On 2-irreducible submodules of a module

Faranak Farshadifar¹

Abstract. Let R be a commutative ring with identity and let M be an R-module. A proper submodule N of M is said to be 2-irreducible submodule if whenever $N = H_1 \cap H_2 \cap H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N = H_1 \cap H_2$ or $N = H_2 \cap H_3$ or $N = H_1 \cap H_3$. In this paper, we investigate the concept of 2-irreducible submodules of Mand obtain some properties of this class of modules.

AMS Mathematics Subject Classification (2010): 13C13; 13C99

Key words and phrases: 2-irreducible ideal; irreducible submodule; 2-irreducible submodule

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

An ideal I of R is said to be *irreducible* if $I = J_1 \cap J_2$, for ideals J_1 and J_2 of R, implies that either $I = J_1$ or $I = J_2$ [9]. An ideal I of R is said to be 2-*irreducible* if whenever $I = J_1 \cap J_2 \cap J_3$ for ideals J_1, J_1 and J_3 of R, then either $I = J_1 \cap J_2$ or $I = J_1 \cap J_3$ or $I = J_2 \cap J_3$. Clearly, any irreducible ideal is a 2-*irreducible* ideal [10].

A proper submodule N of an R-module M is said to be *irreducible* if for submodules H_1 and H_2 of M, $N = H_1 \cap H_2$ implies that $N = H_1$ or $N = H_2$.

A submodule N of an R-module M is said to be a 2-irreducible submodule if whenever $N = H_1 \cap H_2 \cap H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N = H_1 \cap H_2$ or $N = H_2 \cap H_3$ or $N = H_1 \cap H_3$ [7].

The main purpose of this paper is to obtain some results concerning the concept of 2-irreducible submodules of an R-module M.

2. Main results

An *R*-module *M* is said to be a *multiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM [3].

Theorem 2.1. Let M be a finitely generated multiplication R-module. Then we have the following.

(a) If N is a 2-irreducible submodule of M, then $(N:_R M)$ is a 2-irreducible ideal of R.

¹Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran, e-mail: f.farshadifar@cfu.ac.ir

(b) If N is a submodule of M such that $(N :_R M)$ is a 2-irreducible ideal of R, then N is a 2-irreducible submodule of M.

Proof. (a) Let N be a 2-irreducible submodule of M and let $J_1 \cap J_2 \cap J_3 = (N :_R M)$ for some ideals J_1, J_2 , and J_3 of R. Then

$$J_1M \cap J_2M \cap J_3M = (N:_R M)M = N$$

by [5, Corollary 1.7]. Thus by assumption, either $J_1M \cap J_2M = N$ or $J_1M \cap J_3M = N$ or $J_2M \cap J_3M = N$. Hence, either $(J_1 \cap J_2)M = (N :_R M)M$ or $(J_1 \cap J_3)M = (N :_R M)M$ or $(J_2 \cap J_3)M = (N :_R M)M$. Therefore, either $J_1 \cap J_2 = (N :_R M)$ or $J_1 \cap J_3 = (N :_R M)$ or $J_2 \cap J_3 = (N :_R M)$ by [12, Corollary of Theorem 9].

(b) Let N be a submodule of M such that $(N :_R M)$ is a 2-irreducible ideal of R and let $H_1 \cap H_2 \cap H_3 = N$ for some submodules H_1 , H_2 and H_3 of M. Then we have

$$(H_1 \cap H_2 \cap H_3 :_R M)M = ((H_1 :_R M) \cap (H_2 :_R M) \cap (H_3 :_R M))M = (N :_R M)M$$

Thus $(H_1 :_R M) \cap (H_2 :_R M) \cap (H_3 :_R M) = (N :_R M)$ by [12, Corollary of Theorem 9]. Hence, either $(H_1 :_R M) \cap (H_2 :_R M) = (N :_R M)$ or $(H_1 :_R M) \cap (H_3 :_R M) = (N :_R M)$ or $(H_2 :_R M) \cap (H_3 :_R M) = (N :_R M)$, since $(N :_R M)$ is a 2-irreducible ideal of R. Therefore, either $H_1 \cap H_2 = N$ or $H_1 \cap H_3 = N$ or $H_2 \cap H_3 = N$ by [5, Corollary 1.7].

The following example shows that the concepts of irreducible submodules and 2-irreducible submodules are different in general.

Example 2.2. Consider the \mathbb{Z} -module \mathbb{Z}_6 . Then $0 = \overline{3}\mathbb{Z}_6 \cap \overline{2}\mathbb{Z}_6$ implies that the 0 submodule of \mathbb{Z}_6 is not irreducible. But $(0 :_{\mathbb{Z}} \mathbb{Z}_6) = 6\mathbb{Z}$ is a 2-irreducible ideal of \mathbb{Z} by [10, Example 1]. Since the \mathbb{Z} -module \mathbb{Z}_6 is a finitely generated multiplication \mathbb{Z} -module, 0 is a 2-irreducible submodule of \mathbb{Z}_6 by Theorem 2.1 (b).

Proposition 2.3. Let N be a 2-irreducible submodule of an R-module M. Then N is a 2-irreducible submodule of T and N/K is a 2-irreducible submodule of M/K for any $K \subseteq N \subseteq T$.

Proof. This is straightforward.

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0 :_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0 :_M Ann_R(N))$ [2].

An *R*-module *M* satisfies the *double annihilator conditions* (DAC for short) if for each ideal *I* of *R* we have $I = Ann_R(0:_M I)$ [6].

An *R*-module M is said to be a *strong comultiplication module* if M is a comultiplication *R*-module and satisfies the DAC conditions [1].

Remark 2.4. [11] Let M be a strong comultiplication R-module. Consider the mapping $\phi : l(R) \to l(M)$, where l(M) denotes the lattice of submodules of M, defined by $\phi(I) = (0 :_M I)$. Clearly ϕ is one-to-one, onto and order reversing with the order reversing inverse $\phi^{-1}(N) = Ann_R(N)$ for each submodule N of M. That is, ϕ is a lattice anti-isomorphism.

A non-zero submodule N of an R-module M is said to be a sum 2-irreducible submodule if whenever $N = H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N = H_1 + H_2$ or $N = H_2 + H_3$ or $N = H_1 + H_3$. Also, M is said to be a sum 2-irreducible module if M is a sum 2-irreducible submodule of itself [8].

Corollary 2.5. Let M be a strong comultiplication R-module. Then every non-zero proper ideal of R is a sum 2-irreducible ideal if and only if every non-zero proper submodule of M is a 2-irreducible submodule of M.

Proof. By Remark 2.4, obviously the 2-irreducibility of submodules (which is in its essence a lattice-theoretic property) is equivalent to the dual notion in the ideal lattice. The supremum in the ideal lattice is a sum of two ideals and it corresponds to the infimum in the submodule lattice (which is the intersection, of course), so the "sum-2-irreducible" property is the dual of "2-irreducibility".

A proper submodule P of an R-module M is said to be *prime* if, for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [4].

Proposition 2.6. Let M be a multiplication R-module and let N_1 , N_2 , and N_3 be prime submodules of M such that $N_1 + N_2 = N_1 + N_3 = N_2 + N_3 = M$. Then $N_1 \cap N_2 \cap N_3$ is not a 2-irreducible submodule of M.

Proof. Assume on the contrary that $N_1 \cap N_2 \cap N_3$ is a 2-irreducible submodule of M. Then $N_1 \cap N_2 \cap N_3 = N_1 \cap N_2 \cap N_3$ implies that either $N_1 \cap N_2 = N_1 \cap N_2 \cap N_3$ or $N_1 \cap N_3 = N_1 \cap N_2 \cap N_3$ or $N_2 \cap N_3 = N_1 \cap N_2 \cap N_3$. We can assume without loss of generality that $N_1 \cap N_2 = N_1 \cap N_2 \cap N_3$. Then $N_1 \cap N_2 \subseteq N_3$. It follows that $(N_1 :_R M)N_2 \subseteq N_3$. As N_3 is a prime submodule of M, we have $N_2 \subseteq N_3$ or $(N_1 :_R M) \subseteq (N_3 :_R M)$. Thus $N_2 \subseteq N_3$ or $N_1 \subseteq N_3$ since M is a multiplication R-module. Therefore, $N_3 = M$, which is a contradiction.

Corollary 2.7. Let M be a multiplication R-module such that every proper submodule of M is 2-irreducible. Then M has at most two maximal submodules.

Proof. This follows from Proposition 2.6

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is of the form $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 2.8. Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be an *R*-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a proper submodule of M. If N is a 2-irreducible submodule of M, then either $N_1 = M_1$ and N_2 is 2-irreducible submodule of M_2 or $N_2 = M_2$ and N_1 is a 2-irreducible submodule of M_1 or N_1 , N_2 are irreducible submodules of M_1 , M_2 , respectively.

Proof. Let $N = N_1 \times N_2$ be a 2-irreducible submodule of M such that $N_2 = M_2$. From our hypothesis, N is proper, so $N_1 \neq M_1$. Set $\dot{M} = M/(0 \times M_2)$. One can see that $\dot{N} = N/(0 \times M_2)$ is a 2-irreducible submodule of \dot{M} . Also, observe that $\dot{M} \cong M_1$ and $\dot{N} \cong N_1$. Thus N_1 is a 2-irreducible submodule of M_1 . By a similar argument as in the previous case, if $N_1 = M_1$, then N_2 is a 2-irreducible submodule of M_2 . Now suppose that $N_1 \neq M_1$ and $N_2 \neq M_2$. We show that N_1 is an irreducible submodule of M_1 . Suppose that $H_1 \cap K_1 = N_1$ for some submodules H_1 and K_1 of M_1 . Then

$$(H_1 \times M_2) \cap (M_1 \times N_2) \cap (K_1 \times M_2) = (H_1 \cap K_1) \times N_2 = N_1 \times N_2$$

Thus by assumption, either $(H_1 \times M_2) \cap (M_1 \times N_2) = N_1 \times N_2$ or $(H_1 \times M_2) \cap (K_1 \times M_2) = N_1 \times N_2$ or $(M_1 \times N_2) \cap (K_1 \times M_2) = N_1 \times N_2$. Therefore, $H_1 = N_1$ or $K_1 = N_1$ since $N_2 \neq M_2$. Thus N_1 is an irreducible submodule of M_1 . Similarly, we can show that N_2 is an irreducible submodule of M_2 . \Box

Theorem 2.9. Let $R = R_1 \times R_2 \times \cdots \times R_n$ $(2 \le n < \infty)$ be a decomposable ring and $M = M_1 \times M_2 \cdots \times M_n$ be an *R*-module, where for every $1 \le i \le n$, M_i is an R_i -module, respectively. Then for a proper submodule *N* of *M*, if *N* is a 2-irreducible submodule of *M*, then either $N = \times_{i=1}^n N_i$ such that for some $k \in \{1, 2, ..., n\}, N_k$ is a 2-irreducible submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, ..., n\} \setminus \{k\}$ or $N = \times_{i=1}^n N_i$ such that for some $k, m \in \{1, 2, ..., n\},$ N_k is an irreducible submodule of M_k , N_m is an irreducible submodule of M_m , and $N_i = M_i$ for every $i \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof. We use induction on n. For n = 2 the result holds by Theorem 2.8. Now let $3 \leq n < \infty$ and suppose that the result is valid when $K = M_1 \times \cdots \times M_{n-1}$. We show that the result holds when $M = K \times M_n$. By Theorem 2.8, N is a 2-irreducible submodule of M if and only if either $N = L \times M_n$ for some 2irreducible submodule L of K or $N = K \times L_n$ for some 2-irreducible submodule L_n of M_n or $N = L \times L_n$ for some irreducible submodule L of K and some irreducible submodule L_n of M_n . Note that a proper submodule L of K is an irreducible submodule of K if and only if $L = \times_{i=1}^{n-1} N_i$ such that for some $k \in \{1, 2, ..., n - 1\}, N_k$ is an irreducible submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, ..., n - 1\} \setminus \{k\}$. Consequently the claim is now verified. \Box

Definition 2.10. We say that an element *a* of a lattice $(L; \land, \lor)$ is a 2irreducible lattice element if for all $b, c, d \in L$, if $b \land c \land d = a$ then either $b \land c = a$ or $b \land d = a$ or $c \land d = a$.

Proposition 2.11. Let $f: M \to M$ be an epimorphism of R-modules. Then we have the following.

- (a) If N is a 2-irreducible submodule of M such that $Ker(f) \subseteq N$, then f(N) is a 2-irreducible submodule of M.
- (b) If \hat{N} is a 2-irreducible submodule of \hat{M} , then $f^{-1}(\hat{N})$ is a 2-irreducible submodule of M.

Proof. Any submodule N of M which contains ker f is 2-irreducible iff N is a 2-irreducible lattice element in the interval lattice [ker f, M] of the submodule lattice iff f(N) is a 2-irreducible submodule of M. The first iff holds because 2-irreducibility of N depends only on submodules which contain N, and those are all in the interval [ker f, M]. The second iff is by the Correspondence Theorem.

Acknowledgement

The author would like to thank the honorable editor Prof. Petar Marković and referee for their helpful comments.

References

- ANSARI-TOROGHY, H., AND FARSHADIFAR, F. Strong comultiplication modules. CMU. J. Nat. Sci 8, 1 (2009), 105–113.
- [2] ANSARI-TOROGHY, H., AND FARSHADIFAR, F. On the dual notion of multiplication modules. Arab. J. Sci. Eng. 36, 6 (2011), 925–932.
- [3] BARNARD, A. Multiplication modules. J. Algebra 71, 1 (1981), 174–178.
- [4] DAUNS, J. Prime submodules. Journal f["]ur die Reine und Angewandte Mathematik 298, 8 (1978), 156–181.
- [5] EL-BAST, Z. A., AND SMITH, P. F. Multiplication modules and theorems of Mori and Mott. Comm. Algebra 16, 4 (1988), 781–796.
- [6] FAITH, C. Rings whose modules have maximal submodules. *Publ. Mat. 39*, 1 (1995), 201–214.
- [7] FARSHADIFAR, F., AND ANSARI-TOROGHY, H. 2-irreducible and strongly 2irreducible submodules of a module. *Submitted*.
- [8] FARSHADIFAR, F., AND ANSARI-TOROGHY, H. Sum 2-irreducible submodules of a module. *Jordan Journal of Mathematics and statistics (JJMS)*, to appear.
- [9] HEINZER, W. J., RATLIFF, JR., L. J., AND RUSH, D. E. Strongly irreducible ideals of a commutative ring. J. Pure Appl. Algebra 166, 3 (2002), 267–275.
- [10] MOSTAFANASAB, H., AND YOUSEFIAN DARANI, A. 2-irreducible and strongly 2-irreducible ideals of commutative rings. *Miskolc Math. Notes* 17, 1 (2016), 441–455.
- [11] NIKSERESHT, A., AND SHARIF, H. On comultiplication and r-multiplication modules. Journal of algebraic systems 2, 1 (2014), 1–19.
- [12] SMITH, P. F. Some remarks on multiplication modules. Arch. Math. (Basel) 50, 3 (1988), 223–235.

Received by the editors December 16, 2019 First published online May 17, 2020