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Green’s function and an inequality of Lyapunov-type for
conformable boundary value problem
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Abstract. In this article, we consider a conformable boundary value
problem associated with Robin type boundary conditions and present a
Lyapunov-type inequality for the same. Further, we attain a lower bound
on the smallest eigenvalue for the corresponding conformable eigenvalue
problem using the established result, semi maximum norm and Cauchy–
Schwartz inequality.
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1. Introduction

The theory of arbitrary order integrals and derivatives is one of the oldest
branches of mathematics that dates back to the works of Euler. Many scientists
gave valuable contributions to its development [15, 19]. In this process, they
proposed several types of arbitrary order derivatives including the definition
proposed in [13], which is the focus of this article.

Interestingly, each definition of arbitrary order derivative captures only a
few of the properties of the classical derivative. Recently, in [20], the author
proposed the principle of nonlocality in the context of a number of familiar
fractional derivatives and proved that the derivative presented in [13] cannot
be considered as a fractional derivative. At the same time, several authors
have argued that that there is a significant value in exploring conformable
derivatives.

The study of conformable derivatives was initiated in [13]. Following this
work, the basic concepts of conformable calculus were developed in [1]. Subse-
quently, the definition of conformable derivative was generalized in many ways
[9, 14, 24]. Several authors have explored properties and physical applications
of this derivative [3, 4, 6]. Recently, the authors of [5] showed that the defi-
nitions of conformable derivatives in [13] and [12] are equivalent to the simple
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change of variables when applied to differentiable functions and discussed the
significance of these derivatives in exploring the physical applications.

On the other hand, Theorem 1.1 was established in [16] for the following
boundary-value problem (BVP):

(1.1)

{
y′′(t) + r(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0.

Theorem 1.1. [16] Assume r ∈ C
(
[a, b],R

)
and (1.1) possesses a nontrivial

solution. We have

(1.2)

∫ b

a

|r(s)|ds > 4

(b− a)
.

This inequality (1.2) is called the Lyapunov inequality. Due to its applica-
bility in the field of differential equations, several mathematicians have gener-
alized the Lyapunov inequality in many forms. We refer [7, 17, 18, 21, 23, 22]
and the references therein for a detailed discussion on this topic.

In particular, the authors of [2] and [8] independently generalized Theorem
1.1 for conformable derivatives as follows:

Assume r ∈ C
(
[a, b],R

)
and consider the BVP

(1.3)

{(
Tαa+y

)
(t) + r(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0.

Here 1 < α ≤ 2 and Tαa+ denotes the αth-order conformable differential opera-
tor.

Theorem 1.2. [2] Assume (1.3) possesses a nontrivial solution. We have

(1.4)

∫ b

a

|r(s)|ds > αα

(α− 1)α−1(b− a)α−1
.

Theorem 1.3. [8] If (1.3) possesses a nontrivial solution, then

(1.5)

∫ b

a

|r(s)|(s− a)α−2ds >
4

b− a
.

Recently, the authors of [10, 11] derived a few inequalities of the Lyapunov
type for conformable BVPs associated with left focal, right focal and anti-
periodic boundary conditions. In line with this approach, here we obtain a
Lyapunov-type inequality for the following two-point conformable BVP:

(1.6)

{(
Tα0+y

)
(t) + r(t)y(t) = 0, 0 < t < T,

y(0)− y′(0) = y(T ) + y′(T ) = 0.

Here 1 < α ≤ 2, r ∈ C
(
[0, T ],R

)
and Tα0+ denotes the αth-order conformable

differential operator.
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2. Preliminaries

This section contains preliminaries on conformable calculus.

Definition 2.1. [1] Let y : [a,∞) → R and 0 < α ≤ 1. The αth-order
conformable derivative of y starting from a is defined by

(
Tαa+y

)
(t) = lim

ε→0

[y(t+ ε(t− a)1−α
)
− y(t)

ε

]
, t ∈ (a,∞).

If
(
Tαa+y

)
exists on (a, b) then,

(
Tαa+y

)
(t)→

(
Tαa+y

)
(a) as t→ a+.

Definition 2.2. [1] Let y : [a,∞) → R, α > 0 and take n ∈ N1 with n − 1 <
α ≤ n. Assume y(n−1) exists on (a,∞). The αth-order conformable derivative
of y starting from a is defined by(

Tαa+y
)
(t) =

(
Tα−n+1
a+ y(n−1)

)
(t)

= lim
ε→0

[y(n−1)(t+ ε(t− a)n−α
)
− y(n−1)(t)

ε

]
, t ∈ (a,∞).

If y(n) exists on (a,∞), then(
Tαa+y

)
(t) = (t− a)n−αy(n)(t), t ∈ (a,∞).

Definition 2.3. [1] Let y be a real valued function defined on [a, b], α > 0
and take n ∈ N1 with n− 1 < α ≤ n. The αth-order conformable integral of y
starting from a is defined by

(
Iαa+y

)
(t) =

1

(n− 1)!

∫ t

a

(t− s)n−1(s− a)α−ny(s)ds, t ∈ [a, b].

Theorem 2.4. [1] Let y : [a, b]→ R, α > 0 and take n ∈ N1 with n−1 < α ≤ n.
If y(n−1) exists on (a, b), then

(
Iαa+T

α
a+y

)
(t) = y(t)−

n−1∑
k=0

y(k)(a)(t− a)k

k!
, t ∈ (a, b).

3. Main Results

Assume 1 < α ≤ 2 and h ∈ C
(
[0, T ],R

)
. Consider the conformal BVP

(3.1)

{(
Tα0+y

)
(t) + h(t) = 0, 0 < t < T,

y(0)− y′(0) = y(T ) + y′(T ) = 0.

First, we derive the Green’s function for (3.1) and obtain a few of its properties.
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Theorem 3.1. The unique solution of the conformable BVP (3.1) is given by

(3.2) y(t) =

∫ T

0

G(t, s)h(s)ds.

Here

(3.3) G(t, s) =

{
(T−s+1)(t+1)

(T+2) sα−2, 0 < t ≤ s ≤ T,
(T−t+1)(s+1)

(T+2) sα−2, 0 < s ≤ t ≤ T.

Proof. First, we apply the αth-order conformable integral operator on (3.1).
Then, from Theorem 2.4, we obtain

(3.4) y(t) = C1 + C2t−
∫ t

0

(t− s)sα−2h(s)ds.

Differentiating (3.4) w.r.t. t, we get

(3.5) y′(t) = C2 −
∫ t

0

sα−2h(s)ds.

Since y(0)− y′(0) = 0, we have

(3.6) C1 − C2 = 0.

The second boundary condition and (3.6) yield

(3.7) C2 =

∫ T

0

(
T − s+ 1

T + 2

)
sα−2h(s)ds.

From (3.6) and (3.7), we have

(3.8) C1 =

∫ T

0

(
T − s+ 1

T + 2

)
sα−2h(s)ds.

Substituting the values of C1 and C2 from (3.7) and (3.8) in (3.4), we obtain

y(t) =

∫ T

0

(
T − s+ 1

T + 2

)
sα−2h(s)ds+ t

∫ T

0

(
T − s+ 1

T + 2

)
sα−2h(s)ds

−
∫ t

0

(t− s)sα−2h(s)ds

= (t+ 1)

∫ t

0

(
T − s+ 1

T + 2

)
sα−2h(s)ds

+(t+ 1)

∫ T

t

(
T − s+ 1

T + 2

)
sα−2h(s)ds−

∫ t

0

(t− s)sα−2h(s)ds

=

∫ t

0

(T − t+ 1)(s+ 1)

(T + 2)
sα−2h(s)ds

+

∫ T

t

(T − s+ 1)(t+ 1)

(T + 2)
sα−2h(s)ds =

∫ T

0

G(t, s)h(s)ds.

The proof is complete.
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Lemma 3.2. The Green’s function G(t, s) has the following properties:

1. G(t, s) > 0 for all (t, s) ∈ (0, T ]× (0, T ].

2. G(t, s) ≤ G(s, s) for all (t, s) ∈ (0, T ]× (0, T ].

3. maxs∈[0,T ] s
2−αG(s, s) = T+2

4 .

4. maxt∈[0,T ]

∫ T
0
G(t, s)ds = Tα

α

[
(T+α)
α(T+2)

] α
(α−1)

+ Tα−1(T+α)
α(α−1)(T+2) .

5. maxt∈[0,T ]

∫ T
0
s2−αG(t, s)ds = T 2+4T

8 .

Proof. Define the functions

G1(t, s) =
(T − s+ 1)(t+ 1)

(T + 2)
sα−2 and G2(t, s) =

(T − t+ 1)(s+ 1)

(T + 2)
sα−2.

The proof of (1) is trivial. We can easily check that G1(t, s) increases with
respect to t. Differentiating G2(t, s) with respect to t for every fixed s, we
observe that G2(t, s) is a decreasing function of t. Thus, we have (2). Clearly
from (3.3), we have

(3.9) s2−αG(s, s) =
(T − s+ 1)(s+ 1)

(T + 2)
, s ∈ [0, T ].

Define H(s) as the right hand side of (3.9). Now, differentiating H(s) with
respect to s and equating it to 0, we obtain s = T

2 . Again, differentiating

H ′(s) with respect to s, we observe that H ′′(s) < 0 at s = T
2 . So, H(s) attains

its maximum at s = T
2 . Substituting s = T

2 in (3.9), we have (3). For (4),
consider∫ T

0

G(t, s)ds =

∫ t

0

(T − t+ 1)(s+ 1)

(T + 2)
sα−2ds+

∫ T

t

(T − s+ 1)(t+ 1)

(T + 2)
sα−2ds

=

(
T − t+ 1

T + 2

)(
tα−1

α− 1
+
tα

α

)
+

(T + 1)(t+ 1)

(T + 2)[
Tα−1

α− 1
− tα−1

α− 1

]
−
(
t+ 1

T + 2

)[
Tα

α
− tα

α

]
= − tα

α(α− 1)
+

(t+ 1)(T + α)Tα−1

(T + 2)α(α− 1)
.(3.10)

Define H1(t) as the right hand side of (3.10). Now, differentiating H1(t) with

respect to t and equating it to 0, we obtain t = T
[

T+α
α(T+2)

] 1
(α−1)

. Again,

differentiating H1
′(t) with respect to t, we observe that H1

′′(t) ≤ 0 at t =

T
[

T+α
α(T+2)

] 1
(α−1)

. So, H1(t) attains its maximum at t = T
[

T+α
α(T+2)

] 1
(α−1)

. Sub-
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stituting t = T
[

T+α
α(T+2)

] 1
(α−1)

in (3.10), we have (4). Consider∫ T

0

s2−αG(t, s)ds =

∫ t

0

(T − t+ 1)(s+ 1)

T + 2
ds+

∫ T

t

(T − s+ 1)(t+ 1)

T + 2
ds

=

(
T − t+ 1

T + 2

)(
t+

t2

2

)
+

(T + 1)(t+ 1)(T − t)
(T + 2)

− (t+ 1)(T 2 − t2)

2(T + 2)

= − t
2

2
+
T (t+ 1)

2
.(3.11)

Define H2(t) as the right hand side of (3.11). Now, differentiating H2(t) with
respect to t and equating it to 0, we obtain t = T

2 . Again, differentiating H2
′(t)

with respect to t, we observe that H2
′′(t) < 0 at t = T

2 . So, H2(t) attains its

maximum at t = T
2 . Substituting t = T

2 in (3.11), we have (6). The proof is
complete.

Theorem 3.3. Suppose (1.6) possesses a nontrivial solution. We have

(3.12)

∫ T

0

sα−2|r(s)|ds > 4

T + 2
.

Proof. Clearly, C ([0, T ],R) is a Banach space with the norm

‖y‖C = max
t∈[0,T ]

|y(t)|.

Every solution of (1.6) satisfies the following equation:

y(t) =

∫ T

0

G(t, s)r(s)y(s)ds.

Consider

|y(t)| =
∣∣∣ ∫ T

0

G(t, s)r(s)y(s)ds
∣∣∣

≤
∫ T

0

∣∣G(t, s)
∣∣|r(s)||y(s)|ds

≤ ‖y‖
∫ T

0

∣∣G(t, s)
∣∣|r(s)|ds

= ‖y‖
∫ T

0

∣∣s2−αG(t, s)
∣∣∣∣sα−2r(s)∣∣ds,

implying that

‖y‖ ≤ ‖y‖ max
s∈[0,T ]

[∣∣s2−αG(t, s)
∣∣][ ∫ T

0

∣∣sα−2r(s)∣∣ds].
An application of Lemma 3.2 yields the result. The proof is complete.
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4. Application

We consider the eigenvalue problem corresponding to (1.6) and find an
estimate on a lower bound for the smallest eigenvalue using three different
methods.

Definition 4.1. A Lyapunov Inequality Lower Bound (LILB) is defined as
a lower estimate for the smallest eigenvalue obtained from (3.12) by setting
r(s) = λ, that is,

(4.1) λ ≥ 1

T Gmax
.

Definition 4.2. A Cauchy-Schwartz Inequality Lower Bound (CSILB) is given
by

(4.2) λ ≥

[∫ T

0

∫ T

0

G2(t, s)dsdt

]− 1
2

.

Definition 4.3. A Semi Maximum Norm Lower Bound (SMNLB) is given by

(4.3) λ ≥ 1

max0≤t≤T
∫ T
0
|G(t, s)|ds

.

Theorem 4.4. Assume y be a nontrivial solution of the conformable eigenvalue
problem {(

Tα0+y
)
(t) + λy(t) = 0, 0 < t < T,

y(0)− y′(0) = y(T ) + y′(T ) = 0,

where y(t) 6= 0 for each t ∈ (0, T ). Then,

(4.4) |λ|(LILB) >
4(α− 1)

Tα−1(T + 2)
, 1 < α ≤ 2,

(4.5) |λ|(CSILB) ≥
4
√

(2α− 3)

(T + 2)Tα−1
,

3

2
≤ α ≤ 2,

(4.6) |λ|(SMNLB) ≥
1

Tα

α

[
(T+α)
α(T+2)

] α
α−1

+ Tα−1(T+α)
α(α−1)(T+2)

, 1 < α ≤ 2.

Proof. We take r(s) = λ in (3.12). Then, we obtain∫ T

0

sα−2|λ|ds > 4

T + 2
,

implying that

|λ|
(
Tα−1

α− 1

)
>

4

T + 2
.
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This proves the result (4.4). Consider,

λ ≥

(∫ T

0

∫ T

0

∣∣G(t, s)
∣∣2dsdt)− 1

2

=

(∫ T

0

∫ T

0

∣∣s2−αG(t, s)sα−2
∣∣2dsdt)− 1

2

=

(∫ T

0

∫ T

0

∣∣s2−αG(t, s)
∣∣2s2α−4dsdt)− 1

2

≥

(∫ T

0

∫ T

0

[
T + 2

4

]2
s2α−4dsdt

)− 1
2

=
4

T + 2

(∫ T

0

T 2α−3

2α− 3
dt

)− 1
2

,

implying that

λ ≥
4
√

(2α− 3)

(T + 2)Tα−1
.

Thus, we have (4.5). The proof of (4.6) follows from (4.3) and Lemma 3.2. The
proof is complete.
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