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Solving a hyperbolic equation in the first canonical form
Victor Dévoudl]

Abstract.  Using regularization techniques, we give a meaning to a
nonlinear second order partial differential Cauchy problem by replacing
it by a two parameter family of Lipschitz regular problems in an appro-
priate algebra of generalized functions. We prove existence of a solution
and we explain how it depends on the choices made. We study the rela-
tionship with the classical solution.
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1. Introduction

The main purpose of this paper is to establish the existence of solutions to
the non-linear non-Lipschitz Cauchy problem formally written as

0%u
(PfOTm) F(7 ~,u,uw,uy); U|,Y = S07 uw|fy = ¢7 uy‘fy = ’(/J

Ozxdy -
ou ou . . .
where u, = e Uy = a—y, with a smooth nonlinear function F', in the case

of irregular data.

The notation F(-, -, u, us, uy) extends, with a meaning to be defined later, the
expression (z,y) — F(z,y,u(x,y), us (z,y),uy (,y)) in the case where u is
a generalized function of two variables z and y. Here ¢, ¢ and 3 are one-
variable generalized functions. The data are given along a smooth monotonic
curve v with equation y = f(z). Further, suppose that no tangent of v is
parallel to either the z— or y—axis. The ”consistency condition” assumes form
¢'(z) = p(x) + ¢ () f'(2).

To give a meaning to this problem we use the (C, &, P)-algebras of J.-A.Marti
(see [I3]- [14]). These algebras give an efficient algebraic framework which
permits a precise study of solutions as in [4], [8], [9]. We investigate solutions
with distributions or other generalized functions as initial data, thus we must
search for solutions in algebras which are invariant under nonlinear functions
and contain the space of distributions.
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This ill-posed problem remains unsolvable in classical function spaces. To
overcome this difficulty, by means of regularizations, we associate to problem
(Pform) a generalized one (Pye,) well formulated in a convenient algebra A (Q).
We extend the studies made in [7], [§] for F(-,-,u) and in [I0] for F'(-, -, u,), but
here we must restrict our study to a neighborhood Q # R? of v, (for a linear
equation no restriction of this kind is needed, Q = R?) and we must assume a
stronger hypotheses. We search for a generalized solution u in A (§2) in which
we have some conditions on F'. The general idea goes as follows. The problem
(Prorm) is approached by a two-parameter family of classical smooth problems
(Py) where A = (¢, p) € (0,1]>. We then get a two-parameter family of classical
solutions. A generalized solution is defined as the class of this family of smooth
functions satisfying some asymptotical growth restrictions.

The article is organized as follows. This section is followed by Section 2
which introduces the algebras of generalized functions.

In Section 3 we define a well formulated generalized differential problem
(Pyen) associated with the ill posed classical one. It is constructed by means of
a family (Py) of regularized problems. We replace F' with a family of Lipschitz
functions (F.) given by suitable cutoff techniques which gives rise to a family
of regularized Lipschitz problems. We use a family mollifiers (6,) , to regularize
the data in the singular case. Then parameter ¢ is used to render the problem
Lipschitz, p making it regular. Then we can built a (C, &, P)-algebra, A (Q),
stable under the family (F.), adapted to the generalized Cauchy problem in
which the irregular problem can be solved.

Then we proceed in Section 4 with the proof of the existence of a generalized
solution in the case where the irregular data are given along the monotonic
curve «. To prove the existence of a solution, a two parametric representative
(ur)y, with A = (g, p), is constructed from the existence of smooth solutions
uy for each regularized Lipschitz problem (Py). The class of (uy), is the
expected generalized solution. With regard to the regularization, we show that
this solution depends solely on the class of cutoff functions as a generalized
function, not on the particular representative. In the case of irregular data,
the solution of the problem depends on the family of mollifiers but not on a
class of that family. Moreover, we show that if the initial problem admits a
smooth solution v satisfying appropriate growth estimates on some open subset
O of ), then this solution and the generalized one are equal in a meaning given
in Theorem [£.6

In the Appendix we specify the results and estimates obtained in the clas-
sical problem.

2. Algebras of generalized functions
2.1. The presheaves of (C, &, P)-algebras
2.1.1. Definitions

We refer the reader to [13], [I4]. Let
- A be a set of indices;
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- A be a solid subring of the ring K*, (K =R or C), that is, A has the
following stability property: if (Jsx|)a < (ra)a (ie. for any A, |sy| < 7)) for any
pair ((S)\))\, (7")\))\) e KA x |A|7 then (S)\))\ € A, with |A| = {(l’l‘)\D)\ : (7“,\),\ S A};

- I4 be a solid ideal of A;

- & be a sheaf of K-topological algebras on a topological space X, such
that for any open set Q in X, the algebra £(Q) is endowed with a family

P(2) = (pi)ici() of seminorms satisfying

Vi e 1(Q), 3(j, k, C) € 1(Q) x I(Q) x R*,
Vf,g€ &) pi(fg) < Cp;i(f)pr(g)-

Assume that for any two open subsets 21, Q5 of X such that Q; C Qs, we
have I(Q1) C I1(Q2) and if p? is the restriction operator £(Q2) — (1), then,
for each p; € P(£1), the seminorm p; = p; o p? extends p; to P(Q2);

Assume that for any family F = (Q)nen of open subsets of X, if Q =
Uneu 2, then, for each p; € P(Q), i € I(QQ), there exists a finite subfam-
ily Q1,...,Q,3) of F and corresponding seminorms p; € P(21), ..., pnay €
P(Qp4)), such that, for each u € £(2), p; (u) < p1 (uml) o A P (u‘Qn(i) ).
Set

Xiae ) (Q) = {(un)x € [EOQ : Vi € 1), ((pi(ur)), € A},
{(ua)x €[S < Vi € I(), (pi(un))y € [1al},

Then, X4 ¢ p) is a sheaf of subalgebras of the sheaf EN and N(iaep) is
a sheaf of ideals of X4 ¢ p) [I3]. The constant sheaf X4k .)/N,k,.|) 18
exactly the sheaf C = A/I4.

Definition 2.1. We call presheaf of (C,&,P)-algebra the factor presheaf of
algebras over the ring C = A/Ia : A= Xa e p)/Ni1,.e,p)-

We denote by [uy] the class in A(£2) defined by the representative (ux)xea €
Xaer)(Q).

Definition 2.2. Let B, = {(rn,A))\ € (Rjr)A in=1, ...,p} and B be the subset
of (R% )™ obtained as rational functions with coefficients in R*. of elements in
B,, as variables. Define
A={(ar), € KA [ 3(by)y € B,3X € A,VA < Ng : |ay| < br}.

We say that A is overgenerated by B, (and it is easy to see that A is a solid
subring of K*). If 4 is some solid ideal of A, we also say that C = A/I4 is
overgenerated by B,. See [0].

Remark 2.3. With this definition B is stable by inverse.

2.1.2. Relationship with distribution theory

Set € an open subset of R™. The space of distributions D’(£2) can be embedded
into A(Q). If (6,) is a family of mollifiers 6, (1) = L0 (%) z e Q

pe(0,1] rg
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[0(z)dx =1and if T € D' (Q), the convolution product family (7" x 0p), is a
family of smooth functions slowly increasing in %. Taking p as a component of

the multi-index A € A, we shall choose the subring A overgenerated by some
B, of (R% )" containing the family (p), [3].

2.1.3. The association process

Assume that A is left-filtering for a given partial order relation <. Denote by (2
an open subset of X, E a given sheaf of topological K-vector spaces containing
& as a subsheaf, a a given map from A to K such that (a (A))x = (ay)x is an
element of A. Assume that

Niiaer)(Q) C {(UA)A € Xaep(Q): E%gl)lA uy = 0} :

Definition 2.4. We say that u = [uy] and v = [v)] € £(R) are a-E associated
ifEl(ifglA ax(ux —vy) = 0. That is to say, for each neighborhood V of 0 for the

)

E-topology, there exists N\g € A such that A < Ao = ax(uy —vy) € V. We

. a
write : © ~ .
E(Q)

Remark 2.5. We define an association process between u = [uy] and T € E(2)

by u~T < lim wuy, =T. Taking E =D, & =C> A= (0,1], we
B(Q)A

recover the association process defined in the literature.
2.2. D’'-singular support

Assume that N7 (Q) = {(u,\)/\ eEX(Q): ;ir%u,\ =0in D’(Q)} O N(Q).
Set

D(Q) = {[u,\] € A(): 3T € D/(Q), lim (un) = Tin ,D’(Q)} .

D’ 4(2) is well defined because the limit is independent of the chosen represen-
tative; indeed, if (i), € N(2) we have ;ir%i/\ =0.
—
D/ (R)
D!, (£2) is an R-vector subspace of A((2). Therefore we can consider the set Op,,
of all z having a neighborhood V on which u is associated with a distribution:

Op,(u) ={z € Q:3V e V(x), ul, € D(V)},
V(z) being the set of all neighborhoods of x.

Definition 2.6. The D’-singular support of u € A(Q), denoted singsuppp, (),
is the set Sﬁ;\ (u) = Q\Op, (u).
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2.3. Algebraic framework for our problem

Set £E=C>®, X =R% ford =1,2, E =D and A a set of indices, A € A.
For any open set €2, in R?, £(12) is endowed with the P(£2) topology of uniform
convergence of all derivatives on compact subsets of 2. This topology may be
defined by the family of seminorms

Py 1(un) = sup Pk o(uy) with Pk o(uy) = sup [D%uy(z)], K € Q

la<I rzeK
8a1+...+ad 4
andDa:WfOI'Z:(Zl,...,Zd)€Q7l€N7a:(a1,...7O{d)EN.
1 0%y

Let A be a subring of the ring R* of family of reals with the usual laws.
Consider a solid ideal 14 of A. Then we have

X(Q) = {(un), € [C=(Q)]* : VK € Q, VI € N, (P (un)), € |4},
N(Q) = {(u), € [C=(Q)]* : VK € Q, VI €N, (Px(uy)), € |1al},
AQ) = X(Q)/N(Q).

The generalized derivation D® : u(= [ux]) — D*u = [D%u,] provides A(f)
with a differential algebraic structure.

We have the analogue of Theorem 1.2.3. of [12] for (C, &, P)-algebras. We
suppose that A is left filtering.

Proposition 2.7. Assume that there exists (ax), € B with limyay = 0.
Consider (uy), € X(Q) such that : VK € Q, (Pko(ux)), € [La|. Then
(ur), € N ().

We refer the reader to [2], [5] for a detailed proof.

Definition 2.8. Tempered generalized functions, [6], [12]. For any open set {2
in R* and f € C*(Q), r € Z and m € N, we put

prm(f) = sup  (L+|z|)"[D*f(z)].

zeQ,|a|<m
The space of functions with slow growth is
O (Q)={feC®(Q):YmeN,Ige N, u_gm(f) <+oc}.
2.4. Some regularizing conditions
2.4.1. Generalized operator associated with a stability property
Set A = A1 x Ay where A; = Ay = (0, 1], denote by A = (g, p) an element of A.

Definition 2.9. Let Q be an open subset of R?, QO = QO x R? C R>. Let
F. € C*(Q,R). We say that the algebra A(Q) is stable under the family
(F2), if for all (ux), € X(Q) and (ix), € N(Q), we have

(Felermsuns (a),, (un),)) | € X(Q) and

(Pl i (i) (0n +02),) = Feleyyun, (), (12),)) | € N
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If A(Q) if stable under (F.),, for u = [uy] € A(Q), [Fa(-, S, (Un), s (ur),)

is a well defined element of A () (i.e. not depending on the representative

(U)\))\ of u)

Definition 2.10. Let Q be an open subset of R? and F € C*(QxR3 R). We

say that F' is smoothly tempered if the following two conditions are satisfied

(i) For each K € Q0,1 € Nand u € C*®(Q,R), there is a positive finite sequence
1

Co,.... Cr such that P (F(-,,u, (), , (u),)) <> CiPi 1 (u).
i=0
(ii) For each K € Q, 1 € N, uw and v € C®(,R), there is a positive finite

sequence Dy,..., D; such that
1

Pra(F (-0, (v),, (v),) = F (o, (u), , (u), Z Pl (v —u).

Proposition 2.11. Let € be an open subset of R? and F € C*(QxR,R). For
any € assume that F, is smoothly tempered then A (Q) is stable under (F;), .

We define
COO(Q)_}COO(Q)7f'_>H)\(f):FE(aafafufy)

H, (f) =TI (Hvafmafy) : ($7y)l—>F€ (z,y, f (z,9), f« (x’y)afy (x,y))

Clearly, the family (H)), maps (C* (Q))A into (C*° (Q))A and allows to define
a map from A () into A (). For u = [u)] € A (), [FE(~, S, (), (u,\)u}
is a well defined element of A(Q) (i.e. not depending on the representative

(ux), of u). This leads to the following definition [3]:

Definition 2.12. If A(Q) if stable under (F),, the operator

F:AQ) = AQ), u=[u]— [FE(-, s, (Ua), s (un),)| = [Hx (un)]
is called the generalized operator associated with the family (F),.
Definition 2.13. Let F € C®(R? R) and (g.), € (C®(R))™, we define

F.(2,y,2,p,q) = F(2,9, 29:(2), g (p), 49 (q))-

The family (F.), is called the family associated with F via the family (g.).. If
A () is stable under (F;),, the operator

FrAQ) = AQ), u=|uy]— [F( s (un), s (un),) | = [Ha (un)]

is called the generalized operator associated with F via the family (g.)..
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2.4.2. Generalized restriction mappings

Set Q= Q1 x Qy CR? | f € C®(R). For each g € C* () we define R(g) by :

Definition 2.14. The smooth function f is compatible with second side rTe-
striction if

V(ur)y € X((Q), (ux (5 f()))y € X(Q);
V(ix)y € N(Q), (ix (5 f())x € N ().

Clearly, if u = [ux] € A(Q) then [uy (-, f(+))] is a well defined element of
A(Q4). The mapping
Ry A(Q) = A1), w=[ua] = [ur (-, f()] = [R (ur)]
is called the generalized second side restriction mapping associated with f.

Definition 2.15. Let f € C* (R). The function f is c-bounded if for all
compact set K C R there exists another compact set K/ C R such that f(K) C
K'. Thus f is compatible with second side restriction.

We refer the reader to [12], [IJ.

3. A non Lipschitz Cauchy problem
We study the differential Cauchy problem formally written as

0%u
Porm =
(Py ){ 920y

where F', a nonlinear function of its arguments, may be non Lipschitz, ~ is the
monotonic curve of the equation y = f (z), the data ¢, ¥ may be as irregular
as distributions. We don’t have a classical surrounding in which we can pose
(and a fortiori solve) the problem.

F(~,~,u,u1,uy);u|v =, uy|»y :w’

3.1. Cut off procedure

Let € be a parameter belonging to the interval (0,1]. Let (r.)_. be in R
such that r. > 0 and lin})re = 4o00. Set L. = [-r.,7:]. Consider a family of
E—r

smooth one-variable functions (g.)_. such that

B B 0,if |z| > 7.
(11) sup Jg-(2) =1, 95(2){ Lif —re+1<2<r.—1
9"ge .. . N
and is bounded on L. for any integer n, n > 0. Set sup (2)| = M,.
32” z€L. 32”

Let ¢.(z) = zg:(z). We approximate the function F' by the family of functions
(F:). defined by F.(z,y,2,p,q) = F(2,y, ¢(2), 6= (p), ¢=(q))-
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3.2. Estimates for a parametrized regular problem

Set v a smooth non characteristic curve, whose equation is y = f(z) such
that

(12 f € C®(R), f strictly increasing, f(R) =R,
) Vr € R, f'(x) #0;f, f~1 € Oy (R), f is c-bounded.

Assume that there exists T' > 0 and an open set ) such that
Q= {(z,y) : |y — f(x)] < T} verifies the following property: for any e, there
exists some positive number M. such that, for any K € ()

sup {10.Fe(z,y, 2,p,9)|,|0p Fe(,y, 2, p,q) |} < M,
(H) (z,9)EK;(2,p,q)ER3
sup |0gFe (2,9, 2,p,q)| < M.,

(z,9)€K;(2,p,q)ER3

where the notation K € R? means that K is a compact subset of ). Let s be
chosen so small that
Os ={(2,y,2,p.q) € UX R : |z — z| < s,|p—pol < s,]a — ol < s}

= {('T7yvzapaQ) € R5’ |y - f(l‘)| < T7 |Z - ZO' < s, |p _p()l <s, |q - q0| < S}

with 20 = UO(%y)apo = (uO)m(may)aqo = (uO)y(xvy)
Assume that F. satisfies the following condition

|Fo(z,y,2,p,q) — Fe(2', ¢, 2", 0", ¢ )| < M|z = 2|+ [p— 9| + |[a — ¢'])

for all (z,y,2,p,q), («'.y,2,p',¢') € Os.
Recall that A = (g,p) € Ay x Ay = A, A} = Ay = (0, 1] where the parameter
p is used to regularize the data. Denote by (Py) the problem which consists of
searching for a function uy € C%(Q) satisfying
1 O%uy F
( 3) axay(x7y) - E(xvyau)\(:cay)?(uk)x (m,y),(’l,b)\)y ($7y))7

(14) ux (7, f(x)) = @p(x), (un),, (2, f(2)) = Pp(),

where f,¢,,%, : R = R are some smooth one-variable functions, vy is the curve
of the equation y = f(z) and F is a smooth function of all its arguments.
According the Appendix [5] we can say that (Py) is equivalent to the integral
formulation

(Int)
ur(z,1) = ug (. ) —(/y;( | FH6Cur(6.0) (), (6:0)s (ux), (6,0 €

where ug x(z,t) = T, (t) — T,(f(x)) + ¢p(x) and T, denotes a primitive of
Yy 0 f7L, with

o= 16O FHY) <E<ay <C< [} ify < f(a)
P ={ {68 LTS e S IV ST

)
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First, we are going to prove that (Py) has a unique smooth solution under the
following assumption

(Hy) {F: € C*(R*,R); ¢, and ¢, € C®°(R); f € C*°(R), f' >0, f(R) =R.

Each compact K € € is contained in some compact K, = [f~!(—a), f~'(a)] x
[—a,a] N Q. Set
(15)

O = Qmax(f_l(a)7 f_l(_a)|)7
Ka = KLa X K2,a N Q with Kl,a = [—CLK/27(LK/2] and K27a = [—a,a] .

By construction we have K C K,, V(z,y) € K., D(z,y, f) C K,.

Theorem 3.1. Under Assumption (Hy), Problem (Py) has a unique solution

Corollary 3.2. With the previous notations, for every compact subset K € €2,

there exists a compact subset K, € 2, containing K, such that

sup {|8ZFE(x7 Y, %, D, q)| ) |ang(fE, Y, z,p, q)|} < Msv
(z,y)€Ka;(2,p,q)ER®

sup |0gFe(,y, 2,p,q)| < M-.
(z,y)€Ka;(z,p,q) ER3

(Da,/\ = ||F(7 '307070)”00,1(& +

(P N S (T R I

o= s (@5 bar = (Tax/2+ T+ ax) @un.

z€[f~1(=a),f~(a)]

Then we have

(16) luall oo e < lualloo i, < Mol s, + bapeMe (@18,

These results are proved in Appendix [f]

3.3. Construction of A(Q)

Consider the previous family (r.).. We make the following assumptions to
generate a convenient (C, £, P)-algebra adapted to our problem

Ip > 0,vn € N,3¢,, > 0,Ve € (0,1],

VK € Q,Va e N°, sup |DYF.(z,y, 2,p,q)| < cpr®,
(=,y)€K;(2,p,q)ER3, |a|=n
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in particular M. < ¢r?. We take A = Ay x Ay = (0,1] x (0,1], and A = (g, p).

(18) {C = A/I4 is overgenerated by the following elements of Rgo’l]x(o’l]

(E)as(P)ys(re)ys(€m)y

Then A () = X(Q)/N(Q) is built on the ring C of generalized constants with
(E€,P) = (C”O(Q), (PKJ)K@Q,EN) and A(R) = X(R)/N(R) are built on the

ring C of generalized constants with (&, P) = (COO(]R), (Pr.1) ger leN).

As the data ¢ and 1 are irregular, we set ¢, = r+68, and ¢ = [p,], P, = s*6,
and ¢ = [1,] where (0p)p is a chosen family of mollifiers. Then the data ¢, ¥
belong to A (R) and wu is searched in the algebra A (£2).

3.4. Stability of A(Q)

Proposition 3.3. Set S, = {a € N°:|a|=n} when n € N*. Let F €
C>®(R5,R), F. defined as above in Section . Assume that

(19) Ve € (0,1],¥(z,y) € Q, F(x,y,0,0,0) =0,

Ip > 0,Vn € N,3e, > 0,Ve € (0,1],

(20) VK € Q, sup |DYFe(z,y,2,p,q)| < cnprk,
(z,y)€K;(2,p,q) ER3,aESN

then A(Q) is stable under the family (Fe)..
We refer the reader to [§] for a similar proof.

3.5. A generalized differential problem associated with the formal
one

Our goal is to give a meaning to the differential Cauchy problem formally
written as (Pform)-

Let (g:). € (C*°(R))™ and F the generalized operator associated with
F wvia the family (gc). in Definition Let f € C*°(R) and Ry given by
Definition .14

The problem associated problem to (Pjorm) can be written as the well
formulated one

0%u
(Fy ){ oxot

F(u); Ry (u) = ¢, Ry (uy) =9

where u is in the algebra A (Q2) and F, Ry are defined as previously by taking
into account the family (g.).and f.
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In terms of representatives, and thanks to the stability and restriction hy-
pothesis, solving (Pye,) amounts to find a family (uy), € X(€2) such that

Oxdy
ux (z, f(2)) = p () = Jp (@), (ur), (2, f(2)) =y (x) =1, (%),

where (i), € N(Q), (4,),, (Ip), € N (R).
Suppose we can find uy € C*® () verifying

{ %(l‘,y) - Fs(fﬁ, y,ux(ma y)? (u/\)m (m,y), (UA)y ('T7 y)> =ix (m,y) ’

0xdy

) { 0 uA(x,t)==ll(w7y,uA(x,y),(uA)m(x,y)7(uA)y($7y)%
uy (z, f(x)) = ¢p (), (ur), (7, f(2) = ¥y (2),

then, if we can prove that (uy), € X(Q), u = [u,] is a solution of (Pyep).

Remark 3.4. Uniqueness in the algebra A (£2). Let v = [v)] another solution
to (Pgen). There are (ky), € N (), (a,),, (By), € N (R), such that

0x0dy

{ 82’0)\ (x,y) - FE(x’ya v,\(x,y), (Uk)g; ('rv y)7 (UA)y (x,y)) = k>\ (.13, y) y
ox (@, () = @p () + ap(@), (0a), (, f(2)) = ¥y () + By(2).

The uniqueness of the solution to (Pye,) will be the consequence of

(wa)y = (a —ur), € N().
4. Non characteristic non Lipschitz problem with irregu-
lar data

4.1. Solution to (Pyey)

Theorem 4.1. With the previous assumptions, if uy is the solution to problem
(Pr), then problem (Pyey) admits [ux] 4 as solution.

Proof. We have
ur(,) = w0 r(z,0) [ /D G0, (1), (60, (1), (6, dE G
x,Y,,

where ug x(z,y) = T, (y) = Tp(f(x)) + @p(x) and Y/, =), 0 f~'. Then

(uon), (z,y) = vp0 f (y) = F/ (x) p(x) + ¢, (2).
We will actually prove that VK € Q, (Pk.n(ux))x € |A] for all n in N.
We have f~1(K2,) = K1, and ¢ € AR), as f~! € Op(R), we have (Y,)) €
A(R), so

Vi e N, (PK2,a7l(TP>)A € |4, (PKz,ml(l/)p o f‘l)A € |4|.
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Moreover, as ¢ € A(R), we also have : VI € N, (PK17al(gop))/\ € |A| and as
(Y,of) = f'v, and f' € Op(R) we can conclude that

Vi e N, (PKJ (UO,/\))A S |A‘ s (PK,l ((UQ,A)z)))\ S ‘A| .

We have VK € Q, 3K, = K1 4 x K2, NQ, K C K,,

(21) urlloo, i < lunlloo s, < ol g, + bapee@x AT,

With the notations of Corollary |3.2| we have (|[uoallo g, )x € 4,
(l(u0), |loo ) € A and (H(uo,,\)yHoo _)x € A, thus @, € A then

luoally, ¢ + ba7A€M5(2a+l+Ba)T € A.
A being stable, we have (|luxll,, g, )x € [A] and then (flurll, x)x € |Al, that
is (Pro (ux))x € |Al.

Let us show that (P 1(ux))a € |A|. We have

T2 w0) = B2 ) [ R0 (), (0, (), ) (20D,
f(=)

thus
8u0,,\

P (1,0)(ux) < supg ' or (Ivy)‘ +2asupg, [Fe(- - un, (ua), (UA)y))‘ -

We have

PK@7(070) (FE('v S UN, (UA)z ) (UA)y))) < PKG,O(FE(U 5 UN, (U)\)m s (u)\)y))) < COT?

Then
Pr (1,0)(ur) < [10/0% wo || o, i + cort2a.

Moreover, ([|0/0z woall,, x)x € A, and then we get (P (1,0)(ur))r € |A].
We have

()

) = T2 ) = [ Rl () (), )(E) dé

x

Oux
dy

thus

0
UZ’A (, y)‘ + ax supg,

P (0,1)(ux) < supg ‘ (e un, (un), 5 (un),))| -

We obtain Pk (0,1)(ux) < [|0/0y woxll,, x + VK ancor? and then
(10/0y urll oo r,)x € Al
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Now we proceed by induction. Suppose that (Px(ux))x € |A| for every
I < n, and let us show that implies (Px n+1(ux))x € |A|. We have Pk pt+1 =
max (PK,n7 Pl,n; P2,n7P3,n7P4,n> with
Pl,n = PK,(n+1,O)7 P2,n = PK,(O,n+1)7
Ps = 8Upoi g, p>1 Pr (a+1,8)) Pan =SUDaqp—n: a>1 PK (a,8+1)-

First let us show that (Py ,(ux))x, (P2n(ur))s € |A| for every n € N. We have
by successive derivations, for n > 1,

8n+1u>\ an-‘rluo N
Hpntl ((E, y) = W('T? y)

- Z_: CI =9 (z) ((ngs(-, s (Ua) (ux)y)) (@, f(2))

Yy
871,
[ (gt ) ),)) (.06
f(z)
As K C K,, we can write
an-ﬁ-lu)\ an—i—luo N
< —_
G| < ||
n—1 ] ( B ) 8J
s S04 10| | P £ 9y o), ), 0, )|
T 1l,a j=0

an
+ax sup ‘(FE U, (un),, (u > x,y‘.
i s G (5w, (), (un),) ) (2,9)

We have f € Op(R) then for all j, we can find & € R such that
sup (1+ Jo) | 9 @) < b,
Ki,a

but then we have

7], < max {47 @D, 0+ 157 o)) ke AT

Moreover,
on
sup(eer | (g Pl in (), (1)) ) (210)
< Pre(Folyoun, (ua), (w2),)) < car?
and

SupZEKl,a

(c‘iﬂjﬂ'Fs(" S, (U, (u,\)y)) ($7f<x))’

S PK(“TL(FE('7 S UN, (U/,\)x ) (’U/)\)y)) S CnT:g)
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and (||0"/0z™ T ug a|| g )r € |A|. According to the stability hypothesis, a
simple calculation shows tﬁat, for every K € Q, (P, (n+1,0) (ux))a € |A|.

Let us show that (Ps,(uy))e € |4, for every n € N. We have by successive
derivations, for n > 1

PO
8"+1u,\ 8"+1UQ7)\ on
ayn+1 (xay) = W(x?y) - %FE(UHUA?(UA>I,<u>\)y)(£7y)d§

x

> ()" W) ( Fe(yyun, (un), (uny)) (f'(),y) -
j=0

Oxi

As K C K,, we can write

sup @(m y)‘

(@yex | Oyt 7
6"+1UO by 6”
— > 7FE ERE) ) 5 )

o oynti 00, K s (::516)1( ‘ (ayn Gy (U/\)m (UA)y)) (x y)‘ "

= j —1\(n—3) o 1
w3 Gi|(f7) W] (77 FoC s () (02),) ) (£ @)s )
yel—a,a =0

For 0 < j < n, we have

8j
Py ](aym s (), <ux>y>) (x,y>\

S PK,n(Fa('7 S UN, (uk)z y (uk)y)) S Crﬂ“g

We have f € Ops(R) then for all j, we can find & € R such that

Hf(j)

| <max {7 @] 0 7 ) ke A

According to the stability hypothesis, a simple calculation shows that, for every
K eQand n €N, (Pg,0,n+1) (ur))x € |A]l. For a+ 3 =nand 8> 1, we now
have

Pr (ar1,5)(Un) = SUD(, ) c ¢ ‘ (D(a,ﬁ—l)D(l,l)uA) (x,y)‘

= Sup(z,y)eK ‘ (D(aﬁ_l)FE('a sy UN, (’U,)\)m ) (’U,)\)y)) (.’E, y)‘
= Pk (a,p—1)(Fe( 5 un, (ur), » (ur),))
< PK,n(FE('v S UN, (U)\)x ; (U)\)y)) < CnT'S.

Then we finally have P3,(ux) = Sup,ip—n.s>1 Pr (at+1,8)(ur) < curl and
the stability hypothesis ensures that (Ps,,(ux))x € |A|. In the same way, for
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a+ 8 =mnand a > 1, we have
P (a.p41) (UN) = SUD (3 e i ‘ (D(a_l’B)D(l’l)u,\) (:r,y)‘

= sup(e e (DR, (), (w),)) (2.9)]
= PK,(afl,B)(FE(V.’u)"( ) ) ))
< PK,n(Fs('a'au)\a(u)\)za(u)\)y)) < cpr E

Thus we have Py n(ux) = SUPyyg_n.a>1 Pr (a,p+1)(ur) < cur? and the sta-
bility hypothesis ensures that (Pj,(ux))x € |A|. Finally, we clearly have
(Prn+1(ux))a € |A[, consequently (uy), € X(Q). O

4.2. Dependence of the generalized solution on the class of cut off
functions

See [9]. Recall that A; = (0, 1], set

X1(R) = {(g:). € [C(R)™ : VK € R, VI € N, (Pr(g:)), € |A[},
Ni(R) = {(g:). € [C®R)]™ : VK € R, VI € N, (P(g:)), € [1al},
AL(R) = X1 (R) /My (R).

Consider T (R) the set of families of smooth one-variable functions
(he)een, € X1(R), verifying the following assumptions

0, if |z| > s

0,1
3<3€)5€R5ﬂ ]: sup  |he(2)] =1, hE(Z):{ 1,if —s.4+1<2<s.—1

z2€[—se,5¢]

(22) Jg € N*,V (he),. € T(R),Ve,s. < rl.
"h,
Moreover, assume that nE is bounded on J. = [—s., s.] for any integer
n, n > 0.
We have (gc).cp, € T(R). Recall that ¢.(z) = zge(z) for z € R,
Fe(2,9,2,0,9) = F(2,y, ¢ (2), ¢ (p), de(q)) for (2,y,2) € R® and
9"ge ’
sup (2)| = M,.
sel-rere]| 02"

Let g € T(R)/Ni(R) be the class of (gc).. Take (hc). another representative
of g, that is to say (h.). € T(R) and (g. — he),. € M1(R).
Set 0.(z) = E(z) for z € R, H, (ac,y,z) = F(x,y,0.(2)) for (z,y,2) € R?
and
0" he
0z

sup
z€[—se,s¢]

Our choice is made such that (supp (h.)). have the same growth as (supp (fe)).
with respect to the scale (r?)_, in this way the corresponding solutions are lying
in the same algebra A (Q).
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Proposition 4.2. Set S, = {a €N°:|a|=n} when n € N*. Let F €
COO(R57R>: H. defined by Ha(xyyazyp, Q) = F(%%Ue(z)aUa(P),Us(Q)), where
o¢ is as before. Assume that

v(x7y) EQ’F(x7y’O7O7O) :07

ﬂpo > O,VQ S N5? |C¥| =n >p07DaF(xﬂy>Z7p7q) = 03

Yn € N,n < pg,3d,, > 0,Ve € (0,1],VK € Q,

(23) sup ID®F(z,y, 2, p,q)| < dar?,
(z,y)eK; z€J.;0€8n

VYn € Nyn < pg,3Je, > 0,Ve € (0,1] ,VK € Q,

sup |D*H.(z,y,2,p,q)| < cprtod+0
(z,y)EK; zER;a€SN

and A (S2) is stable under the family (He) . .

We refer the reader to [9] for a similar detailed proof.

Theorem 4.3. Assume that p = po(1 + q) and the hypotheses of Proposition
are verified. Let F be the generalized operator associated with F via the
family (g:).. Let (he). € (CC’O(R))A1 be another family representative of the
class [ge] = g and leading to another generalized operator H associated with
F. Then we have H = F, that is to say H (u) = F (u) for any u € A(Q). In
terms of representatives, that is to say, if (uy),, (vr), € X(Q) and (wy), =

(ox —ur)y € N(Q), if

F (00 (o) 02 ((2),) 0= (), ))
= F (000 (02) 0 (02, = (02),)) = L (02 (02) 62 (02))

then (L (0= (va), ¢ (vr))), € N(9).
We refer the reader to [9] for a similar detailed proof.

Corollary 4.4. Problem (Pyey), a fortiori its solution, does not depend of the
choice of the representative (f.). of the class f € T(R)/Ni(R).

Proof. (wn), = (vx = ua)y € N(Q) then ((w),), € N (), ((wn),) | € N(Q).
We deduce that (L (oc (v), ¢ (ur))), € N(), that is to say H (u) = F (u)
O

for any u € A(Q).
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4.3. Comparison with classical solutions

Even if the data are as irregular as distributions, it may happen that the
initial formal ill-posed problem (Pjoprn, ) has nonetheless a local smooth solution.
We are going to prove that this solution is exactly the restriction (in the sense
of sheaf theory) of the generalized one.

The generalized solution to Problem (Pj.,) is defined from the integral
representation . Thus, we are going to study the relationship between
this generalized function and the classical solutions to (Pform) (when they
exist) on a domain O such that V (z,y) € O, D(x,y, f) C O. This justified to
choose O = | f~1(p), f (V)| x Ju, v[ N Q when (u,v) € O with <0 < v.
Remark 4.5. If the non regularized problem (Pfopn) has a smooth solution v
on O then, necessarily, we have O C R?\singsupp (u).

Recall that there exists a canonical sheaf embedding of C*°(-) into A (-),
through the morphism of algebra oo : C* (0) = A(O), f — [f-,], where
O is any open subset of  and f; , = f . The presheaf A allows to restriction
and as usually we denote by /|, the restriction on O of u € A ().

Theorem 4.6. Let v = [u. )] be the solution to Problem (Pyen). Let O
be an open subset of Q such that O C R*\singsupp (u). Assume that O =

U O with (O.), is an increasing family of open subsets of 2 such that O, =
€€y
1f7 M (ae), f71(be) [ x Jac, be[ N Q when (ac,b.) € Q with a. < 0 < be. Assume
that problem (Pform) has a smooth solution v on O such that sup |v(z,y)| <

(z,y)€0
re—1, sup |vg(z,y)| <r.—1and sup |vy(x,y)| <re—1 foranye. Then
(z,y)EOE (m,y)eog

v (an element of C* (O) canonically embedded in A(O)) is the restriction (in
the sense of sheaf theory) of u to O, v = ul,.

Proof. We clearly have V (z,y) € O, 3eg, Ve < g¢, (z,y) € Ok.
Then D(z,y,g) C O, C O; we have

vlavy) = ) = [ Pl (on) (02),) (6, G

S

We take as an representative of u the family (uc ) ,); we have: V(z,y) € O,

UA(%y) = UO,A(%ZJ) - //D( p )FE(',',UA,(UA)I,(UA)y)(§,<) d€d<7
T,Y,JIn

where ug x(7,y) = T, (y) — Tp(f(2)) + pp(z) and Y|, = ¢, 0 f~1. Moreover,
we have vo(z,y) = up(z,y) and

Y
6UA 3UQA
W(J%y): ox ($7y)+ / F("'au/\a(u)\):z’(u)\)y)(x7€)dg7
f(z)
F )
8u,\

) = T2 ) = [ PG () ), )6 )
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Set (wx)y = (uxlp —v), and take K & O. There exists 1 such that, for all
e < ¢e1, K € O.. According to the definition of O, there exists a, 0 < a <
(be — ac) /2, such that K C Q, C O with Qq = [f~(ac +a), f7*(be — a)] X
[ac + a,b. —a] N Q. Take (z,y) € K, then D(z,y,9) C Qq.

w)\(xay) = // (F('7'7U7Ua:avy) - FE('7'7UaUa:avy)) (faC) d§d<+
D(z,y,9)

[ (Blnommn) - Bl ), m),)) 6.0 dsde
D(z,y.9)

NOte thatv fOI' (gvgvzapv (1) € OE X (]_7"5 + 1,7’5 - 1[)3, we have F(£7§,Z,p, q) =
F.(&,5,2,p,q) by construction of F.

As values of v, vy, vy are in |—r. +1,r. — 1[, we have F(-,-,v,vy,0;) —
F.(-,, 2z,Uz,v;) = 0. Moreover, we have

fHacta) y
wn)l < et [ [ (el )]+ ), ) (€ O dedc,
f71(be—a) f(»)

then wy = 0. Thus v and u) are solutions of the same integral equation, which
admits a unique solution since F; is a smooth function of its arguments. Thus,
for all € < €1, v and uy, v, and (uy),, vy and (u)\)y are equal on O.. We
deduce that v and wu) are solutions of the same integral equation, which admits
a unique solution. Thus (Pk ,(v))x € |A] for any K € O and n € N. Then v
(identified with [(v),]) belongs to A (OO).

Moreover, for all € < €1, sup(, ,yeq, |wA(2,y)| = 0, hence (Pk (wx))x € [1a]
for any | € N as wy vanishes on K. Thus (wy), € N (0) and v = ul,, as
claimed. O

Remark 4.7. Construction of A () in the case of regular data. If the data

s and t are smooth, we take ¢ € A = A; = (0,1]. Let (r.), be in (Rj)(o’”

such that lin(l)r6 = +o0o. We take C = A/I4 the ring overgenerated by (e)_,
e—

(re)e, (€7%) (), elements of (R;")(O’l]. Then A (Q) = X(Q)/N(Q) is built on
the ring C of generalized constants with (£,P) = (COO(Q), (Pr.1) ken leN)
and A(R) = X(R)/N(R) is built on the ring C of generalized constants with
(E,P) = (C‘X’(R)7 (PKJ)K@RleN)' Nonetheless, the algebra A (£2) is not the
same in the two cases, regular data and irregular data. We can take r. = é

We set ¢ = s and ¢ = h, elements of C*(R) canonically embedded in A (R).
If « € A(R) we take o), = o, if @ € N'(R) we take a, = 0. Then we can
rewrite this section and we get similar results. We have the same definitions
as previously and we obtain the same theorems, the same proofs replacing ¢,

by ¢ and v, by 1. As previously, we can prove that Problem (Pg.,) has a
generalized solution u = [u.] in the algebra A (Q).
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5. Appendix

The Appendix is devoted to the construction of global smooth solutions to
the Cauchy problem when the data are smooth. This is achieved by rewriting
the differential equation as an integral equation and making a thorough investi-
gation on the method of successive approximations [I1]. Several improvements
to classical methods and results are needed to obtain precise estimates used in
the previous sections. Namely, the growth in the parameter € of the families of
solutions has to be known to choose the good algebraic structure to solve the
regularized problems. So the results of the Appendix form an essential basis
for the construction of generalized solutions.

5.1. Global smooth solutions to the Cauchy problem

For the following study of generalized situation, we will need precise esti-
mates for the case of smooth data.

5.1.1. Formulation of the problem
We consider the Cauchy problem

(P){ il =F(u,ua, uy); ul, = uyl, =
0x0y 1ty Uy )5 Bly = &, Yl ’
where f,¢,1 : R — R are some smooth one-variable functions, the function
F must satisfy smoothness requirements in its dependence on the arguments
x, Y, z, p, ¢ which will be specified later. Therefore we have to impose the
following hypothesis on the initial curve: that it should nowhere be tangent to a
characteristic. Since the equation appears in canonical form, its characteristics
are simply the vertical lines and the horizontal lines. Hence the initial curve
has non-parametric representation y = f(z), where f is strictly monotonic.
We shall establish that the Cauchy problem is well posed for the hyper-
bolic partial differential equation. In all cases the following hypothesis will be
satisfied

(H)

F € C®(R5R);Vr € R, f'(x) # 0
f is defined and strictly increasing on R with image R.

Assume that there exists T' > 0 and an open set {2 such that
Q={(z,y): |y — f(x)] < T} verifies the following property: we fix some posi-
tive number M such that, for any K & €2,

sup |F(z,y,2,p,q)| < M,
(z,y)€K;(2,p,q) €ER3
and
sup {|82F(I,y72,p,q)‘7 |8PF(x7yaZ7paQ)|} <M7
(H2) (z,y)€K;(2,p,q) ER3
sup |0, F (x,y,2,p,q)] < M.

(z,y)€K;(2,p,q) ER?
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Let s be chosen to be small and
Os ={(z,y,2,p,9) € AxR3: 2| < s,|p| < s,|q| < s}.

We denote by (Ps) the problem which consists in searching for a function
u € C2(Q) satisfying

(1.2 o (031) = Fa. 9,0, 9), s, 0y 0 9),
(1.9 (i f(@)) = (o), o S (2) = ()

We denote by (P;) the problem which consists in searching for a function u €
C(Q) satisfying

(14)  ulz,y) = uolz,y) - // F(&mu(E, ), ua(€,m), g (6, m)) d€ i,

D(z,y,f)

where ug(z,y) = Y (y) — Y(f(x)) + ¢(x) and T denotes a primitive of 1o f~1,
with

D(x,y,f):{ ggfﬂ?) f_l y)?fﬁx, y < %72(5)}’ if y < f(x),

y}, ity > f(a).

Theorem 5.1. Let u € CY(2). The function u is a solution to (Ps) if and
only if u is a solution to (P;).

Proof. The existence of f~! is ensured by . Hypothesis also en-
sures that the domain D(z,y, f) is bounded. We consider the points M (x,y),
P(f~Y(v),y), Q(z, f(z)), the domain D(z,y, f) is the “curvilinear triangle”
MPQ. If u is a solution to (Ps ), suppose that y > f(x). We have

e y [t e
u u
semacan= [ | [ Semac]
f(=) T
[ o [ o
_ [ T I
— [ Seu - [ G
f(=) f(@)

=T (y) — Y(f(z)) — u(z,y) + (),

where Y denotes a primitive of ¥ o f~!. Then

’U,(J?,y) = uo(x,y) - F(€7777u(€7n>7u$(€7n)7uy(€’n)) dfdnﬂ

where ug(z,y) = Y (y) — Y(f(z)) + p(x). We obtain the same result if we
suppose y < f(z). Thus u satisfies (P;). We remark moreover that, if u
is of class C™, then (z,y) — F(z,y,u(x,y), us(z,y), uy(z,y)) is of class C™.
Therefore

W (2, y) = uo(z,y) — (F(&m,u(&,n), uz(§,1), uy(€,n)) dn)dE
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has a partial derivative with respect to x of class C", and

W (2, y) = uo(z,y) — (F(&n, ul€, ), us (€ ), uy (€ n)) d§)dn
has a partial derivative with respect to y of class C™. As
o (o
dr \ Oy

) @) = Pl utea, sl to) = o (50 ) )

is of class C" we conclude that u is of class C"*!. By induction, u is therefore
of class C°. O

We have, of course, the following corollary.

Corollary 5.2. If u is a solution to (P;) (or to (Px)), then u belongs to
C>(9Q).

5.1.2. Existence and uniqueness of solutions

Theorem 5.3. From hypothesis it follows that problem (Ps,) has a unique
solution in C=(Q).

Proof. According to Theorem solving problem (P,,) amounts to solving
problem (P;), that is searching for u € C°(2) satisfying . For every com-
pact subset of 2, we can find A > 0 so that this compact subset is contained
in K = [~\,\] % [F(=A), F)] N

Let us assume always that y > f(x) and let us make the change of variables
X =24 \Y =y— f(—=)\). The relation can be written as

u(X = NY 4+ f(=N) =up(X =\ Y + f(=X\)—

F('v 5 Uy Uy, Uy)(f - )‘77] + f(_>‘)) df dnv
D(X=X\Y+f(=N),f)

whose form is (Pj,;)
(15) U(X7 Y) = UO(Xa Y) - S(, ) U7 UX7 UY)(ga 77) df dna

with g(X) = f(X —X) — f(=A); K, turns into the compact subset @ = [0, 2)]
x [0,9(2X)] N 2. The equation of () can then be written as ¥ = ¢g(X) and
9(0) = 0. So we now have X > 0and Y > g(X). Picard’s procedure for solving
(Pint) is to set up a sequence of successive approximations U,, defined by the
formula for any n € N*,

(1-6) Un(Xa Y) = UO(Xa Y) - g(a o Un—1, (Uﬂfl)X ) (Unfl)Y)(& n) d§ dn.

“+o0
Our purpose is to establish that the limit U = lim U,, = Uy + Z (Un+1—Uy)

n=0
of the successive approximations U,, exists and satisfies the integro-differential

equation.
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For every compact subset H € €, let us put ||Up|| z = sup |Uo(z,y)|
7 (z,y)eH
According to the mean value theorem, we can write

(1.7)
0 0
(& mn 209 —FEn 20, d) = (2 — Z’)£ +(p— p’)a% +(q—14)

o3
dq’

where the partial derivatives %, %g, giq on the right are evaluated at a set of

arguments intermediate between (€, 7, z,p,q) and (£,n,2',p’,¢"). Thus for all
(&,n) € D(X,Y,g), according to (H2)), we can conclude that

(1.8) |8 m, 2,0,0) —F(&n, 20, d)| < |z= 2| M+ |p—p'| M +|qg—¢| M.

By differentiating [1.6] with respect to X and with respect to ¥ we obtain
the formulas

Y
(Un+1)x (X,Y) = (Uo) x (X,Y) + / FC . Uns (Un) x5 (Un)y ) (X, m) dn,
9(X)

g (V)

(Unr)y (X.Y) = (Un)y (X, V)~ /‘{ﬂnnUhKUﬁhm(Umyﬂéyﬁd&
X

It is necessary to show that the definitions of the functions Uy, (Uy),, (Un),
are meaningful. We assume that for some value of n, the functions U,, (U,) .
(Un)y are defined and continuous in € and satisfy the inequalities

(1.9)
[Upn = Uol (X,Y) < 5,[(Un), — (Vo) (X,Y) <s,|(Un), — (Up),|(X,Y) <s.

Then §(X,Y,U,(X,Y), (Un) x (X,Y),(Un)y (X,Y) is well defined.
Moreover,

g(é? 1, UO(fv 77)7 (UO)X (57 77)7 (UO)Y (67 77)) - S(ga m, Oa 07 0)

B 0% 0% 0%
where the partial derivatives g—f, g—‘z, g—g on the right are evaluated at a set of
arguments intermediate between (£,, z,p, ¢) and (£,7,0,0,0).

|S(§7 m, U0(§7 77)? (UO)X (57 n)a (UO)Y (fa 77))|
< I§(E1.0.0,0) + (10l gy + IT0)x g, + 1Tyl g, ) M-
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Set
@5 = 5.-.0.0.0) g + (U0l +1U0)x g+ 1Wo)y 0, ) M

and Vn € N*, V,, = U,, — U,,_1. In particular,

‘Vl X Y | < // y 7U05 UO)X)(UO) )‘ (5777)d§d77 S (I))\A(X,Y),
D(X,Y,q9)
where A(X,Y) / d¢dn indicates the area of the domain ©(X,Y,g).
D(X,Y,9)

We can notice that A(X,Y) < (Y —g(X)) (97 (Y) — X)/2 < TX and then
[V1(X,Y)| < ®\TA

If (Un)yxs (Un)y and (Un—1) x, (Un—1)y satisfy the definition of U,, and
the Lipschitz condition lead to the inequality

(20) [V (X, Y)]

/ / U s+ (Un)y) = 5 Unct (Unet) y » (Unet)y )| d€ dn
D(X,Y,9)

<M // (Un = Una| + [(Un)x — Un1)x| + [(Un)y — (Un1)y]) dédn.
D(X,Y,9)

Furthermore, the formulas

(Un+1)x (X,Y) = (Uo)x (X,Y) + / S Un(s (Un) x5 (Un)y ) (X, ) dn,

g H(Y)
(Uni)y (X,Y) = (Ug)y (X,Y) — / §Ces Un, (Un) x> (Un)y )(€, Y) de,

X

obtained by differentiating V,, with respect to X and with respect to Y, furnish
in a similar way the inequalities

|(Vag1) x (X, Y)\<M/ (IVal + 1(Va) x| + [(Va)y ) (X, ) dn,
9(X)

g (V)

[(Var)y (X, Y)[ <M / (IVal +1(Va) x| +1(Va)y]) (€, Y) d€.

X
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Moreover,
Y
(V)x (X, 7)) = / 3, Vo, (Un) x » (Un)y )(X, )
(X)
<Y —g(X)[@x < Ty,
g~ (Y)
(Vi)y (X, )] = |- / 30 Us, (Un) x » (To)y )€, V) de

<[g7H(Y) - X[ @y < 220,
We have g(2A) = f(A) — f(—A) < T, moreover,
Q=A{(z,y):ly - f@) < T} ={(X,Y) : [Y —g(X)| <T}.
To exploit the similarity of the integrands, it is convenient to set

Et)= _max  (Va(X. V)| + (Vi) (X.Y)] +](Va)y (X.V).

with the points (X,Y") restricted so that each of them generates a domain of

dependence lying inside the region @ C Q, [IT]. We need to make exceptionally
careful estimates of E,, here. Introducing new coordinates 7 = 77 g(&).
If T is taken sufficiently small, the quantities Uy, (Uy),,, (U, fulﬁll. 9| for

all values of n. It follows

JI @l 10+ 100, dgan

D(X,Y,g)
Yy g7 'n) 2x g7 1Y)
s/ / (Vl + (Vi) x| + 1V, >Y\>dsdn</ / B, (r)dedr
9x) X 0 X
and

/ / E,(r)dédr| < 2X 0/ En(r)dr < 2A O/ E,(r)dr.

Un(ny) UOXY / 3 I n 17 n 1)X’( n— 1) )(g n)dfdn

D(X,Y,q9)
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Moreover,

Y t
(Vaia)x (X.Y)| < M / (Val + (Vi) el + [(Va)y D dnéM/Em)dT,
0

9(X)
g N(Y)
|(Vas1)y (X, Y) <M / (IVal + (Vi) x| + [(Va)y ) (€, Y) d€
X

t
<M / BAE,(7) dr,
0

where 3\ = supye2x [(1/9'(X))|. Thus we have

(2.1)

(Vaia| + (Vo) (Vi )y ) (X, Y) < (2AM + M + M) / Eo(r)dr
0

If we replace the left-hand side of (2.1)) by its maximum value, for 0 < ¢ < 2,
we obtain

(2.2) Epir(t) < M(2A+1+ m)/En(T) dr.
0

We have

Bit) = _max (Vi(X, V)] +](V)x (V)] +[(Vi)y (X,Y)))

SXPA+ Y = g(X)|@x + g7 (Y) — X[ @5 < by,
with by = (AT 4+ T + 2A\) . From (2.2)) it may be deduced that

t

Ey(t) < M(2A+1+ BA)/El (1)dr < M2\ + 1+ B))bat.
0

Mathematical induction serves to establish that

tnfl

(n—1)!

jﬂnfl
(n—1)1"

En(t) < [M@2A+1+ 80" " by <[M@E2A+ 1+ 80" (b))

Then the exponential series Z [M(2X+ 14 32)]" (ba) % = ryeME@AF1I+6)T

n=0
+oo

is a majorant for the infinite series Z (Up+1 — Un), as well as for formal partial

n=0
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derivatives with respect to X and Y which ensures the uniform convergence of
the series >0 o1 Vi, D05 (Vi) x and 30, 5 (V, ) on @y and consequently on
every compact subset of 2. From the equality Z Vi, = U, —Up we deduce that

k=1
the sequence (U, )nen converges uniformly on @y to a function U. As every U,

is derivable with respect to X, from the equality Z (Vi)x = (Un)x — (Uo) x,

k=
we deduce that the uniform limit U is derivable Wlth respect to X on every
compact subset Q, so on €, and the sequence ((Uy)x ),y converges uniformly
on @y to the function (U) .

As every U, is derivable with respect to Y, from the equality Z (Vi)y =

(Un)y — (Up)y, we deduce that the uniform limit U is derivable Wlth respect
to Y on every compact subset @ of €2, so on §, and the sequence ((Un)y ), cn

converges uniformly on @y to the function (U)Y.
Let us put d,,(X,Y) =U(X,Y) — Un(X,Y). Then

U(X.Y) — Up(X,Y) + / FE U ). Ux (€, n). Uy (€.m)) de dn

D(X,Y,q9)
= (U - Un) (X, Y) + (Un - UO) (X; Y) + / 8(, R U7 Ux, UY)(EJ?) dfdn
D(X,Y,9)
(X Y) + / S0 U Ux Uy) =8 Uy (Un) x5 (Un)y ) (€ m) A€ .

D(X,Y,9)
As for all (§,m) € D(X,Y,g),
|G, U, Ux, Uy) =85, Uny, (Un) x , (Un)y)) (§,m)]
<M (U =Un| +[Ux = (Un) x| + Uy = (Un)y|) (§,1),
the limit of the second member is 0 when n tends to +oo. It follows that

U(X,Y) = Up(X.Y) / S(E U ), Ux (,1), Uy (€,1)) dé dn
D(X,Y,9)

for (X,Y) € Qan{(X,Y):y > g(X)} = QF.
Let us show the uniqueness of the solution. Let W be another solution to
(1.4). Putting A =W — U, we obtain

// (U Uy, Uy) — 3. W, W, Wy ) (€,17) d€ dy.

D(X,Y,q9)

Let (X,Y) € Qx. As D(X,Y,g) C Qx, we have

AV £ [ MU =Wl 0 = Wl + Oy = W) (€ dé

D(X,Y,9)
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¢
It follows that E(t) < M(2\+ 1+ 8)) [ E(7)dr, where
0

E(1)

max (|U - W[+ |[Ux — Wx|+|Uy - Wy[(X,Y)),
t=Y —g(X)

According to the Grunwall Lemma, E(t) = 0. The conclusion to be drawn is
that U and W are identical. This completes our proof that the solution U of
the Cauchy problem is unique on Q;\r.

Then putting vy (x,y) = U(z+ A, y— f(—X)), it follows that v is the unique
solution to on KxN{(z,y):y> f(x)} = K.

Now consider the case y < f(x). We make the change of variables X =
—x+ A\, Y =—y+ f(\) with which we can deal as previously.
It follows that wy(z,y) = W(—z 4+ A\, —y + f(\)) is a solution to on
Kyn{(z,y) :y < f(2)} = K .
From the continuity of U on Qj\' and of W on @, we have the continuity
of vy on K)J\r and of wy on K, . Moreover, vy and wy agree on 7 because
oa(z, f(z)) = wa(z, f(z)) = ¢(z). Finally, if we put

[ o) o G € S,
ux(z,y) = { wx(z,y) for (z,y) € K,

then uy is the unique continuous solution to (FP;) on K.

It remains to prove that the method actually gives a continuous global
solution u to on Q, that is, which satisfies (P;). If Ay > Ay then K, C
K, so we must prove that uAQ|KAl = uy,. But for all (z,y) € K,,

Uy (:Evy) = Uo(l',y) - // F(a Uy, (u)\z)z ’ (UA2)y)(f»7l) dg d77

D(z,y,f)

and we have this equality, all the more so, for (x,y) € K,,. So u,\2|KAl

satisfies (1.4) on K, and so coincides on it with its unique solution wy,. For
every (z,y) € Q we can thus put

(2.3) u(z,y) = ur(z,y) = uo(z,y) — // F(., . u,ug,uy)(§,n)dédn

D(z,y,f)

where uy satisfies (1.4) on Ky and (z,y) € Ky C Q. The definition of u in
(2.3), being independent of the compact subset K, finally gives the unique
solution to (P;) or (Ps) on . O

Proposition 5.4. With the previous notations, for every compact subset K €
), there exists a compact subset Ky € Q0 containing K, verifying[H2] Set

Dy = [F(,,0,0,0)] 0, + (nuonm,;@ 11 0), o sy + [ (1), || _ K) M
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1
By = sup - and by = (AT +T+ X) D,
TE[=\,A] f'(x)
We have
(2.4) el oo ie < Nttlloo i, < lvoll ook, + byeMA+H14)T

Proof. Keeping the previous notations, we have the result. From the relations

||UA||007KA+ = ||U||OO,QA ) ||UO||w7KA+ = ||U0H00,Q,\ ) Uy = { V) Oon K;\",
||7UA||OO7K; = HVVHOQQA ) ||Uo||m7K; = ||VVOHOO7QA ) wy on Ky,

it may be deduced that

[ull oo st < a0l ges + baeMAHIHAIT,

||u||oc’K; < ||u0||oo,K; 4 byeM@AFIHBT |
50 10l sy < ol ey + Ba€M AT, A lull e < full gy the pre-
vious inequality implies the conclusion ([2.4)). O
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