Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $N$ of $M$ is said to be extit{2-irreducible submodule} if whenever $N=H_1\cap H_2\cap H_3$ for submodules $H_1$, $H_2$ and $H_3$ of $M$, then either $N=H_1 \cap H_2$ or $N=H_2\cap H_3$ or $N=H_1\cap H_3$. In this paper, we investigated the concept of 2-irreducible submodules of $M$ and obtain some properties of this class of modules.