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Generalized Volterra operators on polynomially
generated Banach spaces

Nasrin Eghbali12, Maryam M. Pirasteh3, and Amir H. Sanatpour4

Abstract. We study boundedness of generalized Volterra operators
acting on certain Banach spaces of analytic functions generated by the
polynomials on the open unit disc. The operators under study map into
the weighted Banach spaces of analytic functions or Bloch type spaces.
We also give some related results for the boundedness of continuous op-
erators with respect to the topology of uniform convergence on compact
subsets of the open unit disc.
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1. Introduction

Let D denote the open unit disc of the complex plane C and H(D) denote the
space of all complex-valued analytic functions on D. For an analytic selfmap
ϕ : D → D and u ∈ H(D), the weighted composition operator uCϕ is given
by (uCϕf)(z) = u(z)f(ϕ(z)) for all f ∈ H(D) and z ∈ D. In the special
case of u = 1, we get the composition operator Cϕ given by Cϕf = f ◦ ϕ
for all f ∈ H(D). Weighted composition operators appear in the study of
dynamical systems. It is also known that isometries on many analytic function
spaces are of the canonical forms of weighted composition operators. For more
information about these operators the reader is referred to the monographs
[5, 12] and references therein.

For g ∈ H(D), the Volterra operator Vg is defined by

(Vgf)(z) =

∫ z

0

f(ζ)g′(ζ)dζ,

for all f ∈ H(D) and z ∈ D. Volterra operators were first considered by Pom-
merenke in [11] and, as it is mentioned in [1], interest in the study of these types
of operators arose originally from studying semigroups of analytic composition
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operators (see also [13]). As a generalization of the Volterra operator Vg, for an
analytic selfmap ϕ of D, the product of composition operator Cϕ and Volterra
operator Vg, called generalized Volterra operator, is given by

(V ϕg f)(z) =

∫ ϕ(z)

0

f(ξ)g′(ξ)dξ,

for all f ∈ H(D) and z ∈ D (see [8, 9]). Indeed, we have the decomposition

V ϕg = Cϕ ◦ Vg,

and by letting ϕ(z) = z in the generalized Volterra operator V ϕg , we get the
classic Volterra operator Vg.

Generalized Volterra operators and other similar integral type operators
between different spaces of analytic functions have been intensively studied by
many authors. See, for example, [1, 8, 9, 11, 13] and references therein. In
this paper we study boundedness of generalized Volterra operator V ϕg between
certain subspaces of H(D) defined as follows.

By a weight v we mean a strictly positive continuous function on D which
is radial, that is v(z) = v(|z|) for every z ∈ D. Moreover, we assume that the
weight v is decreasing with respect to |z| and tends to zero at the boundary of
D, that is lim|z|→1 v(z) = 0. A weight v is called normal if it satisfies properties
(L1) and (L2)

(L1) inf
k

v(1− 2−k−1)

v(1− 2−k)
> 0,

(L2) lim sup
n

v(1− 2−n−k)

v(1− 2−n)
< 1, for some k ∈ N,

see [6, Lemma 1]. Note that for each 0 < α < ∞, the standard weights
vα(z) = (1 − |z|2)α are normal weights. For more information about normal
weights, see [2, 3, 6] and references therein.

For a weight v, the weighted Banach space of analytic functions H∞v is
defined as

H∞v =

{
f ∈ H(D) : sup

z∈D
v(z)|f(z)| <∞

}
.

The space H∞v is a Banach space equipped with the norm

‖f‖H∞v = sup
z∈D

v(z)|f(z)|, (f ∈ H∞v ).

The little version of H∞v , denoted by H0
v , is defined as

H0
v =

{
f ∈ H∞v : lim

|z|→1−
v(z)|f(z)| = 0

}
.

Indeed, the space H0
v is a closed subspace of H∞v .
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For a weight v, the Bloch type space B∞v is defined as

B∞v =

{
f ∈ H(D) : sup

z∈D
v(z)|f ′(z)| <∞

}
.

The space B∞v is a Banach space with the norm

‖f‖B∞v = |f(0)|+ sup
z∈D

v(z)|f ′(z)|, (f ∈ B∞v ).

The little Bloch type space B0v, which is a closed subspace of B∞v , is defined as

B0v =

{
f ∈ B∞v : lim

|z|→1−
v(z)|f ′(z)| = 0

}
.

If v is a normal weight, then by using the weight

w(z) = (1− |z|)v(z), (z ∈ D),

we can identify H∞v = B∞w , which is briefly written as H∞v = B∞(1−r)v. Similarly,

for a normal weight v, we have the identification H0
v = B0(1−r)v (see [7, 10]).

Recall that for the Banach spaces X and Y , a linear operator T : X → Y
is bounded if it takes each bounded set in X to a bounded set in Y . The space
of all bounded operators T : X → Y is denoted by B(X,Y ) and the operator
norm of T ∈ B(X,Y ) is denoted by ‖T‖X→Y . There is a growing interest in
characterizing boundedness of the integral type operators, like V ϕg , in terms of
their inducing functions. See, for example, [8, 9] and references therein for such
results. In this paper, we investigate boundedness of the generalized Volterra
operators V ϕg on certain Banach spaces of analytic functions X mapping into
the spaces H∞v , H0

v , B∞v or B0v. The Banach spaces X that we consider are
described as follows.

Let (X, ‖ · ‖X) be a Banach space of analytic functions on D containing the
constant functions. Among several conditions described in [4, 7, 8] we consider
the following conditions:

(I) The closed unit ball of X is compact with respect to the topology of
uniform convergence on compact subsets of D.

(II) For each 0 < r < 1, the operator Tr : X → X; f 7→ fr, is well-defined
and

sup
0<r<1

‖Tr‖X→X <∞,

where fr(z) = f(rz) for all z ∈ D.

Note that Hardy spaces Hp and Bergman spaces Apα, for 1 ≤ p < ∞ and
−1 < α < ∞, satisfy the assumptions (I) and (II). The spaces H∞v and B∞v
satisfy condition (I) for any weight v. Also, for certain normal weights v, the
spaces H∞v satisfy condition (II). For more information about spaces satisfying
conditions (I) and (II) see [4, 7, 8] and references therein.
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Remark 1.1. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces of analytic functions
on D.

(i) If X satisfies condition (I), then norm convergence in X implies uniform
convergence on compact subsets of D. Consequently, norm convergence
in X implies pointwise convergence on D.

(ii) Assume that norm convergence in X implies uniform convergence on
compact subsets of D, and norm convergence in Y implies pointwise con-
vergence on D. If T : X → Y is a continuous operator with respect to
the topology of uniform convergence on compact subsets of D, then the
closed graph theorem implies that T : X → Y is a bounded operator.

2. Main Results

The set of all polynomials P are contained in many Banach spaces of ana-

lytic functions (X, ‖ · ‖X). Therefore, one may consider PX as a Banach space
contained in such spaces (X, ‖ · ‖X). In this section we investigate bounded-

ness properties of operators on PX . Besides giving some results for the general
classes of operators T , we specially give some results for the generalized Volterra
operators V ϕg .

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces of analytic functions such
that X contains P. Clearly, each bounded operator T : X → Y induces a

bounded operator T : PX → Y by reducing its domain to the subspace PX . In
the next theorem we show that the converse is also valid under some general
assumptions on the operator T and Banach spaces X and Y . Before stating
the next theorem, we recall that for the real scalars R1 and R2, the notation
R1 . R2 means R1 ≤ cR2 for some positive constant c not depending on the
variables in R1 and R2. Also, the notation R1 � R2 means R1 . R2 and
R2 . R1.

Theorem 2.1. Let X ⊆ H(D) be a Banach space containing the disc algebra
A and satisfying conditions (I) and (II). Let Y ⊆ H(D) be a Banach space
satisfying condition (I). If T : H(D) → H(D) is a continuous operator with
respect to the topology of uniform convergence on compact subsets of D, then
the following statements are equivalent:

(i) T : X → Y is bounded,

(ii) T : PX → Y is bounded.

Moreover,

‖T‖X→Y � ‖T‖PX→Y .

Proof. Clearly (i) implies (ii). Let T : H(D)→ H(D) be a continuous operator
with respect to the topology of uniform convergence on compact subsets of D.

Let T : PX → Y be a bounded operator. We next prove that the operator
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T : X → Y is well-defined and therefore, by Remark 1.1, boundedness of
T : X → Y will follow.

Let f ∈ X and choose a sequence (rn) ⊆ (0, 1) such that rn → 1. Then,

for each n ∈ N, frn ∈ A = P‖·‖∞ . Since X contains the disc algebra A and
satisfies condition (I), the closed graph theorem and Remark 1.1 imply that
the (well-defined) identity operator id : A → X is bounded. Therefore, for

each n ∈ N, we have frn ∈ P
X

and hence (Tfrn) ⊆ Y . Note that (Tfrn) is a
bounded sequence in Y , since by condition (II) on X, for each n ∈ N we have

‖Tfrn‖Y = ‖T (Trnf)‖Y
≤ ‖T‖PX→Y ‖Trn‖X→X‖f‖X
≤ ‖T‖PX→Y sup

0<r<1
‖Tr‖X→X‖f‖X .

This implies that the sequence (Tfrn) belongs to the closed ball BY (0, R),
where

R = ‖T‖PX→Y sup
0<r<1

‖Tr‖X→X‖f‖X .

Thus, since Y satisfies condition (I), there exist g ∈ BY (0, R) and a subsequence
(Tfrnk

) such that (Tfrnk
) converges to g uniformly on compact subsets of D.

On the other hand, since (frn) converges to f uniformly on compact subsets
of D, continuity of T : H(D) → H(D) implies that (Tfrn) converges to Tf
uniformly on compact subsets of D. Consequently, Tf = g ∈ Y meaning that
T : X → Y is well-defined, which is the desired result.

In order to prove the norm estimate, first note that by the definition of
operator norm, clearly we have ‖T‖PX→Y ≤ ‖T‖X→Y . On the other hand,
for each f ∈ X, by considering the above mentioned argument, we have g ∈
BY (0, R) and therefore

(2.1) ‖Tf‖Y = ‖g‖Y ≤ R = ‖T‖PX→Y sup
0<r<1

‖Tr‖X→X‖f‖X .

This implies that ‖T‖X→Y . ‖T‖PX→Y and completes the proof.

Remark 2.2. By estimate (2.1) in the proof of Theorem 2.1, it follows that if
the space X, instead of condition (II), satisfies the stronger condition

(2.2) sup
0<r<1

‖Tr‖X→X ≤ 1,

then

‖T‖X→Y = ‖T‖PX→Y .

Note that, condition (2.2) is satisfied for the spaces X = H∞ and X = H∞v .
It is also worth mentioning that Theorem 2.1 can be applied to the following
special cases:

(i) X = H∞ and PX = A.
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(ii) X = H∞v and PX = H0
v .

(iii) X = B∞v and PX = B0v.

Indeed, by applying Theorem 2.1 and Remark 2.2, we get the following corol-
lary.

Corollary 2.3. Let Y ⊆ H(D) be a Banach space satisfying condition (I) and
T : H(D) → H(D) be a continuous operator with respect to the topology of
uniform convergence on compact subsets of D. Then,

(i) T : H∞ → Y is bounded if and only if T : A→ Y is bounded. Moreover,

‖T‖H∞→Y = ‖T‖A→Y .

(ii) T : H∞v → Y is bounded if and only if T : H0
v → Y is bounded. Moreover,

‖T‖H∞v →Y = ‖T‖H0
v→Y .

(iii) T : B∞v → Y is bounded if and only if T : B0v → Y is bounded. Moreover,

‖T‖B∞v →Y = ‖T‖B0
v→Y .

In order to apply Theorem 2.1 and Remark 2.2 for the generalized Volterra
operators V ϕg : H(D)→ H(D), we next show that such operators are continuous
with respect to the topology of uniform convergence on compact subsets of D.

Example 2.4. Let g ∈ H(D) and ϕ be an analytic selfmap of D. Then, the
generalized Volterra operator V ϕg : H(D) → H(D) is continuous with respect
to the topology of uniform convergence on compact subsets of D. In order to
see this, let (fn) be a sequence in H(D) converging to 0 uniformly on compact
subsets of D. Let K be an arbitrary compact subset of D. Then, one can find
0 < rK < 1 such that

ϕ(K) ⊆ D(0, rK) = {z ∈ D : |z| ≤ rK} ,

and consequently

sup
z∈K
|V ϕg (fn)(z)| = sup

z∈K

∣∣∣∣∣
∫ ϕ(z)

0

fn(ξ)g′(ξ)dξ

∣∣∣∣∣
≤ rK sup

ω∈D(0,rK)

|fn(ω)| sup
ω∈D(0,rK)

|g′(ω)|.

Therefore, since (fn) converges to 0 uniformly on D(0, rK), we get the desired
result, that is

sup
z∈K
|V ϕg (fn)(z)| −→

n→∞
0.

As an immediate consequence of Example 2.4, we get the following corol-
laries for the generalized Volterra operators.
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Corollary 2.5. Let g ∈ H(D) and ϕ be an analytic selfmap of D. Let X ⊆
H(D) be a Banach space containing the disc algebra A and satisfying conditions
(I) and (II). Let Y ⊆ H(D) be a Banach space satisfying condition (I). Then,
the following statements are equivalent:

(i) V ϕg : X → Y is bounded,

(ii) V ϕg : PX → Y is bounded.

Moreover,
‖V ϕg ‖X→Y � ‖V ϕg ‖PX→Y .

Corollary 2.6. Let g ∈ H(D) and ϕ be an analytic selfmap of D. Let Y ⊆
H(D) be a Banach space satisfying condition (I). Then,

(i) V ϕg : H∞ → Y is bounded if and only if V ϕg : A → Y is bounded.
Moreover,

‖V ϕg ‖H∞→Y = ‖V ϕg ‖A→Y .

(ii) V ϕg : H∞v → Y is bounded if and only if V ϕg : H0
v → Y is bounded.

Moreover,
‖V ϕg ‖H∞v →Y = ‖V ϕg ‖H0

v→Y .

(iii) V ϕg : B∞v → Y is bounded if and only if V ϕg : B0v → Y is bounded.
Moreover,

‖V ϕg ‖B∞v →Y = ‖V ϕg ‖B0
v→Y .

We next give our results for the boundedness of generalized Volterra oper-

ators V ϕg on the polynomially generated spaces PX .

Lemma 2.7. Let g ∈ H(D) and ϕ be an analytic selfmap of D. If v is a normal
weight and g ◦ ϕ ∈ H0

v , then V
ϕ
g (fr) ∈ H0

v for each f ∈ H(D) and 0 < r < 1.

Proof. Since v is a normal weight, we have H0
v = B0(1−r)v (see [7, 10]). Thus, it

suffices to prove that V ϕg (fr) ∈ B0(1−r)v or, equivalently, (V ϕg (fr))
′ ∈ H0

(1−r)v.

By the assumption we have g ◦ ϕ ∈ H0
v = B0(1−r)v or, equivalently, (g ◦ ϕ)′ ∈

H0
(1−r)v. On the other hand, for each f ∈ H(D) and 0 < r < 1, we have

fr ◦ ϕ ∈ H∞. Consequently,

(V ϕg (fr))
′ = (fr ◦ ϕ)(g ◦ ϕ)′ ∈ H0

(1−r)v,

which is the desired result.

Theorem 2.8. Let g ∈ H(D) and ϕ be an analytic selfmap of D. Let X ⊆
H(D) be a Banach space satisfying condition (I) and containing the polynomials
P. If v is a normal weight, then the following statements are equivalent:

(i) V ϕg : PX → H∞v is bounded and g ◦ ϕ ∈ H0
v ,

(ii) V ϕg : PX → H0
v is bounded.
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Proof. First note that (ii) implies (i) since X contains the constant function 1
and also g ◦ϕ = V ϕg (1)+g(0). In order to show that (i) implies (ii), by Remark

1.1 and Example 2.4, it is enough to show that V ϕg : PX → H0
v is well-defined.

Let f ∈ PX and (pn) be a sequence of polynomials such that pn → f in X.

Then, boundedness of V ϕg : PX → H∞v implies that V ϕg (pn)→ V ϕg (f) in H∞v .
Therefore, to prove that V ϕg (f) ∈ H0

v it is enough to show that V ϕg (p) ∈ H0
v

for each polynomial p ∈ P.

Choose an arbitrarily p ∈ P and define the polynomial h(z) = p(2z) for all
z ∈ D. Then, h ∈ P and p = h 1

2
. Hence, by Lemma 2.7, we have

V ϕg (p) = V ϕg (h 1
2
) ∈ H0

v ,

which is the desired result.

By applying Theorem 2.8 for the special case of ϕ(z) = z, we get the related
result for the classic Volterra operator Vg. Indeed, using the next lemma, we
prove that the result of Theorem 2.8 for the special case of Volterra operator
Vg, is valid even if we remove the normality assumption of the weight v.

Lemma 2.9. Let g ∈ H(D) and v be an arbitrary weight. If g ∈ H0
v then

Vg(fr) ∈ H0
v for each f ∈ H(D) and 0 < r < 1.

Proof. By adding and subtracting the term f ′r(ω)g(ω) and defining h(z) =∫ z
0
f ′r(ω)g(ω)dω we get

Vg(fr)(z) =

∫ z

0

fr(ω)g′(ω)dω

=

∫ z

0

(fr(ω)g(ω))′dω −
∫ z

0

f ′r(ω)g(ω)dω

= fr(z)g(z)− fr(0)g(0)− h(z).(2.3)

Note that since fr ∈ H∞ and g ∈ H0
v , we have frg ∈ H0

v . Therefore, in order
to prove that Vg(fr) ∈ H0

v , by (2.3), it is enough to prove that h ∈ H0
v .

Let ε > 0. Since g ∈ H0
v , one can choose 0 < r1 < 1 such that

(2.4) v(z)|g(z)| < ε

2‖f ′‖rD
,

for every z ∈ D with r1 < |z| < 1. Moreover, since lim|z|→1− v(z) = 0, there
exists r1 < r2 < 1 such that

(2.5) v(z) <
ε

2‖f ′‖rD‖g‖√r1D
,
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whenever r2 < |z| < 1. Now, if
√
r2 < |z| < 1 then by (2.4) and (2.5) we have

v(z)|h(z)| = v(z)

∣∣∣∣∫ z

0

f ′r(ω)g(ω)dω

∣∣∣∣ = v(z)

∣∣∣∣∫ 1

0

rf ′(rtz)g(tz)zdt

∣∣∣∣
≤ v(z)‖f ′‖rD

∫ 1

0

|g(tz)|dt

= v(z)‖f ′‖rD
∫ √r1
0

|g(tz)|dt+ v(z)‖f ′‖rD
∫ 1

√
r1

|g(tz)|dt

≤ v(z)‖f ′‖rD‖g‖√r1D + ‖f ′‖rD
∫ 1

√
r1

v(tz)|g(tz)|dt < ε,

which completes the proof.

Theorem 2.10. Let g ∈ H(D) and X ⊆ H(D) be a Banach space satisfying
condition (I) and containing the polynomials P. Then, for each weight v the
following statements are equivalent:

(i) Vg : PX → H∞v is bounded and g ∈ H0
v ,

(ii) Vg : PX → H0
v is bounded.

Proof. Clearly, (ii) implies (i) since X contains the constant function 1 and
g = Vg(1) + g(0). By applying Lemma 2.9 and using a similar approach as in
the proof of Theorem 2.8, one can also see that (i) implies (ii).

We finally prove the result of Theorem 2.8 in the case of Bloch type spaces.

Lemma 2.11. Let g ∈ H(D) and ϕ be an analytic selfmap of D. If v is an
arbitrary weight and g ◦ ϕ ∈ B0

v, then V ϕg (fr) ∈ B0
v for each f ∈ H(D) and

0 < r < 1.

Proof. Note that

v(z)|(V ϕg (fr))
′(z)| = v(z)|fr(ϕ(z))g′(ϕ(z))ϕ′(z)|

≤ ‖f‖rD v(z)|(g ◦ ϕ)′(z)|,

for every z ∈ D. Therefore, the fact that fr ∈ H∞ and g ◦ ϕ ∈ B0v implies
V ϕg (fr) ∈ B0v.

Theorem 2.12. Let g ∈ H(D) and ϕ be an analytic selfmap of D. Let X ⊆
H(D) be a Banach space satisfying condition (I) and containing the polynomials
P. Then, for each weight v the following statements are equivalent:

(i) V ϕg : PX → B∞v is bounded and g ◦ ϕ ∈ B0v,

(ii) V ϕg : PX → B0v is bounded.

Proof. The proof follows by applying a similar argument as in the proof of
Theorem 2.8 and using Remark 1.1, Example 2.4 and Lemma 2.11.



130 Nasrin Eghbali, Maryam M. Pirasteh, Amir H. Sanatpour

References

[1] Aleman, A., and Siskakis, A. Integration operators on Bergman spaces.
Indiana Univ. Math. J. 46 (1997), 337–356.

[2] Basallote, M., Contreras, M. D., Hernandez-Mancera, C., Martin,
M. J., and Paul, P. J. Volterra operators and semigroups in weighted Banach
spaces of analytic functions. Collect. Math. 65 (2014), 233–249.

[3] Bierstedt, K. D., Bonet, J., and Taskinen, J. Associated weights and
spaces of holomorphic functions. Studia Math. 127 (1998), 137–168.

[4] Colonna, F., and Tjani, M. Operator norms and essential norms of weighted
composition operators between Banach spaces of analytic functions. J. Math.
Anal. Appl. 434 (2016), 93–124.

[5] Cowen, C., and MacCluer, B. Composition operators on spaces of analytic
functions. CRC Press, Boca Raton, 1995.

[6] Domanski, P., and Lindstrom, M. Sets of interpolation and sampling for
weighted Banach spaces of holomorphic functions. Ann. Polon. Math. 89 (2002),
233–264.

[7] Eklund, T., Galindo, P., Lindstrom, M., and Nieminen, I. Norm, essential
norm and weak compactness of weighted composition operators between dual
Banach spaces of analytic functions. J. Math. Anal. Appl. 451 (2017), 1–13.

[8] Eklund, T., Lindstrom, M., Pirasteh, M. M., Sanatpour, A. H., and
Wikman, N. Generalized Volterra operators mapping between Banach spaces
of analytic functions. Monatshefte für Mathematik 189 (2019), 243–261.
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