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On split equality for finite family of generalized mixed
equilibrum problem and fixed point problem in real

Banach spaces

Oluwatosin Temitope Mewomo12, Ferdinand Udochukwu Ogbuisi3

Abstract. The purpose of this paper is to introduce a simultane-
ous iterative algorithm for solving split equality for systems of gener-
alized mixed equilibrium problem and split equality fixed point prob-
lem in p-uniformly convex and uniformly smooth Banach spaces using
the Bregmann distance technique. Furthermore, we state and prove a
strong convergence theorem for the approximation of a solution of split
equality for systems of generalized mixed equilibrium problem and split
equality fixed point problem in the framework of p-uniformly convex and
uniformly smooth Banach spaces. Our result extends results on split
equality generalized mixed equilibrium problems from Hilbert spaces to
p-uniformly convex Banach spaces which are also uniformly smooth.
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1. Introduction

Let E be a p-uniformly convex and uniformly smooth Banach space, and
C a nonempty, closed and convex subset of E. Throughout this paper, we
shall denote the dual space of E by E∗. The norm and the duality pairing
between E and E∗ are denoted by ‖.‖ and 〈., .〉, respectively, and R stands
for the set of real numbers. Let f : E → (−∞,∞] be a proper convex and
lower semicontinuous functional. The Fenchel conjugate of f is the function
f∗ : E∗ → (−∞,∞] defined by

f∗(ξ) = sup{〈ξ, x〉 − f(x) : x ∈ E}.

Let T : C → C be a mapping, a point x ∈ C is called a fixed point of T if
Tx = x. The set of fixed points of T is denoted by F (T ).
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Let g : C × C → R be a bifunction, ϕ : C → R ∪ {+∞} be a function
and Φ : C → E∗ be a nonlinear mapping. The Generalized Mixed Equilibrium
Problem (GMEP) is to find u ∈ C such that

g(u, y) + 〈Φu, y − u〉+ ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C.(1.1)

Denote the set of solutions of Problem (1.1) by GMEP (g,Φ, ϕ). That is

GMEP (g,Φ, ϕ) = {u ∈ C : g(u, y) + 〈Φu, y − u〉+ ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C}.

If Φ = 0, then the GMEP (1.1) reduces to the following mixed equilibrium
problem: Find u ∈ C such that

g(u, y) + ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C.

If ϕ = 0, then the GMEP (1.1) becomes the generalized equilibrium problem,
to find u ∈ C such that

g(u, y) + 〈Φu, y − u〉 ≥ 0, ∀y ∈ C.

Again if Φ = ϕ = 0, then the GMEP (1.1) becomes the equilibrium problem, to
find u ∈ C such that

g(u, y) ≥ 0, ∀y ∈ C,(1.2)

which was first introduced by Blum and Oettli [4], who denoted the solution
set of (1.2) as EP (g).

For solving equilibrium problem (1.2), the bifunction g is assumed to satisfy
the following conditions:
(A1) g(x, x) = 0 for all x ∈ C;
(A2) g is monotone, i.e., g(x, y) + g(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y ∈ C, limt→0 g(tz + (1− t)x, y) ≤ g(x, y);
(A4) for each x ∈ C; y 7→ g(x, y) is convex and lower semicontinuous.
Many mathematicians have found the study of equilibrium problems very inter-
esting as it has been observed that the equilibrium problems and their gener-
alizations have been widely applied to solve problems in various fields such as:
linear or nonlinear programming, variational inequalities, complementary prob-
lems, optimization problems, fixed point problems and have also been widely
applied to physics, structural analysis, management sciences, economics, etc
(see, for example [4, 6, 27, 26]).
Many authors have proposed some efficient and implementable algorithms and
obtained some convergence theorems for solving equilibrium problems, some
of their generalizations and related optimization problems, (see for example,
[1, 3, 6, 8, 9, 10, 11, 12, 14, 15, 18, 19, 20, 21, 22, 30, 31, 32, 33, 34, 36, 37] and
the references therein).

Authors have started to study the Split Equilibrium Problem (SEP) defined
as follows: Let H1, H2 be two real Hilbert spaces, let C,Q be closed convex
subsets of H1 and H2, respectively, and A : H1 → H2 a bounded linear opera-
tor. Let g1 : C ×C → R, g2 : Q×Q→ R be bifunctions, ϕ1 : C → R∪ {+∞},
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ϕ2 : Q → R ∪ {+∞} be functions and Φ1 : C → H1, Φ2 : Q → H2 be nonlin-
ear mappings. Then the split generalized mixed equilibrium problem is to find
x∗ ∈ C such that

g1(x∗, x) + 〈Φ1x
∗, x− x∗〉+ ϕ1(x)− ϕ1(x∗) ≥ 0, ∀x ∈ C,(1.3)

and y∗ = Ax∗ ∈ Q solves

g2(y∗, y) + 〈Φ2y
∗, y − y∗〉+ ϕ2(y)− ϕ2(y∗) ≥ 0, ∀y ∈ Q,(1.4)

We shall denote the solution set of (1.3)-(1.4) by

Ω1 ={x∗ ∈ GMEP (g1,Φ1, ϕ1) : Ax∗ ∈ GMEP (g2,Φ2, ϕ2)}.

If Φ1 = 0 and Φ2 = 0, then (1.3)-(1.4) reduces to the following split mixed
equilibrium problem: Find x∗ ∈ C such that

g1(x∗, x) + ϕ1(x)− ϕ1(x∗) ≥ 0, ∀x ∈ C,(1.5)

and y∗ = Ax∗ ∈ Q solves

g2(y∗, y) + ϕ2(y)− ϕ2(y∗) ≥ 0, ∀y ∈ Q,(1.6)

with solution set Ωϕ = {x∗ ∈ MEP (g1, ϕ1) : Ax∗ ∈ MEP (g2, ϕ2)}. Again in
(1.3)-(1.4) if ϕ1 = ϕ2 = 0, we obtain the following split generalized equilibrium
problem: Find x∗ ∈ C such that

g1(x∗, x) + 〈Φ1x
∗, x− x∗〉 ≥ 0, ∀x ∈ C,(1.7)

and y∗ = Ax∗ ∈ Q solves

g2(y∗, y) + 〈Φ2y
∗, y − y∗〉 ≥ 0, ∀y ∈ Q,(1.8)

with solution set ΩΦ = {x∗ ∈ GEP (g1,Φ1) : Ax∗ ∈ GEP (g2,Φ2)}. Moreover,
if Φ1 = Φ2 and ϕ1 = ϕ2 = 0, we have the split equilibrium problem, to find
x∗ ∈ C such that

g1(x∗, x) ≥ 0, ∀x ∈ C,(1.9)

and y∗ = Ax∗ ∈ Q solves

g2(y∗, y) ≥ 0, ∀y ∈ Q,(1.10)

with solution set Ω0 = {x∗ ∈ EP (g1) : Ax∗ ∈ EP (g2)}.
Kazmi and Rizvi [13] studied the pair of equilibrium problems (1.9) and (1.10)
called split equilibrium problem.

Recently Bnouhachem [5] stated and proved the following strong conver-
gence result.
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Theorem 1.1. Let H1 and H2 be two real Hilbert spaces, and let C ⊂ H1 and
Q ⊂ H2 be nonempty closed and convex subset of H1 and H2, respectively. Let
A : H1 → H2 be a bounded linear operator. Assume that f1 : C × C → R
and f2 : Q × Q → R are bifunctions satisfying (A1) − (A4) and f2 is upper
semicontinuous in the first argument. Let S, T : C → C be nonexpansive
mappings such that Ω0∩F (T ) 6= ∅. Let f : C → C be a k-Lipschitzian mapping
and η-strongly monotone and let U : C → C be τ -Lipschitzian mapping. For
a given arbitrary x0 ∈ C , let the iterative sequence {xn}, {un} and {yn} be
generated by un = T f1rn (xn + γA∗(T f2rn − I)Axn);

yn = βnSxn + (1− βn)un;
xn+1 = PC [αnρU(xn) + (I − αnµf)(T (yn))], ∀n ≥ 0;

(1.11)

where {rn} ⊂ (0, 2ζ) and γ ∈ (0, 1
L ), L is the spectral radius of the operator

A∗A, and A∗ is the adjoint of A. Suppose the parameters satisfy 0 < µ <
(2η

k2

)
,

0 ≤ ρη < ν, where ν = 1−
√

1− µ(2η − µk2) and {αn} and {βn} are sequences
in (0, 1) satisfying the following conditions:
(a) limn→∞ αn = 0 and

∑∞
n=1 αn =∞,

(b) limn→∞( βnαn ) = 0,

(c)
∑∞
n=1 |αn−1 − αn| <∞ and

∑∞
n=1 |βn−1 − βn| <∞

(d) lim infn→∞ rn < lim supn→∞ rn < 2ζ and
∑∞
n=1 |rn−1 − rn| <∞.

Then {xn} converges strongly to z ∈ Ω0 ∩ F (T ).

Let E1, E2 and E3 be three real Banach spaces and C, Q be nonempty
closed and convex subsets of E1 and E2, respectively. Let A : E1 → E3 and B :
E2 → E3 be bounded linear operators. Let g1 : C×C → R and g2 : Q×Q→ R
be two bifunctions satisfying conditions (A1) − (A4). Let Φ1 : C → E∗1 and
Φ2 : Q→ E∗2 be two continuous and monotone mappings,ϕ1 : C → R ∪+{∞}
and ϕ2 : Q → R ∪ +{∞} be two proper lower semicontinuous and convex
functions. Then the split equality generalized mixed equilibrium problem is:
find x̄ ∈ C and ȳ ∈ Q such that

g1(x̄, x) + 〈Φ1x̄, x− x̄〉+ ϕ1(x)− ϕ1(x̄) ≥ 0, ∀x ∈ C,(1.12)

g2(ȳ, y) + 〈Φ2ȳ, y − ȳ〉+ ϕ2(y)− ϕ2(ȳ) ≥ 0, ∀y ∈ Q,(1.13)

and Ax̄ = Bȳ. We can see that if E2 = E3 and B is the identity operator on
E2, then the split equality generalized mixed equilibrium problem (1.12)-(1.13)
reduces to the split generalized mixed equilibrium problem (1.3)-(1.4).

Let E1, E2 and E3 be three real Banach spaces and C, Q be nonempty
closed and convex subsets of E1 and E2, respectively. Let A : E1 → E3 and
B : E2 → E3 be bounded linear operators. Let gi1 : C×C → R (i = 1, 2, ..., N)
and gj2 : Q × Q → R (j = 1, 2, ...,M) be two finite families of bifunctions
satisfying conditions (A1) − (A4). Let Φi1 : C → E∗1 (i = 1, 2, ..., N) and
Φj2 : Q→ E∗2 (j = 1, 2, ...,M) be two finite families of continuous and monotone
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mappings, ϕi1 : C → R∪+{∞} (i = 1, 2, ..., N) and ϕj2 : Q→ R∪+{∞} (j =
1, 2, ...,M) be two finite families of proper lower semicontinuous and convex
functions. Let T : C → C and S : Q → Q be nonlinear mappings. Then, we
consider the following problem: find x̄ ∈ F (T ) and ȳ ∈ F (S) such that

gi1(x̄, x) + 〈Φi1x̄, x− x̄〉+ ϕi1(x)− ϕi1(x̄) ≥ 0,(1.14)

∀x ∈ C, i = 1, 2, · · · , N ;

gj2(ȳ, y) + 〈Φj2ȳ, y − ȳ〉+ ϕj2(y)− ϕj2(ȳ) ≥ 0,(1.15)

∀y ∈ Q, j = 1, 2, · · · ,M ; and Ax̄ = Bȳ. We shall denote the solution set
of (1.14)-(1.15) by Ω = {(x̄, ȳ) : x̄ ∈ F (T ) ∩ (∩Ni=1GMEP (gi1,Φ

i
1, ϕ

i
1)), ȳ ∈

F (S) ∩ (∩Mj=1GMEP (gj2,Φ
j
2, ϕ

j
2)), Ax̄ = Bȳ}.

This problem (1.14)-(1.15) that we are considering has as special cases the split
equality equilibrium problem, the split equality variational inequality problem,
the split equality convex minimisation problem and the split generalized mixed
equilibrium problem. Furthermore, results on split equilibrium problem and
split equality equilibriums problems, to the best our knowledge, only exists in
the framework of Hilbert spaces, but in this paper we give a strong convergence
result for split equality for system of generalized mixed equilibrium problem
and fixed point problems in p−uniformly convex and uniformly smooth Banach
spaces. Thus, the result of this paper extends results on split equality equi-
librium problems in the literature from Hilbert spaces to p−uniformly convex
and uniformly smooth Banach spaces.

2. Preliminaries

Let E be a Banach space and let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. The

modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) := sup{1

2
(||x+ y||+ ||x− y||)− 1 : ||x|| ≤ 1, ||y|| ≤ t}.

E is uniformly smooth if and only if

lim
t→0

ρE(t)

t
= 0,

q-uniformly smooth if there exists a Cq > 0 such that ρE(τ) ≤ Cqτ
q for any

τ > 0.

Definition 2.1. The duality mapping JEP : E → 2E
∗

is defined by

JEp (x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||p, ||x∗|| = ||x||p−1}.

Lemma 2.2. Let x, y ∈ E. If E is q-uniformly smooth, then there exists a
Cq > 0 such that

||x− y||q ≤ ||x||q − q〈JEp (x), y〉+ Cq||y||q.(2.1)
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Let dimE ≥ 2 (dimE denotes the dimension of E). The modulus of con-
vexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) := inf
{

1−
∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣ : ||x|| = ||y|| = 1; ε = ||x− y||
}
.

E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2] and p-uniformly
convex if there is a Cp > 0 so that δE(ε) ≥ Cpεp for any ε ∈ (0, 2].
It is known that E is p-uniformly convex and uniformly smooth if and only if
its dual E∗ is q-uniformly smooth and uniformly convex. It is also a common
knowledge that the duality mapping JEp is one-to-one, single valued and satisfies

JEp = (JE
∗

q )−1 where JE
∗

q is the duality mapping of E∗ (see [2]).

The duality mapping JEp is said to be weak-to-weak continuous if

xn ⇀ x⇒ 〈JEp xn, y〉 → 〈JEp x, y〉

holds for any y ∈ E. We note here that lp-spaces for p > 1 have such a property,
but the Lp-spaces for p > 2 do not share this property. The domain of a convex
function f : E → R is defined as

domf := {x ∈ E : f(x) < +∞}.

When domf 6= ∅, we say that f is proper.

Definition 2.3. Given a Gâteaux differentiable convex function f : E → R,
the Bregman distance with respect to f is defined as:

∆f (x, y) := f(y)− f(x)− 〈f ′(x), y − x〉, x, y ∈ E.

The duality mapping JEp is actually the derivative of the function fp(x) =

( 1
p )||x||p. Given that f = fp, then the Bregman distance with respect to fp

now becomes

∆p(x, y) =
1

q
||x||p − 〈JEp x, y〉+

1

p
||y||p

=
1

p
(||y||p − ||x||p) + 〈JEp x, x− y〉

=
1

q
(||x||p − ||y||p)− 〈JEp x− JEp y, y〉.

The Bregman distance is not symmetric and so is not a metric but it possesses
the following important properties

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈z − y, JEp x− JEp y〉,(2.2)

∀x, y, z ∈ E.

∆p(x, y) + ∆p(y, x) = 〈x− y, JEp x− JEp y〉, ∀x, y ∈ E.(2.3)
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For the p-uniformly convex space, the metric and Bregman distance has the
following relation:

τ ||x− y||p ≤ ∆p(x, y) ≤ 〈x− y, JEp x− JEp y〉,(2.4)

where τ > 0 is some fixed number. Similar to the metric projection, the
Bregman projection is defined as

ΠCx = argmin
y∈C

∆p(x, y), x ∈ E,

the unique minimizer of the Bregman distance. The Bregman projection is also
characterized by the variational inequality:

〈JEp (x)− JEp (ΠCx), z −ΠCx〉 ≤ 0, ∀z ∈ C,(2.5)

from which it follows that

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C.(2.6)

The resolvent of a bifunction g : C × C → R (see [29]) is the operator Resfg :
E → C defined by

Resfg (x) = {z ∈ C : g(z, y) + 〈JEp (z)− JEp (x), y − z〉 ≥ 0, y ∈ C},(2.7)

∀x ∈ E.
Recall from [29] that, for any x ∈ E, there exists z ∈ C such that z =

Resfg (x).

Let C be a convex subset of int(domfp), where fp(x) = ( 1
p )||x||p, 2 ≤ p <

∞ and let T be a self-mapping of C. A point p ∈ C is said to be an asymptotic
fixed point of T if C contains a sequence {xn}∞n=1 which converges weakly to p
and lim

n→∞
||xn − Txn|| = 0. The set of asymptotic fixed points of T is denoted

by F̂ (T ).
Recalling that the Bregman distance is not symmetric, we define the fol-

lowing operators.

Definition 2.4. A mapping T with a nonempty asymptotic fixed point set is
said to be:
(i) left Bregman strongly nonexpansive (see [17]) with respect to a nonempty

F̂ (T ) if

∆p(Tx, p) ≤ ∆p(x, p), ∀x ∈ C, p ∈ F̂ (T )

and if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ) and

lim
n→∞

(∆p(xn, p)−∆p(Txn, p)) = 0,

it follows that
lim
n→∞

∆p(xn, Txn) = 0.
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Martin-Marquez et al. [17], noted that a left Bregman strongly nonexpansive

mapping T with respect to a nonempty F̂ (T ) is called strictly left Bregman
strongly nonexpansive mapping.
(ii) An operator T : C → int (dom)f is said to be left Bregman firmly nonex-
pansive (L-BFNE) if

〈JEp (Tx)− JEp (Ty), Tx− Ty〉 ≤ 〈JEp (Tx)− JEp (Ty), x− y〉

for any x, y ∈ C, or equivalently,

∆p(Tx, Ty) + ∆p(Ty, Tx) + ∆p(x, Tx) + ∆p(y, Ty) ≤ ∆p(x, Ty) + ∆p(y, Tx).

It is known that every left Bregman firmly nonexpansive mapping is left
Bregman strongly nonexpansive with respect to F (T ) = F̂ (T ).

Following [2], we make use of the function Vp : E∗ ×E → [0,+∞) which is
defined by

Vp(x
∗, x) :=

1

q
||x∗||q − 〈x∗, x〉+

1

p
||x||p, ∀x∗ ∈ E∗, x ∈ E.

Clearly, Vp is nonnegative and Vp(x
∗, x) = ∆p(J

E∗

q (x∗), x) for all x∗ ∈ E∗ and
x ∈ E. Moreover, by the subdifferential inequality,

〈f ′(x), y − x〉 ≤ f(y)− f(x),

with f(x) = 1
q ||x||q, x ∈ E∗, then f ′(x) = JE

∗

q .
So, we have

〈JE∗

q (x), y〉 ≤ 1

q
||x+ y||q − 1

q
||x||q.(2.8)

From (2.8), we obtain

Vp(x
∗ + y∗, x) =

1

q
||x∗ + y∗||q − 〈x∗ + y∗, x〉+

1

p
||x||p

≥ 1

q
||x∗||q + 〈y∗, JE∗

q (x∗)〉 − 〈x∗ + y∗, x〉+
1

p
||x||p

=
1

q
||x∗||q − 〈x∗, x〉+

1

p
||x||p + 〈y∗, JE∗

q (x∗)〉 − 〈y∗, x〉

=
1

q
||x∗||q − 〈x∗, x〉+

1

p
||x||p + 〈y∗, JE∗

q (x∗)− x〉

= Vp(x
∗, x) + 〈y∗, JE∗

q (x∗)− x〉.(2.9)

for all x ∈ E and x∗, y∗ ∈ E∗. In addition, since f = fp is a proper lower
semi-continuous and convex function, we have that f∗ = f∗p is a proper weak∗

lower semi-continuous and convex function (see, for example, [25]). Hence Vp
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is convex in the second variable. Thus for all z ∈ E,

∆p

(
JE

∗

q

( N∑
i=1

tiJ
E
p (xi)

)
, z
)

= Vp

( N∑
i=1

tiJ
E
p (xi), z

)
=

1

q
||

N∑
i=1

tiJ
E
p (xi)||q − 〈

N∑
i=1

tiJ
E
p (xi), z〉+

1

p
||z||p

≤ 1

q

N∑
i=1

ti||JEp (xi)||q −
N∑
i=1

ti〈JEp (xi), z〉+
1

p
||z||p

=
1

q

N∑
i=1

ti||(xi)||(p−1)q −
N∑
i=1

ti〈JEp (xi), z〉+
1

p
||z||p

=
1

q

N∑
i=1

ti||(xi)||p −
N∑
i=1

ti〈JEp (xi), z〉+
1

p
||z||p

=

N∑
i=1

ti∆p(xi, z),(2.10)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N
i=1 ti = 1.

Lemma 2.5. ([24, 35]) Let {an} be a sequence of nonnegative real numbers
satisfying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where
(i) {αn} ⊂ [0, 1],

∑
αn =∞;

(ii) lim supσn ≤ 0;
(iii) γn ≥ 0,

∑
γn <∞.

Then, an → 0 as n→∞.

Lemma 2.6. ([16, 23]) Let {an} be a sequence of real numbers such that there
exists a subsequence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then
there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the
following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.7. (Reich and Sabach [28]) Let f : E → R be a Gâteaux differen-
tiable and totally convex function. If x0 ∈ E and the sequence {Df (xn, x0)}∞n=1

is bounded, then the sequence {xn}∞n=1 is also bounded.
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Lemma 2.8. (Reich and Sabach [29]) Let f : E → (−∞,+∞) be a coercive
and Gâteaux differentiable function. Let C be a closed and convex subset of E.
If the bifunction g : C × C → R satisfies conditions (A1)-(A4), then,
1. Resfg is single-valued;

2. Resfg is a Bregman firmly nonexpansive mapping;

3. F (Resfg ) = EP (g);
4. EP (g) is a closed and convex subset of C;
5. for all x ∈ E and q ∈ F (Resfg ),

∆p(q,Res
f
g (x)) + ∆p(Res

f
g (x), x) ≤ ∆p(q, x).

3. Main Results

Theorem 3.1. Let E1, E2 and E3 be three real Banach spaces which are
p−uniformly convex and uniformly smooth and C, Q be nonempty closed and
convex subsets of E1 and E2, respectively. Let A : E1 → E3 and B : E2 → E3

be bounded linear operators, A∗ : E∗3 → E∗1 and B∗ : E∗3 → E∗2 the ad-
joints of A and B, respectively. Let gi1 : C × C → R (i = 1, 2, ..., N)
and gj2 : Q × Q → R (j = 1, 2, ...,M) be two finite families of bifunctions
satisfying conditions (A1) − (A4). Let Φi1 : C → E∗1 (i = 1, 2, ..., N) and
Φj2 : Q → E∗2 (j = 1, 2, ...,M) be two finite families of continuous and

monotone mappings, ϕi1 : C → R ∪ {+∞} (i = 1, 2, ..., N) and ϕj2 : Q →
R ∪ {+∞} (j = 1, 2, ...,M) be two finite families of proper lower semicontin-
uous and convex functions. Let T : C → C and S : Q → Q be left Bregman
strongly nonexpansive mappings such that Ω 6= ∅ and let {αn},{βn} and {γn}
be sequences in (0, 1) such that αn+βn+γn = 1. For a fixed u ∈ E1 and a fixed
v ∈ E2, let the sequences {xn} and {yn} be iteratively generated by x0 ∈ E1

and y0 ∈ E2:

un = Resf
GN1
◦Resf

GN−1
1

◦ ... ◦Resf
G2

1

◦Resf
G1

1
J
E∗

1
q [JE1

p (xn)− tnA∗JE3
p (Axn −Byn)],

vn = Resf
GM2
◦Resf

GM−1
2

◦ ... ◦Resf
G2

2

◦Resf
G1

2
J
E∗

2
q [JE2

p (yn) + tnB
∗JE3
p (Axn −Byn)],

xn+1 = J
E∗

1
q

[
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

]
,

yn+1 = J
E∗

2
q

[
αnJ

E2
p (v) + βnJ

E2
p (vn) + γnJ

E1
p (S(vn))

]
,

(3.1)

with the conditions
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii) 0 < a ≤ βn, γn ≤ d < 1;

(iv) 0 < t ≤ tn ≤ k <
( q

Cq‖A‖q +Dq‖B‖q
) 1
q−1

;

Gι(x, y) := gι(x, y) + 〈Φιx, y − x〉+ ϕι(y)− ϕι(x), (ι = 1, 2).
Then {(xn, yn)} converges strongly to (x∗, y∗) ∈ Ω.
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Proof. It is known (see [38]), that the function
G(x, y) := g(x, y) + 〈Φx, y − x〉 + ϕ(y) − ϕ(x) satisfies (A1) − (A4) and
GMEP (g,Φ, ϕ) is closed and convex.
For any (x, y) ∈ Ω, it follows from (3.1) that

∆p(xn+1, x) + ∆p(yn+1, y)

= ∆p(J
E∗

1
q

[
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

]
, x)

+∆p(J
E∗

2
q

[
αnJ

E2
p (v) + βnJ

E2
p (vn) + γnJ

E1
p (S(vn))

]
, y)

≤ αn∆p(u, x) + βn∆p(un, x) + γn∆p(T (un), x)

+αn∆p(v, y) + βn∆p(vn, y) + γn∆p(S(vn), y)

≤ αn∆p(u, x) + βn∆p(un, x) + γn∆p(un, x)

+αn∆p(v, y) + βn∆p(vn, y) + γn∆p(vn, y)

= αn(∆p(u, x) + ∆p(v, y)) + (1− αn)(∆p(un, x) + ∆p(vn, y)).(3.2)

Noting that Ax = By, we obtain from (3.1)

∆p(un, x) + ∆p(vn, x)

= ∆p

(
Resf

GN1
◦Resf

GN−1
1

◦ ... ◦Resf
G2

1

◦Resf
G1

1
J
E∗

1
q [JE1

p (xn)− tnA∗JE3
p (Axn −Byn)], x

)
+∆p

(
Resf

GM2
◦Resf

GM−1
2

◦ ... ◦Resf
G2

2

◦Resf
G1

2
J
E∗

2
q [JE2

p (yn) + tnB
∗JE3
p (Axn −Byn)], y

)
≤ ∆p

(
J
E∗

1
q [JE1

p (xn)− tnA∗JE3
p (Axn −Byn)], x

)
+∆p

(
J
E∗

2
q [JE2

p (yn) + tnB
∗JE3
p (Axn −Byn)], y

)
=

1

q
||JE1

p (xn)− tnA∗JE3
p (Axn −Byn)||q − 〈JE1

p (xn), x〉

+tn〈JE3
p (Axn −Byn), Ax〉+

1

p
||x||p

+
1

q
||JE2

p (yn) + tnB
∗JE3
p (Axn −Byn)||q − 〈JE2

p (yn), x〉

−tn〈JE3
p (Axn −Byn), By〉+

1

p
||y||p

≤ 1

q
||JE1

p (xn)||q − tn〈JE3
p (Axn −Byn), Axn〉

+
Cq(tn||A||)q

q
||JE3

p (Axn −Byn)||q

−〈JE1
p (xn), x〉+ tn〈JE3

p (Axn −Byn), Ax〉+
1

p
||x||p
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+
1

q
||JE2

p (yn)||q + tn〈JE3
p (Axn −Byn), Byn〉

+
Dq(tn||B||)q

q
||JE3

p (Axn −Byn)||q

−〈JE2
p (yn), y〉 − tn〈JE3

p (Axn −Byn), By〉+
1

p
||y||p

=
1

q
||xn||p − 〈JE1

p (xn), x〉+
1

p
||x||p

+tn〈JE3
p (Axn −Byn), Ax−Axn〉

+
Cq(tn||A||)q

q
||JE3

p (Axn −Byn)||q

+
1

q
||yn||p − 〈JE2

p (yn), y〉+
1

p
||y||p

+tn〈JE3
p (Axn −Byn), Byn −By〉

+
Dq(tn||B||)q

q
||JE3

p (Axn −Byn)||q

= ∆p(xn, x) + tn〈JE3
p (Axn −Byn), Ax−Axn〉

+
Cq(tn||A||)q

q
||JE3

p (Axn −Byn)||q

+∆p(yn, y) + tn〈JE3
p (Axn −Byn), Byn −By〉

+
Dq(tn||B||)q

q
||JE3

p (Axn −Byn)||q

= ∆p(xn, x) + ∆p(yn, y) + tn〈JE3
p (Axn −Byn), Byn −Axn〉

+
Cq(tn||A||)q

q
||JE3

p (Axn −Byn)||q

+
Dq(tn||B||)q

q
||JE3

p (Axn −Byn)||q.(3.3)

Therefore,

∆p(un, x) + ∆p(vn, x)

≤ ∆p(xn, x) + ∆p(yn, y) + tn〈JE3
p (Axn −Byn), Byn −Axn〉

+
Cq(tn||A||)q

q
||JE3

p (Axn −Byn)||q

+
Dq(tn||B||)q

q
||JE3

p (Axn −Byn)||q

= ∆p(xn, x) + ∆p(yn, y)

−[tn − (
Cq(tn||A||)q

q
+
Dq(tn||B||)q

q
)]||(Axn −Byn)||p,(3.4)

which implies

∆p(un, x) + ∆p(vn, x) ≤ ∆p(xn, x) + ∆p(yn, y).(3.5)
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Substituting (3.5) into (3.2), we have

∆p(xn+1, x) + ∆p(yn+1, y)

≤ αn(∆p(u, x) + ∆p(v, y))

+(1− αn)(∆p(xn, x) + ∆p(yn, y))

≤ max{(∆p(u, x) + ∆p(v, y)),

(∆p(xn, x) + ∆p(yn, y))}
...

≤ max{(∆p(u, x) + ∆p(v, y)),

(∆p(x0, x) + ∆p(y0, y))}.(3.6)

Therefore, ({∆p(xn, x)}, {∆p(xn, x)}) are bounded and consequently we have
that {xn}, {yn},{un}, {vn}, {T (un)} and {S(vn)} are all bounded.

Moreover,

∆p(xn+1, x)

= ∆p

(
J
E∗

1
q

[
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

]
, x
)

= Vp

(
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un)), x

)
≤ Vp

(
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

−αn
(
JE1
p (u)− JE1

p (x)
)
, x
)

−〈−αn(JE1
p (u)− JE1

p (x)),

J
E∗

1
q

[
αnJ

E1
p (u) + βnJ

E1
p (yn) + γnJ

E1
p (T (un))

]
− x〉

= Vp

(
αnJ

E1
p (x) + βnJ

E1
p (un) + γnJ

E1
p (T (un)), x

)
+αn〈JE1

p (u)− JE1
p (x), xn+1 − x〉

= ∆p

(
J
E∗

1
q

[
αnJ

E1
p (x) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

]
, x
)

+αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉
≤ αn∆p(x, x) + βn∆p(un, z) + γn∆p(T (un), x)

+αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉
≤ (1− αn)∆p(un, x) + αn〈JE1

p (u)− JE1
p (x), xn+1 − x〉

≤ (1− αn)∆p(xn, x) + αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉.(3.7)

Similarly, we have

(3.8) ∆p(yn+1, y) ≤ (1− αn)∆p(yn, y) + αn〈JE2
p (v)− JE2

p (y), yn+1 − y〉.

We divide into two cases to obtain the strong convergence.
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Case 1. Suppose that there exists n0 ∈ N such that {∆p(xn, x) + ∆p(yn, y)}
is monotonically non-increasing. Then obviously {∆p(xn, x) + ∆p(yn, y)} con-
verges and

(∆p(xn+1, x) + ∆p(yn+1, y))− (∆p(xn, x) + ∆p(yn, y))→ 0.(3.9)

Let

wn := J
E∗

1
q

( βn
1− αn

JE1
p (un) +

γn
1− αn

T (un)
)

and

zn := J
E∗

2
q

( βn
1− αn

JE2
p (vn) +

γn
1− αn

S(vn)
)
.

Then,

∆p(wn, x) + ∆p(zn, y)

= ∆p(J
E∗

1
q

( βn
1− αn

JE1
p (un) +

γn
1− αn

(T (un))
)
, x)

+∆p(J
E∗

1
q

( βn
1− αn

JE1
p (vn) +

γn
1− αn

(S(vn))
)
, y)

≤ βn
1− αn

∆p(un, x) +
γn

1− αn
∆p(T (un), x)

+
βn

1− αn
∆p(vn, y) +

γn
1− αn

∆p(S(vn), y)

≤ βn
1− αn

∆p(un, x) +
γn

1− αn
∆p(un, x)

+
βn

1− αn
∆p(vn, y) +

γn
1− αn

∆p(vn, y)

= ∆p(un, x) + ∆p(vn, y).(3.10)

Therefore,

0 ≤ (∆p(un, x) + ∆p(vn, y))− (∆p(wn, x) + ∆p(zn, y))

= ∆p(un, x)−∆p(xn+1, x) + ∆p(xn+1, x)−∆p(wn, x)

+∆p(vn, y)−∆p(yn+1, y) + ∆p(yn+1, y)−∆p(zn, y)

≤ ∆p(xn, x)−∆p(xn+1, x) + ∆p(xn+1, x)−∆p(wn, x)

+∆p(yn, y)−∆p(yn+1, y) + ∆p(yn+1, y)−∆p(zn, y)

≤ ∆p(xn, x)−∆p(xn+1, x) + αn∆p(u, x)

+(1− αn)∆p(wn, x)−∆p(wn, x)

+∆p(yn, y)−∆p(yn+1, y) + αn∆p(v, y)

+(1− αn)∆p(zn, y)−∆p(zn, y)

= (∆p(xn, x) + ∆p(yn, y))− (∆p(xn+1, x) + ∆p(yn+1, y))

+αn((∆p(u, x) + ∆p(v, y))

−(∆p(wn, x) + ∆p(zn, y)))→ 0, n→∞.(3.11)
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Furthermore,

∆p(wn, x) + ∆p(zn, y)

≤ βn
1− αn

∆p(un, x) +
γn

1− αn
∆p(T (un), x)

+
βn

1− αn
∆p(vn, y) +

γn
1− αn

∆p(S(vn), y)

= ∆p(un, x)− (1− βn
1− αn

)∆p(un, x)

+
γn

1− αn
∆p(T (un), x)

+∆p(vn, y)− (1− βn
1− αn

)∆p(vn, y)

+
γn

1− αn
∆p(S(vn), y)

= ∆p(un, x) + ∆p(vn, y)

+
γn

1− αn

(
∆p(T (un), x)−∆p(un, x)

)
+

γn
1− αn

(
∆p(S(vn), y) + ∆p(vn, y)

)
.(3.12)

Thus, from (3.12)

γn
1− αn

[
(∆p(un, x)−∆p(T (un), x)) + (∆p(vn, y)−∆p(S(vn), y))

]
≤

(
(∆p(un, x) + ∆p(vn, y))−∆p(wn, x) + ∆p(zn, y)

)
→ 0,(3.13)

which by condition (iii) implies

∆p(un, x)−∆p(T (un), x)→ 0, n→∞,

and
∆p(vn, y)−∆p(S(vn), y)→ 0, n→∞.

Since T and S are left Bregman strongly nonexpansive, we have

lim
n→∞

∆p(Tyn, yn) = 0,

and
lim
n→∞

∆p(Tyn, yn) = 0,

which implies

lim
n→∞

||Tun − un|| = 0,(3.14)

and

lim
n→∞

||Svn − vn|| = 0,(3.15)
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respectively. Since {un} is bounded and E1 is reflexive, there exists a sub-
sequence {unk} of {un} that converges weakly to x∗ ∈ E2. From (3.14), it

follows that x∗ ∈ F (T ) since F (T ) = F̂ (T ). Also since {un} is bounded and
E2 is reflexive, there exists a subsequence {vnk} of {vn} that converges weakly

to y∗ ∈ E2. From (3.15), it follows that y∗ ∈ F (S) since F (S) = F̂ (S).
Next, we show that Ax∗ = By∗.
Now from (3.4), we obtain[
tn −

(Cq(tn||A||)q
q

+
Dq(tn||B||)q

q

)]
||(Axn −Byn)||p

≤ ∆p(xn, x) + ∆p(yn, y)− (∆p(un, x) + ∆p(vn, y))

= ∆p(xn, x)−∆p(xn+1, x) + ∆p(xn+1, x)−∆p(un, x)

+∆p(yn, y)−∆p(yn+1, y) + ∆p(yn+1, y)−∆p(vn, y)

≤ ∆p(xn, x)−∆p(xn+1, x) + (1− αn)∆p(un, x)

+αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉 −∆p(un, x)

+∆p(yn, x)−∆p(yn+1, y) + (1− αn)∆p(vn, y)

+αn〈JE2
p (v)− JE2

p (y), yn+1 − y〉 −∆p(vn, y)

= ∆p(xn, x)−∆p(xn+1, x)

+αn(−∆p(un, x) + αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉)
+∆p(yn, y)−∆p(yn+1, y)

+αn(−∆p(vn, y) + αn〈JE2
p (v)− JE2

p (y), yn+1 − y〉)→ 0, n→∞,(3.16)

and since

0 < t
(

1−
(Cqkq−1(||A||)q

q
+
Dqk

q−1(||B||)q
q

))
≤

(
tn −

(Cq(tn||A||)q
q

+
Dq(tn||B||)q

q

))
,

we have that ||(Axn −Byn)||p → 0, n→∞.

Let µn = J
E∗

1
q [JE1

p (xn)− tnA∗JE3
p (Axn −Byn)] and

νn = J
E∗

2
q [JE2

p (yn)− tnA∗JE3
p (Axn −Byn)].

Denote Θi = Resf
Gi1
◦ Resf

Gi−1
1

◦, ..., ◦Resf
G1

1
for i = 1, 2, ...N and Θ0 = I. We

note that un = ΘNµn. Also denote Ψj = Resf
Gj2
◦ Resf

Gj−1
2

◦, ..., ◦Resf
G1

2
for

j = 1, 2, ...M and Ψ0 = I. We note that vn = ΨNνn.
Since (x, y) ∈ ∩Ni=1EP (Gi1)×∩Mj=1EP (Gj2), then from (3.1) and Lemma 2.8(5),

∆p(ΘN−1µn, un) + ∆p(ΨM−1νn, vn)

= ∆p(ΘN−1µn, Res
f

GN1
ΘN−1µn) + ∆p(ΨM−1νn, Res

f

GM2
ΨM−1νn)

≤ ∆p(ΘN−1µn, x)−∆p(un, x) + ∆p(ΨM−1νn, y)−∆p(vn, y)

≤ ∆p(µn, x)−∆p(un, x) + ∆p(νn, y)−∆p(vn, y)

≤ ∆p(xn, x)−∆p(un, x) + ∆p(yn, y)−∆p(vn, y)
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= ∆p(xn, x)−∆p(xn+1, x) + ∆p(xn+1, x)−∆p(un, x)

+∆p(yn, y)−∆p(yn+1, y) + ∆p(yn+1, y)−∆p(vn, y)

≤ ∆p(xn, x)−∆p(xn+1, x) + (1− αn)∆p(un, x)

+αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉 −∆p(un, x) + ∆p(yn, y)

−∆p(yn+1, y) + (1− αn)∆p(vn, y)

+αn〈JE2
p (v)− JE2

p (y), yn+1 − y〉 −∆p(vn, y)

= ∆p(xn, x) + ∆p(yn, y)− (∆p(xn+1, x) + ∆p(yn+1, y))

+αn(−∆p(un, x) + αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉)
+αn(−∆p(vn, y) + αn〈JE2

p (v)− JE2
p (y), yn+1 − y〉)→ 0,(3.17)

as n→∞, which implies

||ΘN−1µn − un|| → 0, n→∞,(3.18)

and

||ΨM−1νn − vn|| → 0, n→∞.(3.19)

Consequently, we have

||JE1
p (ΘN−1µn)− JE1

p (ΘNµn)|| → 0, n→∞,(3.20)

and

||JE2
p (ΨM−1νn)− JE2

p (ΨMνn)|| → 0, n→∞.(3.21)

Again

∆p(ΘN−2µn,ΘN−1µn) + ∆p(ΨM−2νn,ΨM−1νn)

≤ ∆p(ΘN−2µn, x)−∆p(ΘN−1µn, x)

+∆p(ΨM−2νn, y)−∆p(ΨM−1νn, y)

≤ ∆p(µn, x)−∆p(un, x) + ∆p(νn, y)−∆p(vn, y)

≤ ∆p(xn, x)−∆p(un, x) + ∆p(yn, y)−∆p(vn, y)

= ∆p(xn, x)−∆p(xn+1, x) + ∆p(xn+1, x)−∆p(un, x)

+∆p(yn, y)−∆p(yn+1, y) + ∆p(yn+1, y)−∆p(vn, y)

≤ ∆p(xn, x)−∆p(xn+1, x) + (1− αn)∆p(un, x)

+αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉 −∆p(un, x)

+∆p(yn, y)−∆p(yn+1, y) + (1− αn)∆p(vn, y)

+αn〈JE2
p (v)− JE2

p (y), yn+1 − y〉 −∆p(vn, y)

= ∆p(xn, x) + ∆p(yn, y)− (∆p(xn+1, x) + ∆p(yn+1, y))

+αn(−∆p(un, x) + αn〈JE1
p (u)− JE1

p (x), xn+1 − x〉)
+αn(−∆p(vn, y)

+αn〈JE2
p (v)− JE2

p (y), yn+1 − y〉)→ 0, n→∞,(3.22)
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which implies

||ΘN−2µn −ΘN−1µn|| → 0, n→∞,(3.23)

and

||ΨM−2νn −ΨM−1νn|| → 0, n→∞.(3.24)

Consequently, we have

||JE1
p (ΘN−2µn)− JE1

p (ΘN−1µn)|| → 0, n→∞,(3.25)

and

||JE2
p (ΨM−2νn)− JE2

p (ΨM−1νn)|| → 0, n→∞.(3.26)

In a similar way, we can verify that

lim
n→∞

||ΘN−2µn −ΘN−3µn|| = · · · = lim
n→∞

||Θ1µn − µn|| = 0,(3.27)

and

lim
n→∞

||ΨM−2νn −ΨM−3νn|| = · · · = lim
n→∞

||Ψ1νn − νn|| = 0.(3.28)

Hence it follows that

lim
n→∞

||Θiµn −Θi−1µn|| = 0, i = 1, 2, · · · , N,(3.29)

and
lim
n→∞

||un − µn|| = 0.

Moreover,

lim
n→∞

||Ψjνn −Ψj−1νn|| = 0, j = 1, 2, · · · ,M,(3.30)

and
lim
n→∞

||vn − νn|| = 0.

Again, we obtain from the definition of µn that

0 ≤ ||JE1
p µn − JE1

p xn||
≤ tn||A∗||||JE2

p (Axn −Byn)||

≤
( q

Cq‖A‖q +Dq‖B‖q
) 1
q−1 ||A∗||||(Axn −Byn)|| → 0, n→∞.

Since J
E∗

1
q is norm to norm uniformly continuous on bounded subsets of E∗1 ,

we have that

lim
n→∞

||µn − xn|| = lim
n→∞

||JE
∗
1

q JE1
p vn − JE

∗
1

q JE1
p un|| → 0, n→∞.(3.31)
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Thus, from (3.18) and (3.31), we have

||xn − un|| ≤ ||xn − µn||+ ||µv − un|| → 0, n→∞.

Similarly, we have lim
n→∞

||νn − yn|| = 0 and ||yn − vn|| → 0, n→∞.
Thus Ax∗ − By∗ ∈ ww(Axn − Byn) and since the norm is weakly lower

semicontinuous, we obtain

||Ax∗ −By∗|| ≤ lim inf
n→∞

||Axn −Byn|| = 0.

We next show that (x∗, y∗) ∈ ∩Ni=1EP (Gi1)× ∩Mj=1EP (Gj2).
Now since unk ⇀ x∗ and limn→∞ ||un − µn|| = 0, we have that µnk ⇀ x∗.

Also from (3.18),(3.23), (3.27) and µnk ⇀ x∗, we have that Θiµnk ⇀ x∗, k →
∞, for each i = 1, 2, · · · , N . Again using (3.29), we get that

lim
n→∞

||JE1
p (Θiµn)− JE1

p (Θi−1µn)|| = 0, i = 1, 2, · · · , N.(3.32)

Therefore by (2.7), we have that for each i = 1, 2, · · · , N ,

Gi1(Θiµnk , z) + 〈z −Θiµnk , J
E1
p (Θiµnk)− JE1

p (Θi−1µnk)〉 ≥ 0, ∀z ∈ C.

Again using (A2), we obtain

〈z −Θiµnk , J
E1
p (Θiµnk)− JE1

p (Θi−1ynk)〉 ≥ Gi1(z,Θiµnk).(3.33)

Thus, a combination of (A4), (3.32), (3.33) and Θiµnk ⇀ x∗, k →∞, gives us
that for each i = 1, 2, · · · , N ,

Gi1(z, x∗) ≤ 0, ∀z ∈ C.

Then for fixed z ∈ C, let at,z := tz + (1 − t)x∗ for all t ∈ (0, 1]. This implies
that at,z ∈ C and further yields that Gi1(zt,y, x

∗) ≤ 0. It then follows from (A1)
and (A4) that

0 = Gi1(at,z, at,z)

≤ tGi1(at,z, y) + (1− t)Gi1(at,z, x
∗)

≤ tGi1(at,z, z),

and hence, from condition (A3), we obtain Gi1(x∗, z) ≥ 0, ∀z ∈ C, which
implies that

x∗ ∈ ∩Ni=1EP (Gi1).

Similarly, we have
y∗ ∈ ∩Mj=1EP (Gj2).

Next, we show that ({xn}, {yn}) converges strongly to (x∗, y∗).
Now, we observe that

∆p(xn+1, un) + ∆p(yn+1, vn)
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= ∆p(J
E∗

1
q

[
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

]
, un)

+∆p(J
E∗

2
q

[
αnJ

E2
p (u) + βnJ

E2
p (vn) + γnJ

E2
p (S(vn))

]
, vn)

≤ αn∆p(u, un) + βn∆p(un, un) + γn∆p(T (un), un)

+αn∆p(u, vn) + βn∆p(vn, vn)

+γn∆p(S(vn), vn)→ 0, n→∞.

Hence,

||xn+1 − un|| → 0, n→∞, and ||yn+1 − vn|| → 0, n→∞.

Thus
||xn+1 − xn|| ≤ ||xn+1 − un||+ ||un − xn|| → 0, n→∞,

and
||yn+1 − yn|| ≤ ||yn+1 − vn||+ ||vn − yn|| → 0, n→∞.

From (3.7) and (3.8), we obtain

∆p(xn+1, x
∗) + ∆p(yn+1, y

∗)

≤ (1− αn)(∆p(xn, x)∗ + ∆p(yn, y
∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉).(3.34)

Therefore, by Lemma 2.5, we conclude that ∆p(xn, x
∗) + ∆p(yn, x

∗) →
0, n → ∞, that is, ||xn − x∗|| → 0, n → ∞ and ||yn − x∗|| → 0, n → ∞.
Therefore, xn → x∗ and yn → y∗.
Case 2. Suppose that there exists a subsequence {nk} of {n} such that
∆p(xnk,x) + ∆p(ynk,y) < ∆p(xnk+1, x) + ∆p(ynk+1, y) for all k ∈ N. Then,
by Lemma 2.6 there exists a nondecreasing sequence {mτ} ⊆ N such that
mτ →∞.

∆p(xmτ , x) + ∆p(ymτ , y) ≤ ∆p(xmτ+1, x) + ∆p(ymτ+1, y),

and

∆p(xk, x) ≤ ∆p(xmk+1, x).

Using the same line of arguments as in (3.10),(3.11),(3.12),(3.13) and noting
that ∆p(xmτ , x) + ∆p(ymτ , y) ≤ ∆p(xmτ+1, x) + ∆p(ymτ+1, y), we can show
that

lim
τ→∞

||Tumτ − umτ || = 0, and lim
τ→∞

||Svmτ − vmτ || = 0.

Again from (3.7) and (3.8), we have

∆p(xmτ+1, x
∗) + ∆p(ymτ+1, x

∗)

≤ (1− αmτ )(∆p(xmk , x
∗) + ∆p(ymτ , x

∗))
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+αmτ (〈JE1
p (u)− JE1

p (x∗), xmτ+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), ymτ+1 − y∗〉),

which implies

αmτ (∆p(xmτ , x
∗) + ∆p(ymτ , x

∗))

≤ (∆p(xmτ , x
∗) + ∆p(ymτ , y

∗))

−(∆p(xmτ+1, x
∗) + ∆p(ymτ+1, y

∗)

+αmτ (〈JE1
p (u)− JE1

p (x∗), xmτ+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), ymτ+1 − y∗〉).

That is,

∆p(xmτ , x
∗) + ∆p(ymτ , y

∗)

≤ 〈JE1
p (u)− JE1

p (x∗), xmτ+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), ymτ+1 − y∗〉).

Therefore

lim
τ→∞

(∆p(xmτ , x
∗) + ∆p(ymτ , y

∗)) = 0,

and since

∆p(xτ , x
∗) + ∆p(yτ , y

∗) ≤ ∆p(xmτ+1, x
∗) + ∆p(ymτ+1, y

∗), for all τ ∈ N,

we conclude that

xτ → x∗ and yτ → y∗, τ →∞.

Corollary 3.2. Let E1, E2 and E3 be three real Banach spaces which are
p−uniformly convex and uniformly smooth and C, Q be nonempty closed and
convex subsets of E1 and E2, respectively. Let A : E1 → E3 and B : E2 → E3

be bounded linear operators, A∗ : E∗3 → E∗1 and B∗ : E∗3 → E∗2 the ad-
joint of A and B, respectively. Let gi1 : C × C → R (i = 1, 2, ..., N) and
gj2 : Q × Q → R (j = 1, 2, ...,M) be two finite families of bifunctions satis-
fying conditions (A1) − (A4). Let ϕi1 : C → R ∪ {+∞} (i = 1, 2, ..., N) and
ϕj2 : Q → R ∪ {+∞} (j = 1, 2, ...,M) be two finite families of proper lower
semicontinuous and convex functions. Let T : C → C and S : Q → Q be left
Bregman strongly nonexpansive mappings such that Ωϕ 6= ∅ and let {αn},{βn}
and {γn} be sequences in (0, 1) such that αn + βn + γn = 1. For a fixed u ∈ E1

and a fixed v ∈ E2, let the sequences {xn} and {yn} be iteratively generated by
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x0 ∈ E1 and y0 ∈ E2:

un = Resf
GN1
◦Resf

GN−1
1

◦ ... ◦Resf
G2

1

◦Resf
G1

1
J
E∗

1
q [JE1

p (xn)− tnA∗JE3
p (Axn −Byn)],

vn = Resf
GM2
◦Resf

GM−1
2

◦ ... ◦Resf
G2

2

◦Resf
G1

2
J
E∗

2
q [JE2

p (yn) + tnB
∗JE3
p (Axn −Byn)],

xn+1 = J
E∗

1
q

[
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

]
,

yn+1 = J
E∗

2
q

[
αnJ

E2
p (v) + βnJ

E2
p (vn) + γnJ

E1
p (S(vn))

]
,

(3.35)

with the conditions
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii) 0 < a ≤ βn, γn ≤ d < 1;

(iv) 0 < t ≤ tn ≤ k <
( q

Cq‖A‖q +Dq‖B‖q
) 1
q−1

;

Gι(x, y) := gι(x, y) + ϕι(y) − ϕι(x), (ι = 1, 2). Then, ({xn}, {xn}) converges
strongly to (x∗, y∗) ∈ Ωϕ, where

Ωϕ = {(x̄, ȳ) :x̄ ∈ F (T ) ∩ (∩Ni=1GMEP (gi1, ϕ
i
1)),

ȳ ∈ F (S) ∩ (∩Mj=1GMEP (gj2, ϕ
j
2)) : Ax̄ = Bȳ}.

Corollary 3.3. Let E1, E2 and E3 be three real Banach spaces which are
p−uniformly convex and uniformly smooth and C, Q be nonempty closed and
convex subsets of E1 and E2, respectively. Let A : E1 → E3 and B : E2 → E3

be bounded linear operators, A∗ : E∗3 → E∗1 and B∗ : E∗3 → E∗2 the ad-
joint of A and B, respectively. Let gi1 : C × C → R (i = 1, 2, ..., N) and
gj2 : Q × Q → R (j = 1, 2, ...,M) be two finite families of bifunctions sat-
isfying conditions (A1) − (A4). Let Φi1 : C → E∗1 (i = 1, 2, ..., N) and
Φj2 : Q → E∗2 (j = 1, 2, ...,M) be two finite families of continuous and mono-
tone mappings. Let T : C → C and S : Q → Q be left Bregman strongly
nonexpansive mappings such that ΩΦ 6= ∅ and let {αn},{βn} and {γn} be se-
quences in (0, 1) such that αn + βn + γn = 1. For a fixed u ∈ E1 and a fixed
v ∈ E2, let the sequences {xn} and {yn} be iteratively generated by x0 ∈ E1

and y0 ∈ E2:

un = Resf
GN1
◦Resf

GN−1
1

◦ ... ◦Resf
G2

1

◦Resf
G1

1
J
E∗

1
q [JE1

p (xn)− tnA∗JE3
p (Axn −Byn)],

vn = Resf
GM2
◦Resf

GM−1
2

◦ ... ◦Resf
G2

2

◦Resf
G1

2
J
E∗

2
q [JE2

p (yn) + tnB
∗JE3
p (Axn −Byn)],

xn+1 = J
E∗

1
q

[
αnJ

E1
p (u) + βnJ

E1
p (un) + γnJ

E1
p (T (un))

]
,

yn+1 = J
E∗

2
q

[
αnJ

E2
p (v) + βnJ

E2
p (vn) + γnJ

E1
p (S(vn))

]
,

(3.36)

with the conditions
(i) limn→∞ αn = 0;
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(ii)
∑∞
n=1 αn =∞;

(iii) 0 < a ≤ βn, γn ≤ d < 1;

(iv) 0 < t ≤ tn ≤ k <
( q

Cq‖A‖q +Dq‖B‖q
) 1
q−1

;

Gι(x, y) := gι(x, y) + 〈Φιx, y − x〉, (ι = 1, 2). Then, ({xn}, {xn}) converges
strongly to (x∗, y∗) ∈ ΩΦ, where

ΩΦ = {(x̄, ȳ) :x̄ ∈ F (T ) ∩ (∩Ni=1GMEP (gi1,Φ
i
1)),

ȳ ∈ F (S) ∩ (∩Mj=1GMEP (gj2,Φ
j
2)) : Ax̄ = Bȳ}.

4. Numerical Example

In this section, we present two numerical examples of our algorithm on the
real line and in an infinite dimensional Hilbert space, to show its efficiency.

Throughout this section, we shall take αn = 2
n+2 , βn = n+1

2(n+2) and γn =
n+1

2(n+2) .

Example 4.1. Let E1 = E2 = E3 = R and C = Q = [−1, 1]. Take gi1(x, y) :=
−9ix2+xy+(9i−1)y2, Φi1(x) = (9i−3)x, ϕi1(x) := (9i−6)x, i = 1, 2, 3, · · · ,M,

we have Resf
Gi1

(x) =
x

5(9i− 3)
. Also, we take gj2(x, y) := −7ix2+xy+(7i−1)y2,

Φj2(x) = (7i−3)x, ϕj2(x) := (7i−6)x, j = 1, 2, 3, · · · , N, and obtain Resf
Gj2

(x) =
x

5(7i− 3)
. Furthermore, let Ax := 2x, Bx := 3x and T (x) = S(x) = ΠC(x) =

ΠQ(x) = PC(x), with

PC(x) = PQ(x) =

 −1, x < −1,
x, x ∈ [−1, 1],
1, x > 1.

Let M = N = 5, then the iteration scheme (3.1) becomes:

un = Π5
i=1

1

5(9i− 3)
[xn − 2tn(2xn − 3yn)],

vn = Π5
j=1

1

5(7j − 3)
[yn − 3tn(2xn − 3yn)],

xn+1 =
2

n+ 1
u+

n+ 1

2(n+ 2)
(un) +

n+ 1

2(n+ 2)
(PC(un)),

yn+1 =
1

n+ 1
v +

n+ 1

2(n+ 2)
(vn) +

n+ 1

2(n+ 2)
(PQ(vn)).

(4.1)

Case I

(a) Take u = 1, v = 1
2 , x0 = 0.1, y0 = 0.22 and tn = 0.0000032.

(b) Take u = 1, v = 1
2 , x0 = 0.1, y0 = 0.22 and tn = 0.00000051.

Case II
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(a) Take u = 2, v = 0.1, x0 = 0.3, y0 = 0.02 and tn = 0.00018.

(b) Take u = 2, v = 0.1, x0 = 0.3, y0 = 0.02 and tn = 0.00000071.

Case III

(a) Take u = 1, v = 1, x0 = 0.1, y0 = 0.1 and tn = 0.00008.

(b) Take u = 1, v = 1, x0 = 0.1, y0 = 0.1 and tn = 0.00000011.

Example 4.2. Let E1 = E2 = E3 = L2([0, 1]) be endowed with the inner
product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt ∀ x, y ∈ L2([0, 1])

and norm

||x|| :=
(∫ 1

0

|x(t)|2dt
) 1

2 ∀ x, y ∈ L2([0, 1]).

Let C = Q = {x ∈ L2([0, 1]) : 〈y, x〉 ≤ a}, where y = 2t3 and a = 3. Then
we define g1 : C × C → R and g2 : Q × Q → R by g1(x, y) = 〈L1x, y − x〉
and g2(x, y) = 〈L2x, y − x〉, where L1x(t) = x(t)

2 and L2x(t) = x(t)
5 . Thus,

it is easy to check that g1 and g2 satisfy conditions (A1)-(A4). Also, define
Φ1 : C → L2([0, 1]) and Φ2 : Q → L2([0, 1]) by Φ1(x) = max{0, x(t)} and

Φ2(x) =
∫ 1

0

(
x(t)−

(
2tset+s

e
√
e2−1

)
cosx(s)

)
ds+ 2tet

e
√
e2−1

, t ∈ [0, 1]. Then, Φ1 and Φ2

are monotone and continuous (see [7]). Let ϕ1 = 0 = ϕ2.

Furthermore, let A,B : L2([0, 1]) → L2([0, 1]) be defined by Ax(t) = 2x(t)
5

and Bx(t) = x(t)
2 . Then, A and B are bounded linear operators. Also, let

T (x) = S(x) = ΠC(x) = ΠQ(x) = PC(x), where

PC(x) = PQ(x) =

{
a−〈y,x〉
||y||2L2

y + x, if 〈y, x〉 > a,

x, if 〈y, x〉 ≤ a.

Then, T and S are left Bregman strongly nonexpansive mappings. Thus, by
letting M = N = 1 in Theorem 3.1, iteration scheme (3.1) becomes:

un = ResfG1
[xn − 2

5 tn( 2
5xn − 1

2yn)],

vn = ResfG2
[yn − 1

2 tn( 2
5xn − 1

2yn)],

xn+1 =
2

n+ 1
u+

n+ 1

2(n+ 2)
(un) +

n+ 1

2(n+ 2)
(PC(un)),

yn+1 =
1

n+ 1
v +

n+ 1

2(n+ 2)
(vn) +

n+ 1

2(n+ 2)
(PQ(vn)).

(4.2)

Case 1

(a) Take u = sin t, v = cos t, x0 = 3 cos t, y0 = sin 2t and tn = 0.0000032.

(b) Take u = sin t, v = cos t, x0 = 3 cos t, y0 = sin 2t and tn = 0.00000051.
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Case 2

(a) Take u = 2t, v = t+ 1, x0 = t2, y0 = t2 + 1 and tn = 0.00018.

(b) Take u = 2t, v = t+ 1, x0 = t2, y0 = t2 + 1 and tn = 0.00000071.
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Figure 1: Example 4.1, Case I (a): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 2: Example 4.1, Case I (b): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 3: Example 4.1, Case II (a): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 4: Example 4.1, Case II (b): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 5: Example 4.1, Case III (a): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 6: Example 4.1, Case III (b): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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