Existence and multiplicity of solutions for singular fractional elliptic system via the Nehari manifold approach


Kamel Akrout, Nor Elhouda Soltani, Sounia Zediri




In this paper, we study the existence and multiplicity of positive nontrivial solutions of the following singular fractional elliptic system \begin{equation*} \begin{cases} (-\Delta)^s_pu=a(x)u^{-\gamma}+ambda f(x,u,v)ext{ in }mega, (-\Delta)^s_pv=b(x)v^{-\gamma}+ambda g(x,u,v)ext{ in }mega, u=v=0ext{ on } \mathbb R^N\backslash mega, \end{cases} \end{equation*} where $\Omega$ is a smooth bounded domain in $\mathbb R^N$, $N>ps$ with $s\in(0,1)$, $\lambda$ is a positive parameter and $0<\gamma<1<p<r<p^*_s-1$, $p^*_s=\frac{Np}{N-ps}$. $a,b\in L^\infty(\Omega,\mathbb R^+_*)$, $f,g\in C(\Omega\times\mathbb R\times\mathbb R,\mathbb R^+)$ are positively homogeneous functions of degree $(r-1)$. The results are obtained by using the fibering method, Nehari Manifold technique and applying Ekeland's variational principle.