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The Cusa-Huygens inequality revisited

Yogesh J. Bagul1, Christophe Chesneau2 and Marko Kostić34

Abstract. Let c, γ ∈ R, γ ≥ 1, c ≥ 1 and T ∈ (0, π/γ] if c = 1, resp.
T ∈ (0, π/2γ] if c > 1. In this paper, we find the necessary and sufficient
conditions on a, b ∈ R such that the inequalities

sinx

x
> a+ b cosc(γx), x ∈ (0, T )

and

sinx

x
< a+ b cosc(γx), x ∈ (0, T )

hold true. We also determine the best possible constants p and q such
that

2 + cos(px)

3
<

sinx

x
<

2 + cos(qx)

3
, x ∈ (0, π/2).

The proofs of main results contain several auxiliary results which can be
of some independent interest.
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1. Introduction and preliminaries

The famous Cusa-Huygens inequality

sinx

x
<

2 + cosx

3
, x ∈ (0, π/2)

has been reconsidered numerous times so far (see, e.g., [2, 3, 4, 6, 8, 9, 11, 14,
15]).

The main aim of this paper is to consider the following problem. Let
a, b, c, γ ∈ R, γ ≥ 1, c ≥ 1 and T ∈ (0, π/γ] if c = 1, resp. T ∈ (0, π/2γ] if
c > 1; find the necessary and sufficient conditions such that the inequalities

sinx

x
> a+ b cosc(γx), x ∈ (0, T )(1.1)
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and

sinx

x
< a+ b cosc(γx), x ∈ (0, T )(1.2)

hold true. In this way, we continue our recent research study [5], where the
case γ = 1 has been analyzed.

In order to establish our main theoretical results, we need to remind our-
selves of the statement which is known in the existing literature as l’Hospital’s
rule of monotonicity; see, e.g., [1]:

Lemma 1.1. Let f(x) and g(x) be two real valued functions which are con-
tinuous on [a, b] and differentiable on (a, b), where −∞ < a < b < ∞ and
g′(x) 6= 0, for all x ∈ (a, b). Let

A(x) =
f(x)− f(a)

g(x)− g(a)
, x ∈ (a, b)

and

B(x) =
f(x)− f(b)

g(x)− g(b)
, x ∈ (a, b).

Then,

(i) A(x) and B(x) are increasing on (a, b) if f ′(x)/g′(x) is increasing on
(a, b).

(ii) A(x) and B(x) are decreasing on (a, b) if f ′(x)/g′(x) is decreasing on
(a, b).

The strictness of the monotonicity of A(x) and B(x) depends on the strictness
of monotonicity of f ′(x)/g′(x).

Furthermore, we will use the following series expansions:

cotx =
1

x
−

+∞∑
n=1

22n

(2n)!
|B2n|x2n−1, x ∈ (−π, π),(1.3)

where B2n = 2(−1)n+1(2n)!ζ(2n)/(2π)2n denotes the 2n-th Bernoulli number,
with ζ(·) being the Riemann zeta function, and

x

sinx
= 1 +

+∞∑
n=1

22n − 2

(2n)!
|B2n|x2n, x ∈ (−π, π).(1.4)

They can be found in [12] and [13], respectively. From (1.3) and (1.4), the
following two series expansions can be deduced:

x cotx = 1−
+∞∑
n=1

22n

(2n)!
|B2n|x2n, x ∈ (−π, π),(1.5)
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and

( x

sinx

)2
= x2 (− cotx)

′
= 1 +

+∞∑
n=1

22n

(2n)!
|B2n|(2n− 1)x2n, x ∈ (−π, π).

(1.6)

Finally, we will also use the following well-known result:

Lemma 1.2. ([7, 10]) Suppose that the two power series A(x) =
∑+∞
n=1 anx

n

and B(x) =
∑+∞
n=1 bnx

n are convergent on the interval (−R,R), with R ∈
(0,+∞]. If the sequence (an/bn) is increasing (decreasing) and bn > 0 for all
n ∈ N, then the function A(x)/B(x) is also increasing (decreasing) on (0, R).

2. Formulation and proof of main results

We start this section by stating the following useful result:

Proposition 2.1. Let γ ≥ 1. Then the function

Fγ(x) :=
sinx− x cosx

x2 sin γx
, x ∈ (0, π/γ)

is positive and strictly increasing.

Proof. Let γ > 1. Then, it is clear that we have

Fγ(x) =
sinx− x cosx

x2 sinx

sinx

sin γx
, x ∈ (0, π/γ).

The function

F (x) :=
sinx− x cosx

x2 sinx
, x ∈ (0, π)

is positive. Strictly speaking, this holds for x = π/2, while for other values of
the parameter x ∈ (0, π) it follows from the facts that the mapping t 7→ tan t−t,
t ∈ (0, π/2) (t ∈ (π/2, π)) is strictly increasing, cosx > 0 if x ∈ (0, π/2),
limt→π/2+(tan t − t) = −∞ and (tan t − t)t=π = −π < 0. On the other hand,
the function

g(x) :=
sinx

sin γx
, x ∈ (0, π/γ)

is positive and strictly increasing because its first derivative is given by (see
also (1.3))

g′(x) =
cosx sin(γx)− γ sinx cos(γx)

sin2(γx)

= sinx
cotx− γ cot(γx)

sin(γx)

= sinx

∑+∞
n=1

22n

(2n)! |B2n|x2n−1(γ2n − 1)

sin(γx)
, x ∈ (0, π/γ),
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which simply implies that g′(x) > 0, x ∈ (0, π/γ). Since

Fγ(x) =
sinx− x cosx

x2 sinx
g(x), x ∈ (0, π/γ),

it follows from the foregoing that it sufficies to prove of proposition for γ = 1.
For x ∈ (0, ζ), where 2.2 ≈ ζ ∈ (π/2, π) denotes the unique solution of the
equation x cotx = −2, this follows from our consideration given in [5, Remark
1(i)]. Otherwise, for x ∈ (ζ, π), we have to prove that the first derivative of the
function x 7→ x−2(sinx − x cosx) sin−1 x, x ∈ [ζ, π) is positive, which follows
from direct calculus and quite elemetary inequalities taking into account the
concrete value of number ζ.

Since

F ′γ(x)=
x3 sinx sin γx−

[
2x sin γx+ γx2 cos γx

][
sinx− x cosx

]
x4 sin2 γx

, x ∈ (0, π/γ),

Proposition 2.1 yields the following

Corollary 2.2. Let γ ≥ 1. Then, for every x ∈ (0, π/γ), we have

(
x2 − 2

)
sinx sin γx+ γx2 cosx cos γx+ 2x cosx sin γx ≥ γx cos γx sinx.

(2.1)

The question whether there exists a number x ∈ (0, π/γ) such that we have
the equality in (2.1) is interesting but will not be considered here. Numerical
calculations at symbolab.com show that a quite different result holds if γ ∈
(0, 1), which is a much more complicated case to analyse. Since

lim
x→0+

Fγ(x) =
1

3γ
and lim

x→T−
Fγ(x) = +∞,

a similar line of reasoning as in the proofs of [5, Theorem 1-Theorem 2] shows
that the following holds true:

Theorem 2.3. Let a, b ∈ R, γ > 1 and T ∈ (0, π/γ]. Then, the inequality

sinx

x
> a+ b cos(γx), x ∈ (0, T )

holds iff

1. bγ ≤ 1/3 and a ≤ F (T ), or

2. bγ ≥ Fγ(T ), a ≤ 1− b and T < π/γ, or

3. bγ ∈ (1/3, Fγ(T )), a ≤ min(1 − b, F (T )) and T < π/γ, or bγ > 1/3,
a ≤ min(1− b, F (T )) and T = π/γ.
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Theorem 2.4. Let a, b ∈ R, γ > 1 and T ∈ (0, π/γ]. Then the inequality

sinx

x
< a+ b cos(γx), x ∈ (0, T )

holds iff

1. bγ ≤ 1/3 and a ≥ 1− b, or

2. bγ ≥ Fγ(T ), a ≥ F (T ) and T < π/γ, or

3. bγ > 1/3, T = π/γ and a > F (ζb,γ), where ζb,γ denotes the unique
solution of the equation Fγ(x) = bγ on the interval (0, T ).

Corollary 2.5. For x ∈ (0, π/2), the smallest positive constant p and the
greatest positive constant q such that

2 + cos(px)

3
<

sinx

x
<

2 + cos(qx)

3
, x ∈ (0, π/2)

are (2/π) arccos(6/π − 2) ≈ 1.05746 and 1, respectively.

Proof. For any γ ∈ (0, 1], we have

2 + cos(γx)

3
≥ 2 + cosx

3
>

sinx

x
, x ∈ (0, π/2).

Further, we will prove that the inequality

sinx

x
<

2 + cos(γx)

3
, x ∈ (0, π/2)(2.2)

cannot be satisfied if γ > 1. Strictly speaking, the function y = γ sin(πγ/2) −
(12/π2), γ ∈ (1, 2) is negative and has the maximal value ≈ −0.057394 at
the point ≈ 1.2915. By Theorem 2.4, if γ ∈ (1, 2], then the inequality (2.2)
can be satisfied only if γ = 2. But, this is not the case, which can be simply
inspected by considering the behaviour of both sides of this inequality around
the point x = π/2 − . Similarly, by considering the behaviour of both sides
of this inequality around the point x = π/γ−, we can simply show that (2.2)
does not hold for γ > 2. For remainder of proof, it suffices to show that the
inequality

sinx

x
>

2 + cos(γx)

3
, x ∈ (0, π/2)(2.3)

cannot be satisfied if 1 < γ < (2/π) arccos(6/π − 2). For this value of γ, the
inequality (2.3) holds by Theorem 2.3 (the first case in part 3.). For γ ∈
(1, (2/π) arccos(6/π − 2)), the conditions from part 1. and 2. of the above-
mentioned theorem cannot be satisfied, as easily seen. Part 3. cannot be
satisfied, likewise, because we then must have a ≤ min(1 − b, F (T )); in our
concrete situation, this reads as cos(γπ/2) ≤ 3((2/π) − 2/3), which simply
implies γ ≥ (2/π) arccos(6/π − 2).
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Corollary 2.5 can be deduced by using l’Hospital’s rule of monotonicity,
directly. Since the proof is complicated and contains many interesting points,
we would like to present it, as well:

Proof with l’Hospital’s rule of monotonicity. Let us consider the function

f(x) :=
arccos(3 sinx/x− 2)

x
:=

f1(x)

f2(x)
,

where f1(x) := arccos(3 sinx/x − 2) and f2(x) := x (x ∈ (0, π/2)). Then, we
have

f ′1(x)

f ′2(x)
=

3(sinx− x cosx)

x
√

12x sinx− 9 sin2 x− 3x2
, x ∈ (0, π/2).

Moreover, for every ∈ (0, π/2), we have[
f ′1(x)

f ′2(x)

]2
=

3(sinx− x cosx)2

x2(4x sinx− 3 sin2 x− x2)

=
3(sinx− x cosx)

x2 sinx

sinx(sinx− x cosx)

4x sinx− 3 sin2 x− x2
= f3(x)f4(x),

where
f3(x) := 3(sinx− x cosx)/(x2 sinx), x ∈ (0, π/2)

and

f4(x) := sinx(sinx− x cosx)/(4x sinx− 3 sin2 x− x2), x ∈ (0, π/2).

By Proposition 2.1, the function f3(·) is positive and strictly increasing on
(0, π/2). Now let us show that the function

G(x) :=
sinx(sinx− x cosx)

4x sinx− 3 sin2 x− x2
, x ∈ (0, π/2)

is positive and strictly increasing on (0, π/2). The fact that G(x) is positive on
(0, π/2) follows from the facts that sinx−x cosx > 0 and 3x sinx > x2+2 sin2 x
for x ∈ (0, π/2), which can be easily seen by using a simple inequality

2
√

2 ≤ 2
sinx

x
+

x

sinx
< 3, x ∈ (0, π/2),(2.4)

which can be proved as follows. The function y = sinx/x, x ∈ (0, π/2) is
strictly decreasing so that sinx/x ∈ (2/π, 1) for x ∈ (0, π/2). Consider the
function q : [2/π, 1] → R given by q(t) := 2t + t−1 − 3, t ∈ [2/π, 1]. Since
q′(t) = t−2(2t2 − 1), t ∈ [2/π, 1], we have that the function q(·) is strictly
decreasing on the interval [2/π, 1/

√
2] and the function q(·) is strictly increasing

on the interval [1/
√

2, 1], which simply implies (2.4) because q(2/π) < 0 and
q(1) = 0. Further on, let us rewrite the function G(x) as G(x) = A(x)/B(x),
x ∈ (0, π/2), where A(x) := 1− x cotx and B(x) := 4x/ sinx− 3− (x/ sinx)2
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(x ∈ (0, π/2)). We now aim to apply Lemma 1.2. By using the series expansions
(1.4)-(1.6), we get

A(x) =

+∞∑
n=1

22n

(2n)!
|B2n|x2n =

+∞∑
n=1

an
(
x2
)n
, x ∈ (0, π/2),

where an = 22n|B2n|/(2n)!, and

B(x) = 4 +

+∞∑
n=1

4(22n − 2)

(2n)!
|B2n|x2n − 3− 1−

+∞∑
n=1

22n

(2n)!
|B2n|(2n− 1)x2n

=

+∞∑
n=1

|B2n|
(2n)!

[
4(22n − 2)− 22n(2n− 1)

]
x2n =

+∞∑
n=1

bn
(
x2
)n
, x ∈ (0, π/2),

where bn = (22n(5− 2n)− 8)|B2n|/(2n)! for any n ∈ N.

Now, let us set cn := bn/an = 5 − 2n − 23−2n, n ≥ 1. Then, cn − cn+1 =
2 − 3 × 21−2n > 1/2 > 0 for n ≥ 1, implying that (cn) is decreasing and, a
fortiori, (an/bn) is increasing. It follows from Lemma 1.2 that G(x) is also
increasing on (0, π/2). Moreover, the zeros of G′(x) cannot form an interval
so that the function G(·) is, in fact, strictly increasing on (0, π/2). Therefore,
f ′1(·)/f ′2(·) is strictly increasing and, by l’Hospital’s rule of monotonicity (see
Lemma 1.1), f(·) is strictly increasing on (0, π/2) with f(0+) < f(x) < f(π/2).
Then we find f(0+) = 1 by l’Hospital’s rule and f(π/2) = 2 arccos(6/π−2)/π.
We end the proof by noticing that q = f(0+) < f(x) < f(π/2) = p is equivalent
to the desired inequalities, i.e., (2 + cos(px))/3 < sinx/x < (2 + cos(qx))/3. �

Remark 2.6. It is worth noting that we have not used above any inequality and
estimate with Bernoulli numbers since we had used them only for getting the
precise series expansion of functions A(·) and B(·); after that, the Bernoulli
numbers disappered in the concrete formula for the sequence (cn), which is
crucial for applying Lemma 1.2. For more details about the Bernoulli numbers
and related inequalities, the reader may consult the paper [16] by F. Qi and
references cited therein.

The result in Corollary 2.5 can be visualized in Figure 1.
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Figure 1: Illustration of the inequalities in Theorem 2.5.

Remark 2.7. Observe also that the function

G0(x) =
sinx− x cosx

4x sinx− 3 sin2 x− x2
, x ∈ (0, π/2)

is not strictly monotone on (0, π/2). In actual fact, we have limx→0+G0(x) =
+∞ as well as there exists a unique point ζ ≈ 0.9161 such that G′0(x) < 0
for x ∈ (0, ζ) and G′0(x) > 0 for x ∈ (ζ, π/2); this can be verified by using,
e.g., a simple computation and the graphing calculator at www.symbolab.com.
Hence, the mapping G0(x) is strictly decreasing on (0, ζ) and strictly increasing
on (ζ, π/2). Similar conclusions hold for the function

Gθ(x) =
sinθ x · (sinx− x cosx)

4x sinx− 3 sin2 x− x2
, x ∈ (0, π/2),

where θ ∈ (0, 1).

Comparing Theorem 2.3 and Theorem 2.4 to [5, Theorem 1 and Theorem
2], it is necessary to say that we have considered the case γ 6= 1 here as well
as increased the range of values of parameter T from (0, π/2γ] to (0, π/γ]. The
prolongation of interval is no longer possible if we consider the inequality (1.1)
with a, b and c > 1. To explain this in more detail, let us consider the function

M1(x) :=
sinx

x
− b cosc(γx), x ∈ (0, π/γ),

whose first derivative is given by

M ′1(x) = cosc−1(γx) sin(γx)
[ x cosx− sinx

x2 sin(γx) cosc−1(γx)
+ bcγ

]
, x ∈ (0, π/γ).
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Using Proposition 2.1 and the assumption c > 1, it follows that the function

x 7→ x cosx− sinx

x2 sin(γx) cosc−1(γx)
, x ∈ (0, T )

is strictly decreasing for T ≤ π/2γ; moreover, the range of this function is equal
to (−∞, (−1)/3), if T = π/2γ, resp. (−F (T ) cos1−c(γT )/ sin(γT ), (−1)/3), if
T < π/2γ. Using the foregoing arguments, we can clarify the following result:

Theorem 2.8. Suppose that a, b ∈ R, c > 1 and T ∈ (0, π/2γ]. Then, we have
the following:

(i) The inequality (1.1) holds iff:

1. bcγ ≤ 1/3 and a ≤M1(T ), or

2. bcγ ≥ Fγ(T ) cos1−c(γT ), a ≤ 1− b and T < π/2γ, or

3. bcγ ∈ (1/3, Fγ(T ) cos1−c(γT )), a ≤ min(1 − b,M1(T )) and T <
π/2γ, or bcγ > 1/3, a ≤ min(1− b,M1(T )) and T = π/2γ.

(ii) The inequality (1.2) holds iff:

1. bcγ ≤ 1/3 and a ≥ 1− b, or

2. bcγ ≥ Fγ(T ) cos1−c(γT ), a ≥M1(T ) and T < π/2γ, or

3. bcγ > 1/3, T = π/2γ and a > F (ηb,γ), where ηb,γ denotes the unique
solution of equation

x cosx− sinx

x2 sin(γx) cosc−1(γx)
+ bcγ = 0

on the interval (0, T ).

Further on, a straightforward computation shows that, for every x ∈
(0, π/γ), we have:( x cosx− sinx

x2 sin(γx) cosc−1(γx)

)′
=

sinx− x cosx

x2
cos−c(γx)(c− 1)γ +

sinx− x cosx

x2
cos−c(γx)

×

[
cos(γx)

(
x2 − 2

)
sinx sin γx+ γx2 cosx cos γx+ 2x cosx sin γx− γx cos γx sinx

x(sinx− x cosx) sin2 γx

]

=:
sinx− x cosx

x2
cos−c(γx)

[
(c− 1)γ +Wγ(x)

]
.

The main problem in extending [5, Theorem 4] to the case in which c < 1
and γ > 1 is the question whether the function Wγ(·) is strictly decreasing
on (0, π/2γ). This is the first open problem we would like to address to our
readers. In order to formulate the second problem, set, for every x ∈ (0, π/2γ),

W0,γ(x)

:= cos(γx)

(
x2 − 2

)
sinx sin γx+ γx2 cosx cos γx+ 2x cosx sin γx− γx cos γx sinx

x3 sin3(γx)
.
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Due to Corollary 2.2, we have W0,γ(x) ≥ 0 for all x ∈ (0, π/2γ). Since

Wγ(x) =
x2 sin(γx)

sinx− x cosx
W0,γ(x), x ∈ (0, π/2γ),

Proposition 2.1 shows that the function Wγ(·) would be strictly decreasing on
(0, π/2γ) provided that the function W0,γ(·) is strictly decreasing on (0, π/2γ).
By [5, Lemma 5], the function W0,1(·) is strictly decreasing on (0, π/2). There-
fore, it is natural to ask whether the function W0,γ(·) is strictly decreasing on
(0, π/2γ) in the case that γ > 1. We close the paper with the observation that
the online graphic calculators show that this is actually true in many concrete
situations (in cases γ = 2, 3, 4, 5, 6, e.g.).
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