the

set
∏
P is the set of points whose restriction to an element of the partition is

constant. Also, since P is finite,
∏
P is homeomorphic to the finite product

X |P | of connected spaces and, as a consequence, it is connected. Now consider
the constant point y ∈

∏
{N}. Then for every partition P , y ∈

∏
P . Therefore,

Z =
⋃
{
∏
P : P is a finite partition of N} is connected in

∏
n∈NX. For every

U ∈ U , we choose the set FU ⊆ X such that U(FU )∩U−1(FU ) = X. Then for
any x ∈

∏
n∈NX and for any n ∈ N, we have FU ∩ U(x(n)) ∩ U−1(x(n)) 6= ∅.

Hence
⋂
n∈N FU ∩ U(x) ∩ U−1(x) 6= ∅. Therefore, there is a finite partition P

of N such that some element of
⋂
n∈N FU ∩ U(x) ∩ U−1(x) is constant on each

member of P . So
∏
P ∩U(x)∩U−1(x) 6= ∅. Therefore, Z is dense in the quasi-

uniform box product

(∏
n∈N

X,U
)

. Since Z is connected,

(∏
n∈N

X,U
)

is also

connected.
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