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On split equality for finite family of generalized mixed
equilibrum problem and fixed point problem in real
Banach spaces

Oluwatosin Temitope Mewom(EEl, Ferdinand Udochukwu Ogbuisﬂ

Abstract. The purpose of this paper is to introduce a simultane-
ous iterative algorithm for solving split equality for systems of gener-
alized mixed equilibrium problem and split equality fixed point prob-
lem in p-uniformly convex and uniformly smooth Banach spaces using
the Bregmann distance technique. Furthermore, we state and prove a
strong convergence theorem for the approximation of a solution of split
equality for systems of generalized mixed equilibrium problem and split
equality fixed point problem in the framework of p-uniformly convex and
uniformly smooth Banach spaces. Our result extends results on split
equality generalized mixed equilibrium problems from Hilbert spaces to
p-uniformly convex Banach spaces which are also uniformly smooth.
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1. Introduction

Let F be a p-uniformly convex and uniformly smooth Banach space, and
C' a nonempty, closed and convex subset of E. Throughout this paper, we
shall denote the dual space of £ by E*. The norm and the duality pairing
between E and E* are denoted by |.|| and (.,.), respectively, and R stands
for the set of real numbers. Let f : E — (—o00,00] be a proper convex and
lower semicontinuous functional. The Fenchel conjugate of f is the function
f*: E* = (—o00,00] defined by

f1(&) = sup{(¢, x) — f(x) : v € E}.

Let T : C' — C be a mapping, a point x € C is called a fized point of T if
Tz = x. The set of fixed points of T is denoted by F(T)).
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Let g : C x C — R be a bifunction, ¢ : C — R U {+o0} be a function
and ¢ : C' — E* be a nonlinear mapping. The Generalized Mized Equilibrium
Problem (GMEP) is to find u € C such that

(1.1) 9w, y) + (Pu,y —uw) + 9(y) — p(u) >0, Yy e C.
Denote the set of solutions of Problem (1.1) by GM EP(g, ®, ). That is
GMEP(g,®,¢) = {uc C: g(u,y) + {Pu,y —u) + ¢(y) — p(u) 20, Vy e C}.

If & = 0, then the GMEP (1.1)) reduces to the following mized equilibrium
problem: Find u € C such that

9(u,y) +¢(y) —p(u) >0, VyeC.

If ¢ = 0, then the GMEP (|1.1)) becomes the generalized equilibrium problem,
to find u € C such that

g(u,y) + (Pu,y —u) >0, VyeC.

Again if ® = ¢ = 0, then the GMEP (|1.1)) becomes the equilibrium problem, to
find u € C such that

(1.2) g(u,y) >0, VyeC,

which was first introduced by Blum and Oettli [4], who denoted the solution
set of as EP(g).

For solving equilibrium problem , the bifunction g is assumed to satisfy
the following conditions:

(A1) g(x,x) =0 for all z € C;

(A2) g is monotone, i.e., g(z,y) + g(y,z) <0 for all z,y € C;

(A3) for each z,y € C, limy_,o g(tz + (1 — t)z,y) < g(z,y);

(A4) for each z € C; y — g(z,y) is convex and lower semicontinuous.

Many mathematicians have found the study of equilibrium problems very inter-
esting as it has been observed that the equilibrium problems and their gener-
alizations have been widely applied to solve problems in various fields such as:
linear or nonlinear programming, variational inequalities, complementary prob-
lems, optimization problems, fixed point problems and have also been widely
applied to physics, structural analysis, management sciences, economics, etc
(see, for example [4, [6] [27] 20]).

Many authors have proposed some efficient and implementable algorithms and
obtained some convergence theorems for solving equilibrium problems, some
of their generalizations and related optimization problems, (see for example,
[11, B [6l, 8] @ 10} [T, 12, 14} 15} 18], 19, 20, 2T}, 221 30, BT, B2} B3], 34 36l B7] and
the references therein).

Authors have started to study the Split Equilibrium Problem (SEP) defined
as follows: Let Hy, Hy be two real Hilbert spaces, let C, @ be closed convex
subsets of H; and Hs, respectively, and A : H; — Hs a bounded linear opera-
tor. Let g1 : C x C = R, g2 : Q X @ — R be bifunctions, ¢; : C' = RU {+o0},
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w2 : @ = RU {400} be functions and ®; : C — Hy, 5 : Q — Hs be nonlin-
ear mappings. Then the split generalized mized equilibrium problem is to find
x* € C such that
(1.3)  gi(z",2) + (P12", 2 — 2") + p1(z) —@i(2™) >0, Va e,
and y* = Az* € @ solves
(14)  g2(y"y) + (P2, y —¥") + @2(y) —p2(y") 20, VyeQ,
We shall denote the solution set of — by

Oy ={z" € GMEP(g1,P1,¢1) : Az € GMEP(g2, P2, 02)}.

If & = 0 and @3 = 0, then (1.3)-(1.4) reduces to the following split mixed
equilibrium problem: Find z* € C such that

(1.5) a(z*,z) + p1(x) — p1(z*) >0, Ve,

and y* = Ax* € @ solves

(1.6) 92(y%,y) + 02(y) — p2(y”) 20, VyeQ,

with solution set Q, = {z* € MEP(g1,¢1) : Az* € MEP(g2,¢2)}. Again in

(1.3)-(1.4) if o1 = w2 = 0, we obtain the following split generalized equilibrium
problem: Find x* € C such that

(1.7) g (z*,z) + (Prz*, 2 — 2*) > 0, Va €,

and y* = Ax* € @ solves

(1.8) 92(y",y) +(P2y™ y —y") 20, VyeQ,

with solution set Q¢ = {z* € GEP(g1,®1) : Az* € GEP(g2,®2)}. Moreover,
if &1 = ®5 and 1 = s = 0, we have the split equilibrium problem, to find
z* € C such that

(1.9) q1(z*,z) >0, Vo eC,

and y* = Ax* € @ solves

(1.10) 92(y",y) >0, Vye€Q,

with solution set Qo = {z* € EP(g1) : Az* € EP(g2)}.
Kazmi and Rizvi [13] studied the pair of equilibrium problems and
called split equilibrium problem.

Recently Bnouhachem [5] stated and proved the following strong conver-
gence result.
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Theorem 1.1. Let Hy and Hy be two real Hilbert spaces, and let C C Hy and
Q C Hy be nonempty closed and convex subset of Hy and Hs, respectively. Let
A : Hi — H, be a bounded linear operator. Assume that f1 : C x C — R
and fo : Q@ X Q — R are bifunctions satisfying (A1) — (A4) and fo is upper
semicontinuous in the first argument. Let S,T : C — C be nonexpansive
mappings such that Qo N F(T) # (. Let f : C — C be a k-Lipschitzian mapping
and n-strongly monotone and let U : C' — C be T-Lipschitzian mapping. For
a gien arbitrary xo € C , let the iterative sequence {,},{un} and {y,} be
generated by

Uy = vaﬁ (zn + ”yA*(Tfn? —1)Ax,);
(111) Yn = ﬂnsxn + (1 - ﬂn)una
Tnt1 = PolonpU(zn) + (I — anpf)(T(yn))], Vn = 0;

where {r,} C (0,2¢) and v € (0,+), L is the spectral radius of the operator
2

A*A, and A* is the adjoint of A. Suppose the parameters satisfy 0 < u < (ki;) ,

0<pn<v,wherev=1—/1— u(2n — pk?) and {a,} and {B,} are sequences

in (0, 1) satisfying the following conditions:

(a) limy, oo vy, =0 and Y, | a,, = 00,

(b) lim,, o0 (22) =0,

(c) Sony lan—1 — an| <00 and 32071 |Buo1 — Bn| < 00

(d) iminf,, oo ry, < limsup, oo rn < 2¢ and >0 |rn_1 — rp| < 00.

Then {x,} converges strongly to z € Qo N F(T).

Let F1, Fs and E3 be three real Banach spaces and C, () be nonempty
closed and convex subsets of F; and Es, respectively. Let A: F1 — F3 and B :
FE5 — E3 be bounded linear operators. Let g1 : CxC — Rand g2 : Q XxQ — R
be two bifunctions satisfying conditions (A1) — (A4). Let ®; : C — Ef and
®, : Q — E3 be two continuous and monotone mappings,p; : C — R U +{o0}
and 2 : Q@ — R U +{oco} be two proper lower semicontinuous and convex
functions. Then the split equality generalized mixed equilibrium problem is:
find z € C and § € @Q such that

(1.12) 91 (Z,2) + (P1Z,2 — T) + o1(x) — p1(Z) >0, Vz €,

(L13)  92(8,y) + (P28, y — §) + 2(y) —2(9) 20, Vy€Q,

and AT = By. We can see that if Fs = F3 and B is the identity operator on
FE, then the split equality generalized mixed equilibrium problem 1)
reduces to the split generalized mixed equilibrium problem -.

Let E1,FEs and E3 be three real Banach spaces and C, Q be nonempty
closed and convex subsets of F; and FEs, respectively. Let A : By — E3 and
B : E5 — E3 be bounded linear operators. Let gj : CxC - R (i =1,2,...,N)
and g3 : Q@ xQ — R (j = 1,2,..., M) be two finite families of bifunctions
satisfying conditions (A1) — (A4). Let ®% : ¢ — Ef (i = 1,2,..,N) and
D) :Q — E5 (j =1,2,..., M) be two finite families of continuous and monotone
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mappings, ¢} : C — RU+{oc} (i=1,2,...,N)and ¢} : Q - RU+{c0} (j =
1,2,..., M) be two finite families of proper lower semicontinuous and convex
functions. Let T : C' — C and S : Q@ — @ be nonlinear mappings. Then, we
consider the following problem: find z € F(T') and § € F(S) such that

(1) @)+ @ —5) + phe) - el (@) 2 0,
VeeC,i=1,2,---N;

(1.15) 90, y) + (39,5 — §) + 3(y) — #2(9) > 0,

Yy € Q,j = 1,2,--- ,M; and Az = Bjy. We shall denote the solution set
of [L.14)-(L15) by @ = {(z,9) : € F(T) N (NL,GMEP(gi, ®{,¢1)).§ €
F(S) N (ML, GMEP(g), ¥, 21)), Az = By}.

This problem — that we are considering has as special cases the split
equality equilibrium problem, the split equality variational inequality problem,
the split equality convex minimisation problem and the split generalized mixed
equilibrium problem. Furthermore, results on split equilibrium problem and
split equality equilibriums problems, to the best our knowledge, only exists in
the framework of Hilbert spaces, but in this paper we give a strong convergence
result for split equality for system of generalized mixed equilibrium problem
and fixed point problems in p—uniformly convex and uniformly smooth Banach
spaces. Thus, the result of this paper extends results on split equality equi-

librium problems in the literature from Hilbert spaces to p—uniformly convex
and uniformly smooth Banach spaces.

2. Preliminaries
Let E be a Banach space and let 1 < ¢ < 2 < p with %Jr% = 1. The
modulus of smoothness of E is the function pg : [0, 00) — [0,00) defined by
1
pe(t) == sup{5(llz +yl[ +l —yl) = 1: |lzf] < 1, [lyl] < t}.
F is uniformly smooth if and only if

lim PEAY) *)

= 0,
t—0 t

g-uniformly smooth if there exists a Cy > 0 such that pg(r) < C,7? for any
7> 0.

Definition 2.1. The duality mapping J5 : E — 2" is defined by
Jy (@) = {a* € B* : {x,z*) = |||, ||l=*|| = |=|[P~"}.

Lemma 2.2. Let x,y € E. If E is q-uniformly smooth, then there exists a
Cq > 0 such that

(2.1) [l = yll* < [l2ll” = (7 (2),9) + Cyllyll*.
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Let dim E' > 2 (dim E denotes the dimension of E). The modulus of con-
verity of F is the function dg : (0,2] — [0, 1] defined by

T +y
2

op(e) = inf {1 = ||| < llall = Ilyll = L€ = [l =11}

E is uniformly convez if and only if 6g(€) > 0 for all € € (0,2] and p-uniformly
convez if there is a Cp, > 0 so that dg(e) > CpeP for any € € (0, 2].

It is known that E is p-uniformly convex and uniformly smooth if and only if
its dual E* is g-uniformly smooth and uniformly convex. It is also a common
knowledge that the duality mapping Jf is one-to-one, single valued and satisfies

JE = (Jf*)_1 where JqE* is the duality mapping of E* (see [2]).
The duality mapping JPE is said to be weak-to-weak continuous if

o =@ = (JyTn,y) = (Ja,y)

holds for any y € E. We note here that l,-spaces for p > 1 have such a property,
but the L,-spaces for p > 2 do not share this property. The domain of a convex
function f : E — R is defined as

domf :={zx € E: f(z) < +oo}.
When domf # (), we say that f is proper.

Definition 2.3. Given a Gateaux differentiable convex function f : E — R,
the Bregman distance with respect to f is defined as:

Af(ll?,y) = f(y) 7.}(‘(:0) - <f/($)7y7$>, z,y ek

The duality mapping Jf is actually the derivative of the function f,(z) =
(%)||x||p Given that f = f,, then the Bregman distance with respect to f,
now becomes

1

1
Ap(z,y) =l lP = (T ) + 5||y||p

(lyl” = [ll[?) + (5w, 2 — )

(Ul = llll?) = (Jy'= = TPy, y).

ESE IS R S

The Bregman distance is not symmetric and so is not a metric but it possesses
the following important properties

(2.2) Ap(z,y) = Ap(z, 2) + Bp(2,y) + (2 — v, Jfﬂf - J;;Ey)y
Vr,y,z € E.

(23)  Ap(zy)+Ap(y,2) = (@ —y, JFx— Jly), Va,y€E.
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For the p-uniformly convex space, the metric and Bregman distance has the
following relation:

(2.4) Tllz = yllP < Ap(a,y) < (o —y, Jjz — Jy),

where 7 > 0 is some fixed number. Similar to the metric projection, the
Bregman projection is defined as

gz = argminA,(z,y), = € E,
yeC

the unique minimizer of the Bregman distance. The Bregman projection is also
characterized by the variational inequality:

(2.5) <Jf(z) — Jf(Hcr), z—Iex) <0, Vz € C,

from which it follows that
(2.6) Apy(Mlgz, 2) < Ap(z, 2) — Ap(z,Hex), Vz € C.

The resolvent of a bifunction g : C' x C — R (see [29]) is the operator Resg :
E — C defined by
(27)Resj(x) = {z € C: g(z,y) + (J)'(2) = J(w),y = 2) = 0,y € C},

p

Ve e E.

Recall from [29] that, for any x € F, there exists z € C such that z =
Resg (z).

Let C be a convex subset of int(domf,), where f,(z) = (%)Hx“p, 2<p<
oo and let T" be a self-mapping of C'. A point p € C is said to be an asymptotic
fized point of T if C' contains a sequence {z, }°° ; which converges weakly to p
and n11_>n;o||xn — Tx,|| = 0. The set of asymptotic fixed points of T' is denoted

by F(T).
Recalling that the Bregman distance is not symmetric, we define the fol-
lowing operators.

Definition 2.4. A mapping 7" with a nonempty asymptotic fixed point set is
said to be:
(i) left Bregman strongly nonexpansive (see [17]) with respect to a nonempty
F(T) if

Ap(Tz,p) < Ap(z,p), Yrel, pe F(T)

and if whenever {z,} C C is bounded, p € F(T) and

Jim (Ap(n,p) = Ap(Tn,)) =0,
it follows that
lim A, (zy,, Tz,) = 0.

n— oo
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Martin-Marquez et al. [I7], noted that a left Bregman strongly nonexpansive

~

mapping T with respect to a nonempty F(T) is called strictly left Bregman
strongly nonexpansive mapping.

(#4) An operator T : C' — int (dom)f is said to be left Bregman firmly nonex-
pansive (L-BFNE) if

(Jy (Tx) = J,)(Ty), Tw = Ty) < (Jy' (Tx) = Iy (Ty), = —y)
for any x,y € C, or equivalently,
Ap(Tx, Ty) + Ap(Ty, Tx) + Ap(x, Tw) + Ap(y, Ty) < Bp(x, Ty) + Ap(y, Tx).
It is known that every left Bregman firmly nonexpansive mapping is left
Bregman strongly nonexpansive with respect to F(T') = F(T).

Following [2], we make use of the function V, : E* x E — [0, +00) which is
defined by

1 1
Vp(a®, @) = Zlle”|l" = (2%, 2) + llalf, Va© € B, w € B,

Clearly, V,, is nonnegative and V,(z*,z) = Ap(Jf*(x*),x) for all * € E* and
x € E. Moreover, by the subdifferential inequality,

(f'(x),y —x) < fly) — f(x),

with f(z) = é||m|\q,x € E*, then f'(z) = Jf*.
So, we have

. 1 1
(2.8) (I3 (x),y) < 5l|x+y||q - 5|\$||q~

From ({2.8]), we obtain

Vpa® +y5z) = 2" +y* |7 = (@" +y", ) + [z’
q p
1 * * * * * * 1
> gl\x 17+ (" Iy (2%) = (=% +y ,$>+1;||17||”
1 *|1q * 1 p * E* * *
= 5“»’8 19— (z ,$>+Z;||$H + " Jy @) = (" )
1 *||q * 1 p * E* *
= 5“% 19— (z ,$>+Z;||fr\| + " Jy @) —a)
(2.9) = Vp(z*,2) + (", JE (2%) — 2).

for all z € E and z*,y* € E*. In addition, since f = f, is a proper lower
semi-continuous and convex function, we have that f* = f; is a proper weak™
lower semi-continuous and convex function (see, for example, [25]). Hence V,,
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is convex in the second variable. Thus for all z € F,

N
p(I5 (D tid ) (@), )
1=1
N
1
- 7|\ZtJE x)||7 — ZtJE i), ];||z||”
1 E q E 1 p
5Zt¢HJp (za)[]7 — ZMJP (z4),2) + ];IIZII
- ,ztu )|V Zt )+ S|P
p
1 » E Lo
= thi\Kxi)ll —thJp (z:), 2) + =]l
qi:l =1 p

N
(2.10) = ) tid(x,2)
=1

IN

where {z;}¥, C F and {t;}}, C (0,1) with Zfil t; = 1.

Lemma 2.5. (24, [35]) Let {an} be a sequence of nonnegative real numbers
satisfying the following relation:

Ap+41 S (1 - an)an + QnOnp + Yn, T 2 07

where
(i) {an} C [0,1], >, = 05
(i) lim sup o,, < 0;

(11) Y >0, > yn < 00.
Then, a,, — 0 as n — 0.

Lemma 2.6. ([106,[23]) Let {a,} be a sequence of real numbers such that there
exists a subsequence {n;} of {n} such that a,, < an,+1 for all i € N. Then
there exists a nondecreasing sequence {my} C N such that my — oo and the
following properties are satisfied by all (sufficiently large) numbers k € N:

Ay, < Q41 and ag < Q1
In fact, mi = max{j <k:a; <aj1}.

Lemma 2.7. (Reich and Sabach [28]) Let f : E — R be a Gateauz differen-
tiable and totally convex function. If xg € E and the sequence {Dg(xy, o) }o2,
is bounded, then the sequence {x,}22 ; is also bounded.
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Lemma 2.8. (Reich and Sabach [29]) Let f : E — (—o00,+00) be a coercive
and Gateauz differentiable function. Let C' be a closed and convex subset of E.
If the bifunction g : C x C' — R satisfies conditions (A1)-(A4), then,

1. Resg 1s single-valued;

2. Resg; 18 a Bregman firmly nonexpansive mapping;

3. F(Resg) = EP(g);

4. EP(g) is a closed and convez subset of C;

5. for all x € E and q € F(Res]),

Ap(q, Resy(x)) + Ap(Res) (x),x) < Ay(g, ).

3. Main Results

Theorem 3.1. Let Ei,E5 and Es3 be three real Banach spaces which are
p—uniformly convex and uniformly smooth and C, @@ be nonempty closed and
conver subsets of E1 and Es, respectively. Let A: E1 — E3 and B : E5 — Fj
be bounded linear operators, A* : E5 — EYf and B* : Ei — Ej the ad-
joints of A and B, respectively. Let gi : C x C — R (i = 1,2,...,N)
and g5 : Q x Q = R (j = 1,2,..., M) be two finite families of bifunctions
satisfying conditions (A1) — (A4). Let ®} : C — Ef (i = 1,2,..,N) and
Py 0 Q = E5 (j = 1,2,..,M) be two finite families of continuous and
monotone mappings, ¢} : C — RU {+o00} (i = 1,2,...,N) and ¢} : Q —
RU {4} (j =1,2,...., M) be two finite families of proper lower semicontin-
wous and convex functions. Let T : C — C and S : Q — Q be left Bregman
strongly nonexpansive mappings such that Q # 0 and let {an},{Bn} and {yn}
be sequences in (0,1) such that a, + B+ = 1. For a fized u € Ey and a fized
v € Ey, let the sequences {x,} and {y,} be iteratively generated by xg € Ey
and yg € Es:

)
G

E} *
oResgi P [Jf1 () —thA Jf?’(Axn — Byn)],
Vp = Resééw o Res&y,1 0..0 Reség
oReséé sz [sz (yn) + tnB*JZJ)ES (Azx,, — Byn)],

Tnir = Iy () + B () + 3P (T (),

Yoer = I | QP2 (0) + B P2 (0a) + 70 I (S(0a) .

u, = Res’,y o Rest_1 0...0 Resf2
1 Gy Gi

with the conditions
(1) lim,—o0 a = 0;
(i) Doy am = 00;
(#i1) 0<a < Bn,ym <d<I;
: oy < q )qﬁ_
@ o<t k< (Grp pyew)
G.(z,y) =g (z,y) + {(P.z,y —x) + 0. (y) — o.(x), (¢=1,2).
Then {(zn,yn)} converges strongly to (z*,y*) € Q.
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Proof. Tt is known (see [38]), that the function

G(z,y) = g(z,y) + (Pz,y — z) + ©(y) — (z) satisfies (A1) — (A4) and
GMEP(g,®,¢) is closed and convex.

For any (z,y) € Q, it follows from that

Ap(xn-i-lv .I) + Ap(yn+17 y)
= A7 [and P (W) + Bud () + I (T ()] )

IA

anAp(t, ) + BrAp(Un, ) + Y Ap(T(uy), x)

+anAp(v,y) + Brnlp(vn, y) + 'VnAp(S(vn)v Y)

anAp(u, &) + Brlp(tn, ) + YnAp(un, x)

FonAp(v, ) + Bnlp(vn,y) + 10 lp(vn, y)

an(Ap(u, ) + Ap(v,y)) + (1 — an) (Ap(tn, ) + Ap(vn, y)).

IN

(3.2)

Noting that Ax = By, we obtain from (3.1))

Ap(tn, ) + Ap(vp, )
= A, (Resg{V ° Reséf,l 0..0 Resé%
o Resg% Jff [JE () — tn A*J]* (Azy, — Byy)), x)
+A (Resf o Res’ o..0Res!
P Gé” Gé”’l Gg

0 Resly I LT (ga) + B JE* (Azy — Byn)l,)

< A, (Jff [Jf1 (xn) — tnA*Jf?’ (Ax,, — Byn)],x)
00, (T LI (gn) + £ B TE (A — By, )
1 *
= 6”'];51 (xn) - tnA st(Amn - Byn)Hq - <JpEl (xn)7 x>
1
+t(Jy (Azy — Byn), Az) + 2;\|x||p
1 *
"—aHJpE2 (Yn) +t. B st (Azp — Byn)||? - <J52 (Yn), )
E3 1 p
_tn<Jp (Az,, — Byn), By) + EHZUH
1
< gHJfl (zn)||* = tn(']fs (Az,, — Byn), Azy,)

Cy(tnl[AlDY
+‘1<(|]||)|J£3(A$n_3yn)||q

1
—(Jfl (zn),x) + tn<Jf3 (Az,, — By,), Ax) + ;Hx”p
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1
"’5”']52 (yn)||? + tn<J53 (Azp — Byn), Byn)

, DaltallBI)®
q

175 (Azy, — Bya)||

. 1
(TP (yn), y) — ta(JP2(Ax, — Byy), By) + 5||y||p
= Lzl = (T @) 2) + 2l P
g " P o
+tn<Jf3(Axn — Byn), Az — Ax,,)

Cy(tn][ A}
+q((|1||)|st(Axn—Byn)ll"

1 1
+allynll”— <JpE2(yn),y>+z;||y||p

Dy(tn||Bl|)?
+Q(2|”)||J£3 (Azy — Byn)||°
= Ay(zn,z)+ tn(st (Azn, — Byn), Az — Azy)
Cq(tna] Al
$ Gl A s g, —

FAp (Y- y) + tn(J) (Azy — Byn), Byn — By)
D,(t,||B]|)?

+M||Jf3(/lxn _ Byn)||q

= Ap(®n, ) + Ap(Yn,y) + tn<=]£3 (Az,, — Byn), Byn — Azy)

Cy(tn|A
+W‘|J53(Axn—3yn)||q

 DaltalIBI)°

(3.3) ||J£3 (Az, — Byn)Hq'

Therefore,
Ap(tn, ) + Ap(vn, T)
S Ap(x’m )+Ap(yn,y)+tn<JpEJ(Axn_Byn)aByn _Al‘n>

Cy(tnl|Al])9
+<1((|]||)|Jf3(Axn—Byn)||q

D, (t,||B]|)¢
+M||J53(Axn—3yn)|lq

= Ap(n, @) + Ap(Ynry)
(3.4) Lt — ( Cotall AIN? | DaltalBID)*

q
which implies

(3.5) Ap(tn, ) + Ap(vn, ) < Ap(zn,x) + Ap(Yn,y)-

NI (Azy, — By, |7,
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Substituting (3.5)) into (3.2), we have

(3.6)

Ap(Tpt1,2) + (yn+17 Y)

< an(Bp(u,2) + Ap(v,y))
+(1_0‘n)(Ap(xna )"’A (ym ))
max{(Ap(u, z) + Ap(v,y)),
(Ap(zn, ) + Ap(yn, )}

IN

max{(A,(u, z) + Ap(v,y)),
(Ap(wo, ) + Ap(v0,9))}-

IN

85

Therefore, ({Ay(zn,z)}, {Ap(zy,,x)}) are bounded and consequently we have
that {zn}, {yn}.{un},{vn}, {T(u,)} and {S(v,)} are all bounded.

Moreover,

(3.7)

Ap(irnJrl’ 1‘)

IN

IA

IN N

Ap (T [ d P (W) + BT P () + 3P (T () | )
Vy (2 () + BT B () + 4 (T (n)), )

v, (anﬂ( )+ Budy (un) + n Ty (T ()

o (380~ 90,0

~(—an (I <u> - Jfl (2));

J5 [P () + Bu T () + AP (T ()] = @)

Vo (2 (@) + B2 () + 3 (T (un)), )
o (I (u) — TP (@), Tpgr — @)

Ap (T [and P (@) + BT P () + 3P (T () | )
o (T () = TE (@), 21 — )

anAp(x,x) + Bnlp(tn, 2) + Yo dp(T(un), x)

(I (W) = JF (@), — )

(1= an) Ap(tn, 2) + o (S (u) — JE (2), g — )

p

(1—an)Ap(zn,x) + ozn<Jfl (u) — Jfl (), Tnt1 — ).

Similarly, we have

(3.8)

ApYns1:y) < (1= ) Ap(yn. y) + an (T2 (0) = T2 (1), yng1 — )

We divide into two cases to obtain the strong convergence.
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Case 1. Suppose that there exists ng € N such that {Ap(zn, 2) + Ap(yn, y)}
is monotonically non-increasing. Then obviously {A, (2, ) + Ap(yn, y)} con-
verges and

(3.9) (Ap(xn-&-lym) + Ap(yn—&-la y)) — (Ap(xna T)+ A (yna y)) = 0.

Let

EY Bn 1 Tn
wy = Jg ( Ty (un) + 1 T(un))

1—-a, -y,
and
()
Then,
By, )+ By (20,1)
— AU (R ) + 2 (7)) )
A (2 g 00) + 122 (5(0n)-0)
< P Ay ) + T A (T (). )
D Ay )+ T2 8,(5(0n), )
< 5 f"anA,,(un,x)Jr j"anAp(un,x)
2 A 1)+ T By 00,0)
(3.10) = Ap(up, ) + Ap(vn,y).
Therefore,

0 < (Ap(tn, @) + Ap(vn,y)) — (Ap(wn, x) + 4, (va y))
Ap(unax)_AP(anrl’ )+Ap(xn+1v ) (w’m )

+Ap(Vn, Y) = Ap(Yn+1,Y) + Bp(Ynt1,y) — Dp(zn, )
< A (mn,x) - Ap(xn-i-lvx) + Ap(xn-i-lvx) ( )

+A (ym y) — Ap(yn+1a y)+A (yn+1a y) — (Zm Y)
< Ap(@n, ) — Ap(Tnt1, ) + anAp(u, z)

+(1 — an)Ap(wn, ) — Ap(wp, x)
FAp(Yns ¥) — Bp(Un+1,9) + anBp(v, y)
+(1 = an)Ap(2n, y) — Ap(2n, )
= (Ap(@n, @) + Bp(¥n, y)) — (Bp(@nt1,2) + Ap(yn+1,Y))
+an ((Ap(u, ) + Ap(v, y))
(3.11) —(Ap(wn, x) + Ap(2n,y))) = 0, n — .
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Furthermore,

Tn
< _Fm
= 1-a, Ap(up, ) + 1—a, Ap(T(up), )

Tn
1—a, Ap(vna y) + 1—a, Ap(S(Un)vy)

)Ap(“nvx)

1— o,

1—ap,
= Ap(unvx) +Ap(vn7y)

2 (8, (Tn),2) — A, )

1—a,
(3.12) P2 (S0, 0) + Ay (v.w)).

Thus, from (3.12)

: jnom [(Ap(un,x) — Ap(T(un), ) + (Ap(vn, y) — Ap(s(vn),y))]

(313) < ((Ap(n @)+ Ap(vn, 1)) = Ap(wn, 2) + Ap(n,9)) =0,

which by condition (iii) implies
Ap(un, ) — Ap(T(uy), ) = 0,n — o0,

and
Ap(vn,y) — Ap(S(vn),y) — 0,n — 0.

Since T and S are left Bregman strongly nonexpansive, we have
Jim Ay (Tyn,yn) = 0,

and
lim A, (TYn,yn) =0,
n— oo

which implies

(3.14) lim ||Tu, — up|| =0,
n—roo

and

(3.15) nlLH;OHS’Un — ]| =0,
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respectively. Since {u,} is bounded and E; is reflexive, there exists a sub-
sequence {un,} of {u,} that converges weakly to z* € E. From (3.14), it
follows that z* € F(T) since F(T) = F(T). Also since {uy,} is bounded and
E, is reflexive, there exists a subsequence {v,, } of {v,} that converges weakly
to y* € Es. From (3.15), it follows that y* € F(S) since F(S) = F(89).

Next, we show that Ax* = By*.

Now from , we obtain

- (Calall A, DACIBU] 4,

q
< Ap(@n, ) + Bp(yn,y) — (Bp(un, @) + Ap(vn, )
= Ap(@n, ) — Ap(@nt1,7) + Bp(Tnt1, @) — Ap(un, )
FAp(Yn, ) = Ap(Un+1,9) + Bp(Unt1,9) — Bp(vn, y)
Ap(n, ) = Ap(Tnt1,2) + (1 — o) Ap(un, 2)
Fan (S (u) = T (), T — x) = Ap(up, )
+Ap(Yn, ) = Ap(Un+1,y) + (1 — an)Ap(vn, y)
+an (172 (0) = T2 (Y)s Ynsr — ¥) — Dp(vn, y)
= Ap(zn,z) — Ap(Tns1,2)

+on (—Ap(up, x) + an<Jfl (u) — Jfl (), zpy1 — )

+A (ym y) — Ap(yn-i-lay)
(3.16)  4an(—Ap(vn,y) + an<Jf2 (v) — JPE2 (Y),Ynt1 —¥y)) — 0, n — oo,

IN

and since
0 < t<1_(chq_1q(||14|)q+Dqkq_1(1(||B|)q))
C.(tn||AlN? . q
< (1o (Gl , Doty

we have that ||(Axn — Byp)||P — 0,n — 0.
Let p, = J [JE1 (2n) — tnA*J I3 (Azy, — Byy)] and
Vi = Je 2 [JE (y) — ta A" JE5 (Az,, — Byy)].
Denote ©; = Resf OResGI 10 ,...70Resé1 fori=1,2,..N and ©g = I. We
note that u, = @N,un Also denote ¥; = Resf- o Res’ ,OResé1 for
2

j=12,.M and ¥y = I. We note that v, = \I!Nyn
Since (z,y) € NN, EP(GY) x ﬂMlEP(GJ) then from and Lemma.(E)

GJ 1 7..

Ap(ON_1fn; Un) + Ap(Tpr_1Vp, Vy)
Ap(ON- mn,ResGN@N 1hn) + Ap(Par— 1Vn,R68 \IJM 1Vn)
(eN 1Hn, )pr(un, )+A (Yrr—1vn,y) *AP(Umy)
Ap(pn, ©) = Ap(tn, ) + Ap(vn,y) — Ap(vn,y)
Ap(Tn, @) = Ap(un, ) + Ap(Yn, y) — Ap(vn, y)

INIAIA
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(3.17)

IN

Ap(@n, ) — Ap(@Tnt1, ) + Ap(@ni1, ) — Ap(un, )
+Ap(Yn, Y) = Dp(Yn+1,Y) + Dp(Un+1,¥) — Bp(vn, y)
Ap(Tn, ) = Ap(Tnt1,2) + (1 — an) Ap(un, )

+an<=]fl (u) — JpE1 (), 2pq1 — ) — Ap(um r) + Ap(Yn, y)
7Ap(y'n+1) y) + (1 - an)AP(Um y)

"’O‘n<JE2( ) — JEz( )sYnt1 —Y) — Bp(vn,y)

Ap(Tn, ) + Ap(Yn, y) — (Ap(Tnt1,2) + Ap(Ynt1, )
(=D (un, ) + an (T (u) = T (@), 21 — 7))
Fan(=Ap(vn,y) + an<‘]52 (v) = JEQ (¥), Yn+1 —y)) = 0,

as n — 0o, which implies

(3.18)
and

(3.19)

1ON—1tm — un|| = 0,n — o0,

| rr—1vn — vp]] = 0,n — oo.

Consequently, we have

(3.20)
and
(3.21)

Again

(3.22)

17,7 (On—1p1n) = Ty (Onpn)l| = 0,0 — o0,

72 (W ar—1vm) — T2 (Wagvm)|| = 0,n — oo,

Ap(9N72,Ufna @Nfllffn) + Ap(\:[jM72Vn; \IIMflyn)

< AP(GN—Q.MTHI) - Ap(@N—l.“mx)
+Ap(Var—2vn, y) — Ap(V 10, 9)
< Ap(pn, ) = Ap(tn, @) + Ap(Vn, y) — Ap(vn, y)
< Ap(xmx) - Ap(um )+ A (yna y) — Ap(vnay)
= Ap(@n,x) — Ap(@n+1,2) + Ap(Tnt1, @) — Ap(un, 7)
F8pUns y) = Bp(Yn+1,9) + Ap(Ynt1,y) — Ap(vn, y)
< Ap(@n, ) = Ap(Tnt1, @) + (1 — o) Ap(un, @)

+an<JE1( ) — Jfl (@), Znt1 — ) — Ap(un, )
+Ap(Yn, YY) — Ap(Ynt1,9) + (1 — an)Ap(vn,y)
+O‘n<JE2( ) — JEZ( )s Un+1 — Y) — Bp(vn, y)

= Ap(@n, ) + Dp¥n,y) — (Ap(Tnt1,2) + Ap(Yn+1,9))
Fan (= Ap(un, ) + an (J7H (w) = I (@), Tng1 — )
+an(—Ap(vn, y)
+an(J52 (v) — JfQ (Y)yYnt1 —y)) = 0, n— o0,
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which implies

(3.23) ||@N_2un —@N_ll,an — 0,n — oo,
and
(324) ||\I/M—2Vn —\I/M_ll/nH — 0,n — oo.

Consequently, we have

(3.25) ||JpE1 (@N_g,un) — JpEl (eN—lﬂn)H — 0,n — oo,
and
(3.26) HJPE2 (\I/M_gun) — JPEZ (‘I’M—ll/n)H — 0,n — oo.

In a similar way, we can verify that

(327) lim [[ON_opty — ON_3pn|| == lim [|O1p, — pnl| =0,
n—00 n—00

and

(328) lim ||\I/M72Vn_\111\/[731/n|| =...= lim ||\I/11/n—VnH =0.
n—00 n—00

Hence it follows that

(3.29) lim [|Qiptn — Os_1ptn]| =0,i=1,2,--- , N,
n—oo
and
lim ([t — fial] = 0.
n—oo
Moreover,
(3.30) lim ||¥v, — U qv,|| =0, =1,2,-- , M,
n—oo
and
lim ||Un - Vn” = 0.
n—oo

Again, we obtain from the definition of u,, that

0 < ijlﬂn - Jflxn”

< ol A"l (A, — By
< (s ) T 1A (A = Byl = 0.0 — oc.
C,I AT+ D, B

. Ef . . .
Since Jg ' is norm to norm uniformly continuous on bounded subsets of ET,
we have that

(3.31) lim [|pn — z4]| = nan;O||Jff TErv, — I8 TEru,|| = 0,1 — oo,
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Thus, from and ( -, we have

[|Zn — unl| < |[|zs _HnH + [lpo = un|| = 0,17 — occ.

Similarly, we have lim ||v, — y,|| = 0 and ||y, — va|| = 0,7 — oo.
n—oo

Thus Az* — By* € wy,(Ax, — By,) and since the norm is weakly lower
semicontinuous, we obtain

[|Az* — By*|| < liminf ||Az,, — By,|| = 0.
n— oo

We next show that (z*,y*) € NX; EP(G}) x ﬂjleEP(Gé)

Now since u,, — z* and lim, o ||un — ptn]| = 0, we have that p,, — x
Also from (3.18)),(3.23), (3.27) and p,, — =*, we have that O;u,, — z*,k —
oo, for each i =1,2,--- , N. Again using , we get that

*

(3:32)  lim 1T (@iptn) — JE (©i-1pn)|| = 0,i =1,2,-- , N.
Therefore by , we have that for each i =1,2,--- | N,

G (Oifin,, 2) + (2 — Ostin,, JF (Oipin,) — JE (O5-1p1n,,)) =0, Vz € C.

Again using (A2), we obtain

(333) <Z @Z:u‘mw*]p (@'L/u’nk) - JpEl (67«—1ynk)> > Gzl(za @z:unk)

Thus, a combination of (A4), (3.32), (3.33) and O;u,, — x*, k — oo, gives us
that for each i =1,2,--- | N

Gi(z,2%) <0, VzeC.

Then for fixed z € C, let a;, := tz + (1 — t)z* for all ¢ € (0,1]. This implies
that a; , € C and further yields that G} (z,,,2*) < 0. It then follows from (A1)
and (A4) that

=
|

Gl1 (at,za a z)
tGh (at,z,y) + (1 — G (ag,z, ")

<
S tG (at zy R )7

and hence, from condition (A3), we obtain Gi(z*,z) > 0, Vz € C, which
implies that
z* e N, EP(GY).

Similarly, we have
y* e n; M EP(G)).

Next, we show that ({z,}, {yn}) converges strongly to (z*,y*).
Now, we observe that

AP($W+17 un) + Ap(ynJrl’ Un)
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= A [P (W) + BT () + AT (T (un)) | 1)

(7 [ P2 () + Bad P2 (0a) + 0T (S(0n))] vn)
0 Ap (U, tn) + Brlp(un, tn) + ¥ Ap(T (un), tn)
FanAp(u, vpn) + BnAp(Vn, Un)

+Y0 A, (S(vp), vn) = 0,1 — 0.

IN

Hence,
l[Zns1 —un|l =0, n— o0, and |[yn+1 —vn|l =0, n— oo
Thus
[[Tn4+1 = @n|| < |Tns1 — unl| + |Jun — 20|] = 0,n — o0,
and

Yn+1 = Ynll < [Ynt1 = vnll + |[vn — yul| = 0,1 — oo.

From (3.7) and (3.8]), we obtain

Ap(xn-‘rla -/E*) + Ap(yn-‘rla y*)
< (= an)(Ap(@n, )" + Ap(Yn, y7))

o (P () = TP @), 01— a7

(3.34) (I (0) = T2 (), Y1 — ¥))-

Therefore, by Lemma we conclude that A,(z,,z*) + Ap(yn,z*) —
0, n — oo, that is, ||z, —2*|| = 0, n — oo and ||y, — 2*|| = 0, n — oc.
Therefore, z,, — x* and y, — y*.
Case 2. Suppose that there exists a subsequence {ny} of {n} such that
Ap(@Tng,z) + Dp(Unpy) < Ap(Tnpt1,2) + Ap(Yny+1,y) for all & € N. Then,
by Lemma there exists a nondecreasing sequence {m,.} C N such that
m,; — 00.

Ap(xmfam) + Ap(ymﬂy) < Ap($m¢+1733) + Ap(ymT+1ay)7
and

Ap(mk’ (E) < Ap(xmk+1’ IE)

Using the same line of arguments as in (3.10)),(3.11)),(3.12)),(3.13) and noting
that Ap(zm., ) + Ap(Ym., ¥) < Ap(Tm,+1,%) + Ap(Ym, +1,Y), we can show
that

Tli—{go [| T, — tm, || =0, and Tli_}rgo [|SVm, — vm. || = 0.

Again from (3.7)) and (3.8)), we have

Ap(@m, +1,7") + Dp(Ym, +1,77)
< (1= am, ) (Ap(Tmy, ) + Ap(Ym, 7))



On split equality 93

e, (TP () — TP (&%), 2 1 — 2°)
+<JpEQ (U) - JpE2 (y*)7 Ym,+1 — y*>)7

which implies

W (Ap (T, 2°) + Ap(Ym,, 7))
< (D@, 7)) + Ap(Ym, . ¥7))
—(Bp(@m, +1,77) + Bp(Ym, +1,¥")
(B () = JB (27), 2, 41 — 27)

HI2 () = T2 YY) Y41 = Y)).

That is,
(an.r) *) + (y’mTay )
< (W) = M), T, 41— )
P (0) = TP (), st — 37)).
Therefore
Tli)rgo(AP(xmfvx*) + Ap(ym-r ) y*)) = O’
and since

AP(IWI*) + Al)(yﬂy*) < Ap(xmf-‘rlaz*) + Ap(ymr-‘rlvy*)v for all 7 €N,

we conclude that

zr = 2% and y, - y*, T — oo.

Corollary 3.2. Let Fy,Es and E3 be three real Banach spaces which are
p—uniformly conver and uniformly smooth and C, Q be nonempty closed and
convex subsets of Ey and Es, respectively. Let A: Ey — E3 and B : E5 — FEs
be bounded linear operators, A* : Ef — Ef and B* : E — E3 the ad-
joint of A and B, respectively. Let gi : C x C — R (i = 1,2,..,N) and
7:QxQ =R (j=12,..,M) be two finite families of bifunctions satis-
fying conditions (A1) — (A4). Let ¢} : C — RU {400} (i =1,2,...,N) and

2 Q — RU{+o0} (j =1,2,..., M) be two finite families of proper lower
semicontinuous and convex functions. Let T : C — C and S : Q — @ be left
Bregman strongly nonezpansive mappings such that Q, # 0 and let {o, }.{Bn}
and {v,} be sequences in (0,1) such that o, + Bn +yn = 1. For a fized u € E;
and a fized v € Eo, let the sequences {x,,} and {y,} be iteratively generated by
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zo € F1 and yo € Es:
Uy, = Resé{v o Reséi\,,1 0..0 Resg?
oResly Ji TP () — ta A" JF+ (Az, — Byy)),

Vp = ResfM o Res’ M_10...0 Res?!
a3 el

(3.35) “
' oReséé JqE2 [J]‘,E2 (Yn) + Ian*Jf3 (Az,, — Byy,)],
Tnir = Jo oI P2 () + BT P (un) + 0P (T ()],

Yni1 = I [an 2 (0) + Bu P2 (00) + I F (S(wa)|,

with the conditions
(1) limp—oo ot = 0;
(id) Y07, o = 00;
(i7) 0<a<PBn,ym <d<l,
1
. q -1
0<t<t, <k< ;
() 0 <t =t << (G 15
G, (z,y) == g.(z,y) + 0.(y) — p.(x), (t=1,2). Then, ({xn}, {xn}) converges
strongly to (z*,y*) € Q,, where
Q, ={(z,9) :z € F(T) N (N}L,GMEP(g},¢})),

g€ F(S)N (MY, GMEP(g}, ¢})) : AT = B}.

Corollary 3.3. Let Fq,Es and E3 be three real Banach spaces which are
p—uniformly convexr and uniformly smooth and C, @ be nonempty closed and
convex subsets of E1 and Es, respectively. Let A: Ey — E3 and B : E5 — FEs
be bounded linear operators, A* : Ei — Ef and B* : E — E3 the ad-
joint of A and B, respectively. Let gi : C x C = R (i = 1,2,..,N) and
g QxQ =R (j=1,2,...,M) be two finite families of bifunctions sat-
isfying conditions (A1) — (A4). Let ®, : C — Ef (i = 1,2,..,N) and
D). Q— E; (j=1,2,....,M) be two finite families of continuous and mono-
tone mappings. Let T : C — C and S : Q — @ be left Bregman strongly
nonezpansive mappings such that Qg # 0 and let {a,},{Bn} and {y,} be se-
quences in (0,1) such that apn + Bn + vn = 1. For a fized u € Ey and a fized
v € Ey, let the sequences {xn} and {y,} be iteratively generated by xo € Ey
and yg € Es:

Uy = Resg{v o Reséf,1 0..0 Reséf

oReséiJfl* [Jfl (zn) — tnA*Jf3 (Ax,, — Byn)],

Vp = Reséy o Reség/,,1 0..0 Reség

oReséé Jf; [JF2(yn) + tn B* J[*(Azy, — Byy)),

Tnr = Iy [an () + Bud B () + I (T ()]
Uit = Ji [ @n B2 (0) + Bud B2 (0n) + AT (S ()],

with the conditions
(1) limp—oo o = 05

(3.36)
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(1) Y074 o = 00;
(#i1) 0<a < Bp,ym <d<I;
. q -1
(iv) 0<t<t §k<( ) ;
! CqllAll7 + Dyl Bl
G.(z,y) == g (z,y) + (®,z,y —x), (0= 1,2). Then, {zn}, {zn}) converges
strongly to (z*,y*) € Qs, where

1

Q@ = {(.’f,ﬂ) RS F(T) ( NIGMEP(gi(I)Z))
g€ F(S)n(nM,GMEP(g},®})) : Az = By}.

4. Numerical Example

In this section, we present two numerical examples of our algorithm on the
real line and in an infinite dimensional Hilbert space, to show its efﬁciency
Throughout this section, we shall take a,, = 7%—27 Bn = m and vy, =
n+1
2(n+2)
Example 4.1. Let B} = E; = E3 =R and C = Q = [-1,1]. Take g}(x y) =
—9ix2+xy+(9i—1)y2, i (z) = (9i—3)x, ¢t (x) := (9i—6)x, i =1,2,3,--- , M,
2,

we have Res (z) . Also, we take g (x,y) == —Tiz®+ay+(7Ti—1)y

5(9 — 3)
& (x) = (Ti—3)x, h(x) == (7i—6)z, j =1,2,3,--- , N, and obtain Res (JC)

ﬁ. Furthermore, let Az := 2z, Bx := 3z and T'(z) = S(z) = (33)
HQ(:L‘) = Pc({);‘), with
-1, < -1,
Po(z) = Po(z) = x, x€[-1,1],
1, z>1.

Let M = N =5, then the iteration scheme (3.1]) becomes:

1
=1, — — 2t (22, — 3yn)|,
n 5 n_3tn2n_3n B
(4.1) . 2 n+1( )+ n+1 (Po(un)
s nl 2(n—|—12) " 2(n—|—12) et
n + n -+
It = 1 s ) ) g gy PRl
Case 1

(a) Take u=1,v = % = 0.1, yo = 0.22 and ¢, = 0.0000032.
(b) Takeu =1, v = %, xg = 0.1, yo = 0.22 and ¢,, = 0.00000051.

Case 11
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(a) Take u=2,v=0.1, zg = 0.3, yo = 0.02 and ¢,, = 0.00018.

(b) Take u =2, v=0.1, 2o = 0.3, yo = 0.02 and ¢,, = 0.00000071.
Case 111

(a) Take u=1,v=1, g = 0.1, yo = 0.1 and ¢,, = 0.00008.

(b) Take u =1, v =1, 9 = 0.1, yo = 0.1 and ¢,, = 0.00000011.

Example 4.2. Let E1 = E; = E5 = L([0,1]) be endowed with the inner
product

(@)= [ w00t ¥ oy € La(0.1)
and norm . A
o] = (/0 [2(t)2dt)” ¥ .y € La([0,1)).

Let C = Q = {z € Ly([0,1]) : (y,z) < a}, where y = 2t> and a = 3. Then
we define g1 : C xC — Rand g2 : @ X Q = R by ¢1(z,y) = (Liz,y — z)
and go(z,y) = (Lex,y — x), where Liz(t) = @ and Loz(t) = ? Thus,
it is easy to check that gy and go satisfy conditions (A1)-(A4). Also, define
O, : C — Ly([0,1]) and P53 : @ — Lz([0,1]) by ®1(x) = max{0,z(t)} and

Bo(x) = [} (x(t) . (f@@%) cos x(s))ds+ 2’ ¢ €[0,1]. Then, ®; and &
are monotone and continuous (see [7]). Let p1 =0 = ¢o.

Furthermore, let A, B : Ly([0,1]) — L2([0,1]) be defined by Az(t) = 29”5“)

and Bz(t) = @ Then, A and B are bounded linear operators. Also, let

T(x) = S(z) =1lc(z) = g(x) = Po(x), where

a—(y.2)
Wiz,

|
x, if (y,z) <a.

y+z, if (y,z)>a,

Pe(z) = Po(z) = {

Then, T and S are left Bregman strongly nonexpansive mappings. Thus, by
letting M = N = 1 in Theorem [3.1] iteration scheme (3.1)) becomes:

Uy = Resé1 [Tn — 2tn(Bn — Sun)]
Up = Resé2 [yn — 3ta(3xpn — Syn)]

)
b

(4.2) 2 n+1 n+1
Tnt1 = n—1|— 1" + 2(n —|—12) (un) + 2(n —|—12) (Pe(un)),
n -+ n -+

Case 1
(a) Take u =sint, v = cost, xg = 3cost, yo = sin 2t and ¢, = 0.0000032.

(b) Take u =sint, v = cost, xg = 3cost, yo = sin 2t and ¢, = 0.00000051.
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Case 2

(a) Take u=2t,v =t+1, 29 =t yo = t> + 1 and ¢,, = 0.00018.

(b) Take u=2t, v =t+1, 39 = t2, yo = t* + 1 and ¢, = 0.00000071.
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Figure 1: Example 4.1, Case I (a): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 2: Example 4.1, Case I (b): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 3: Example 4.1, Case II (a): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 4: Example 4.1, Case II (b): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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Figure 5: Example 4.1, Case III (a): errors vs number of iterations (top);
execution time vs accuracy (bottom left); number of iterations vs accuracy
(bottom right).
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