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DEGENERATED TOPOLOGICAL SPACES

Bojan Nikolić1

Abstract. By using the compositions of interior and closure opera-
tors on a topological space we can get at most seven different operators.
Topological spaces in which the number of different operators obtained
in this way is strictly smaller than seven are called degenerated spaces.
This paper provides insight about properties of the degenerated spaces,
and introduces some new characterizations of them.
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1. Introduction

In [5] Kuratowski proved the following result.

Theorem 1.1. (Closure-Complement Theorem) If (X,T) is a topological space
and A ⊆ X, then at most 14 sets can be obtained from A by taking closures and
complements. Furthermore, there is a space in which this bound is attained.

In this article we will use an equivalent formulation of the Kuratowski
closure-complement theorem, i.e., the statement that at most 7 distinct sets
can be obtained from a subset of a topological space by applying closures and
interiors. This formulation implies that, in any topological space X, at most 7
distinct operators can be derived by using of the compositions of interiors and
closures: Id, Int, Cl, Cl(Int), Int(Cl), Int(Cl(Int)) and Cl(Int(Cl)), where Id is
the identity operator. The set OX , which consists of all these operators, can
be ordered by inclusion (Figure 1).

If some of the given operators are coinciding, then the diagram shown in the
previous figure is considered to be a degenerated one. The topological space
for which this is the case is called degenerated space.

The goal of this article is to provide a survey about degenerated spaces with
an accent on their structural characterizations. Most of these characterizations
are well known and can be found in [2] and [7]. In this paper, some new
characterizations of P -spaces, connected ED-spaces, and finite degenerated
spaces are provided. Moreover, for all finite non-homeomorphic spaces with
two, three and four elements, their corresponding k-number and K-number are
calculated.
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Figure 1: Partial order in OX

2. Preliminaries

Let us introduce the notation that will be used in this paper. By (X,T) we
denote a topological space on which no separation axiom is assumed. If (X,T)
is a topological space and A ⊆ X, then the interior and the closure of A in the
space X will be denoted by Int(A) and Cl(A), respectively. Also, the subspace
topology on A will be denoted by TA, and for B ⊆ A, the interior and the
closure of B in the subspace (A,TA) will be denoted by IntA(B) and ClA(B),
respectively. A subset D of the space X is dense if Cl(D) = X. A subset C of
the space X is co-dense if the set X \C is dense, or equivalently, if Int(C) = ∅.
A subset N of the space X is nowhere dense if Int(Cl(N)) = ∅. A point x ∈ X
is isolated if Int({x}) is an open set.

Basic properties of interior and closure operators can be found in most
textbooks on general topology. The following proposition provides a list of the
properties that will be considered in further discussion.

Proposition 2.1. For every topological space (X,T) and A,B ⊆ X the follow-
ing statements hold

1. Int(A) ⊆ A ⊆ Cl(A),
2. Int(A ∩B) = Int(A) ∩ Int(B), Cl(A ∪B) = Cl(A) ∪ Cl(B),
3. Int(Int(A)) = Int(A), Cl(Cl(A)) = Cl(A),
4. If A ⊆ B, then Int(A) ⊆ Int(B) and Cl(A) ⊆ Cl(B),
5. Int(A) ⊆ Int(Cl(Int(A))), Cl(A) ⊇ Cl(Int(Cl(A))),
6. Cl(Int(Cl(Int(A)))) = Cl(Int(A)), Int(Cl(Int(Cl(A)))) = Int(Cl(A)),
7. Int(A) = X \ Cl(X \A), Cl(A) = X \ Int(X \A),
8. Int(A \B) = IntA \ Cl(B),
9. Int(A ∪B) ⊆ Int(A) ∪ Cl(B), Cl(A ∩B) ⊇ Int(A) ∩ Cl(B),
10. If A is dense and B is not co-dense, then A ∩ Int(B) 6= ∅,
11. If A is dense and B is open, then Cl(A ∩B) = Cl(B),
12. If B ⊆ A, then IntA(B) = A \ Cl(A \B) and ClA(B) = A ∩ Cl(B).

Definition 2.2. Let (X,T) be a topological space and A ⊆ X.
(i) k(A) denotes the number of distinct sets obtainable from A by taking

interiors and closures.
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(ii) k((X,T)) denotes max{k(A) : A ⊆ X}.
(iii) K((X,T)) denotes the number of distinct operators in OX .

Clearly, k((X,T)) ≤ K((X,T)) ≤ 7 holds for every topological space (X,T).

Example 2.3. If T is the usual topology on the set R of real numbers, and
A = {−1}∪ (0, 1)∪ (1, 2)∪ (Q∩ (2, 3)), where Q is the set of rational numbers,
then it is easy to show that

Int(A) = (0, 1) ∪ (1, 2),

Cl(A) = {−1} ∪ [0, 3],

Cl(Int(A)) = [0, 2],

Int(Cl(A)) = (0, 3),

Int(Cl(Int(A))) = (0, 2),

Cl(Int(Cl(A))) = [0, 3].

Thus, k(A) = k((R,T)) = K((R,T)) = 7.

If (X,T) is a topological space with K((X,T)) < 7, then the diagram in
Figure 1 is degenerated one. This gives motivation to the following definition.

Definition 2.4. Let (X,T) be a topological space.
(i) (X,T) is a degenerated space if K((X,T)) < 7.
(ii) (X,T) is a non-degenerated or a K-space if K((X,T)) = 7.
(iii) (X,T) is a full space if k((X,T)) = K((X,T)).

3. Types of degenerated spaces

In this section we describe all possible types of degenerated spaces.

Definition 3.1. (i) A topological space is resolvable if it contains two disjoint
dense subsets.

(ii) A space is irresolvable if it is not resolvable.
(iii) A space is open irresolvable, or OI-space, if any open subspace of this

space is irresolvable.

Several characterizations of the OI-space are given in the following theorem.

Theorem 3.2. ([2],[7]) For every topological space (X,T), the following con-
ditions are equivalent

(1) (X,T) is an OI-space.
(2) Interior of every dense subset of X is dense.
(3) Every co-dense subset of X is nowhere dense.
(4) Every subset of X is a union of an open set and a nowhere dense set.
(5) For every A ⊆ X, it holds that

Cl(Int(Cl(A))) = Cl(Int(A)), Int(Cl(Int(A))) = Int(Cl(A)).
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Int
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Cl(Int(Cl))=Cl(Int)

Figure 2: Degeneration in an OI-space

Corollary 3.3. If (X,T) is an OI-space, then (X,T) is a degenerated space
and K(X,T) 6 5 (Figure 2).

A subspace of an OI-space does not need to be an OI-space, and the same
applies for the products of OI-spaces. These facts are illustrated by the fol-
lowing example.

Example 3.4. (i) Let T be the cofinite topology on the set N of natural
numbers. In the topological space (N,T) every infinite subset is dense, and
since {1, 3, 5, . . . } and {2, 4, 6, . . . } are disjoint dense subsets, this topological
space is resolvable.

Let Y be an infinite set disjoint with N and U be a non-principal ultrafilter
on Y . The set X := N ∪ Y can be equipped with the topology T1 = {U ∪ V :
U ∈ T, V ∈ U ∪ {∅}}. Let D ⊆ X be a dense set. If for some V ∈ U it holds
that D ∩ V = ∅, then D /∈ U . Since U is an ultrafilter, this implies Y \D ∈ U ,
i.e. Y \ D ∈ T1, which is impossible because D is a dense set. Hence, for all
V ∈ U it holds that D ∩ V 6= ∅, and, since U is an ultrafilter, this implies that
D ∈ U . Thus, Int(D) = D is also a dense set, and space (X,T1) is an OI-space.
It is easy to show that the subspace topology on N is equal to T, which implies
that the subspace N of the space (X,T1) is not an OI-space.

(ii) Let U be a non-principal ultrafilter on the set N of natural numbers.
Family T = U ∪ {∅} is the topology. Every dense set in the space (N,T) is
also open, implying that this space is an OI-space. Let N2 = N × N have the
product topology. We will show that D = {(n, n) : n ∈ N} is a dense and
co-dense set in N2, which makes this space resolvable. To see that D is a dense
set, note that every nonempty open set W ⊆ N2 contains a nonempty basic
open set U × V , where U, V ∈ T. Since U and V are nonempty sets, we have
U, V ∈ U . So, U ∩ V ∈ U , which implies that U and V are not disjoint. If
n ∈ U ∩ V , then (n, n) ∈ (U × V ) ∩D, which implies W ∩D 6= ∅, concluding
that D is a dense set. Also, since U is an ultrafilter, every set in U is infinite,
which implies that if U, V ∈ U and m ∈ U , there exists n ∈ V , with m 6= n.
Hence (m,n) ∈ (U × V ) \D, implying (U × V ) ∩ (N2 \D) 6= ∅. Thus, N2 \D
is also a dense set.

Definition 3.5. A topological space is extremally disconnected, or ED-space,
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if the closure of every open set in this space is an open set.

Remark 3.6. Some topologists require that an extremally disconnected space
satisfies the additional condition of being a Hausdorff space. In this paper
this condition will not be included. We note that this approach can lead to a
situation that an extremally disconnected space can be a connected space.

Several characterizations of the ED-space are given by the following theo-
rem.

Theorem 3.7. ([2],[3]) For any topological space (X,T) the following condi-
tions are equivalent

(1) (X,T) is an ED-space.

(2) Every pair of disjoint open subsets of X have disjoint closures.

(3) For every A ⊆ X it holds that

Cl(Int(Cl(A))) = Int(Cl(A)), Int(Cl(Int(A))) = Cl(Int(A)).

Corollary 3.8. If (X,T) is an ED-space, then (X,T) is a degenerated space
and K(X,T) 6 5 (Figure 3).

Int

Int(Cl(Int))=Cl(Int)

Cl

Id

Cl(Int(Cl))=Int(Cl)

Figure 3: Degeneration in an ED-space

The next characterization of the connected ED-space is a novel result.

Theorem 3.9. If (X,T) is an ED-space, then the following conditions are
equivalent

(1) (X,T) is a connected space.

(2) Every nonempty open set in X is dense.

Proof. (1) ⇒ (2). Let U ⊆ X be a nonempty open set. If U is not a dense
set, then Cl(U) is a non-trivial clopen set in X, which is a contradiction by the
connectedness of the space (X,T) .

(2) ⇒ (1). Let U ⊆ X be an open set. If U = ∅, then Cl(U) = ∅, and if
U is nonempty, then Cl(U) = X. In both cases Cl(U) is an open set, hence
(X,T) is an ED-space.
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It is relatively easy to show that open or dense subspaces of an ED-space
are also ED-spaces. However, closed subspace of an ED-space does not need
to be an ED-space, and same applies for products of ED-spaces. These facts
are illustrated by the following example.

Example 3.10. The discrete space on the set N of natural numbers is obvi-
ously an ED-space. The Čech-Stone compactification βN is also an ED-space.
However, in the subspace βN\N, the closure of the union of a strictly increasing
sequence of clopen sets is never open. Thus, the closed subspace βN \N of the
space βN is not an ED-space. Similarly, the space βN × βN equipped with
the product topology is not an ED-space, because the closure of the open set
D = {(x, x) : x ∈ βN} is not open.

Definition 3.11. A topological space is Q-space, if this space is an OI-space
which is also an ED-space.

Theorem 3.12. [2] For every topological space (X,T) the following conditions
are equivalent

(1) (X,T) is a Q-space.
(2) For every A ⊆ X, it holds that

Cl(Int(Cl(A))) = Int(Cl(A)) = Cl(Int(A)) = Int(Cl(Int(A))).

Corollary 3.13. If (X,T) is a Q-space, then (X,T) is a degenerated space and
K(X,T) 6 4 (Figure 4).

Int

Int(Cl(Int))=Cl(Int)=Int(Cl)=Cl(Int(Cl))

Cl

Id

Figure 4: Degeneration in a Q-space

Definition 3.14. A topological space is a partition space, or P -space, if the
topology of this space is induced by the base of topology whose elements are
pairwise disjoint sets.

In the following theorem, several characterizations of P -spaces are given.
We remark that third characterization is a novel result.

Theorem 3.15. ([2],[8]) For any topological space (X,T) the following condi-
tions are equivalent
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(1) (X,T) is a P -space.
(2) Every open set in X is closed.
(3) The only nowhere dense set in X is the empty set.
(4) For every A ⊆ X, it holds

Cl(Int(Cl(A))) = Int(Cl(A)) = Cl(A), Int(Cl(Int(A))) = Cl(Int(A)) = Int(A).

Proof. (1)⇒ (2). Let U ⊆ X be an open set, and let B be the family of pairwise
disjoint sets which form the basis for the topology T. Since U is an open set,

there is a family B′ ⊆ B such that U =
⋃

V ∈B′

V . This implies X \U =
⋃

V ∈B\B′

V ,

leading to the conclusion that X \U is an open set, i.e. that U is a closed set.
(2)⇒ (1). Consider the family

F = {A ⊆ T \ {∅} : all distinct sets in A are pairwise disjoint }.

This family is nonempty, and every chain in a partially ordered set (F ,⊆) has
an upper bound in F . By virtue of Zorn’s lemma, there is a maximal element
B in the family F . Since the family B ∪{X \

⋃
B} is not maximal in (F ,⊆), it

follows that X =
⋃
B. Let U ⊆ X be a nontrivial open set. Then U is a clopen

set, and the family B′ = {B ∈ B : B ∩U 6= ∅} is nonempty. Clearly, U ⊆
⋃
B′.

Assume that U (
⋃
B′ holds, and let V ∈ B′ be a set such that (X \U)∩V 6= ∅.

This means that {U ∩ V, (X \ U) ∩ V } ∈ F , so, using the maximality of B, we
can find sets W1,W2 ∈ B such that U ∩ V = W1 and (X \ U) ∩ V = W2. But,
since V,W1,W2 ∈ B, this leads to W1 = V = W2, which is a contradiction.
Thus, U =

⋃
B′, proving that B is a base for the topology T, and subsequently,

that (X,T) is a P -space.
(2) ⇒ (3). Let N ⊆ X be a nowhere dense set. Since X \ Cl(N) is open,

then, by assumption, this set is also closed, whence Cl(X \Cl(N)) = X \Cl(N).
Thus, N ⊆ Cl(N) = Int(Cl(N)) = ∅, which implies N = ∅.

(3) ⇒ (4). Let A ⊆ X. The set N := Cl(A) \ Int(Cl(A)) is closed, and
Int(N) = Int(Cl(A) \ Int(Cl(A))) = Int(Cl(A)) \ Cl(Int(Cl(A))) = ∅, which
implies that N is a nowhere dense set. Thus, Cl(A) = Int(Cl(A)), and also
Cl(A) = Cl(Int(Cl(A))). In a similar way we can prove that Int(Cl(Int(A))) =
Cl(Int(A)) = Int(A).

(4) ⇒ (2). Let U ⊆ X be an open set. Then Cl(U) = Cl(Int(U)) =
Int(U) = U , so U is also a closed set.

Corollary 3.16. If (X,T) is a P -space, then (X,T) is a degenerated space and
K(X,T) 6 3 (Figure 5).

Theorem 3.17. [2] Every P -space is an ED-space.

Theorem 3.18. Let (X,TX) and (Y,TY ) be P -spaces.
1. Every subspace of X is a P -space.
2. The topological product X × Y is a P -space.
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Int=Int(Cl(Int))=Cl(Int)

Id

Cl=Cl(Int(Cl))=Int(Cl)

Figure 5: Degeneration in a P -space

Proof. 1. Let A ⊆ X be a nonempty set. If B is a partition of X and a base
for the topology T as well, then BA := {B ∩A : B ∈ B} is a partition of A and
also a base for the topology TA.

2. Let BX be a partition of X and also a base for the topology TX . Similarly,
let BY be a partition of Y and also a base for the topology TY . Then the family
BX ×BY is a partition of X×Y , and also a base for the topology TX ×TY .

Every discrete space (X,T) is a degenerated space with K(X,T) = 1, be-
cause for any A ⊆ X, it holds that Int(A) = A = Cl(A). Moreover, it is not
difficult to check that every discrete space is also a P -space, Q-space, ED-space
and OI-space.

Relations between considered types of degenerated spaces are illustrated
in Figure 6. Their corresponding K-numbers are determined by the following
proposition, which can be easily proven.

OI-spaces ED-spaces

Q
-s

p
a
ce

s

P -spaces

discrete
spaces

Figure 6: Relations between different types of degenerated spaces

Proposition 3.19. For every topological space (X,T) the following statements
hold

1. If (X,T) is a non-discrete P -space, then K((X,T)) = 3.
2. If (X,T) is a non-discrete Q-space, then K((X,T)) = 4.
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3. If (X,T) is an OI-space, but not ED-space, or is an ED-space, but not
OI-space, then K((X,T)) = 5.

We conclude this section by proving that no other type of degenerated
spaces is possible.

Theorem 3.20. [2] If (X,T) is a degenerated space, then (X,T) is an OI-space
or an ED-space or a Q-space or a P -space.

Proof. Since K((X,T)) < 7, some of the operators in the set OX coincide.
All of 21 possibilities are given in Table 1. For the most of these cases it is
easy to prove the claim, but for some of them the additional work is required.
E.g., if (X,T) is a space in which Int=Int(Cl(Int)) holds, then, by symmetry,
Cl=Cl(Int(Cl)) also holds. Furthermore, in this space, for any set A ⊆ X, the
set B := Cl(A) \ Int(Cl(A)) is nowhere dense, which implies B ⊆ Cl(B) =
Cl(Int(Cl(B))) = Cl(∅) = ∅. Therefore, Cl(A) = Int(Cl(A)) =Cl(Int(Cl(A))),
and Int(A)=Cl(Int(A))=Int(Cl(Int(A))) similarly. Since these equalities hold
for every A ⊆ X, by Theorem 3.15, (X,T) is a P -space.

Table 1: The list of possibilities for a degenerated space (X,T)

For degenerated space (X,T) holds Type of the space
Int=Id or Cl=Id discrete space

Int=Int(Cl(Int)) or Cl=Cl(Int(Cl)) P -space
Int=Int(Cl) or Cl=Cl(Int) discrete space
Int=Cl(Int) or Cl=Int(Cl) P -space

Int=Cl(Int(Cl)) or Cl=Int(Cl(Int)) discrete space
Int=Cl discrete space

Int(Cl(Int))=Cl(Int) or Cl(Int(Cl))=Int(Cl) ED-space
Int(Cl(Int))=Int(Cl) or Cl(Int(Cl))=Cl(Int) OI-space

Int(Cl(Int))=Cl(Int(Cl)) Q-space
Int(Cl(Int))=Id or Cl(Int(Cl))=Id discrete space

Int(Cl)=Cl(Int) Q-space
Int(Cl)=Id or Cl(Int)=Id discrete space

Corollary 3.21. (X,T) is a degenerated space if and only if (X,T) is an OI-
space or an ED-space.

4. Classification of spaces by their k-number

We start this section with observation that a topological space (X,T) is
discrete if and only if k((X,T)) = 1. Therefore, every discrete space is a full
space. The same characterization holds for P -spaces.

Theorem 4.1. Every P -space is a full space.
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Proof. Let (X,T) be a non-discrete P -space, and let B be a partition of X,
and a base for the topology T as well. The space (X,T) is non-discrete, so it
must contain a non-isolated point x ∈ X. Then Int({x}) = Cl(Int({x})) =
Int(Cl(Int({x}))) = ∅ and Cl({x}) = Int(Cl({x})) = Cl(Int(Cl({x}))) = B,
where B ∈ B is the set that contains x. Clearly, ∅ 6= B 6= {x}, whence
k({x}) = 3. Thus, k((X,T)) = K((X,T)) = 3, so (X,T) is a full space.

Definition 4.2. A topological space is door space if every subset of this space
is either open or closed.

Theorem 4.3. [1] Every door space is an OI-space.

Theorem 4.4. [6] If (X,T) is a door space, then exactly one of the following
conditions holds

1. (X,T) is a discrete space.
2. (X,T) has exactly one non-isolated point.
3. There is a set B ⊆ X, whose complement X \ B has cardinality at least

two, and there is an ultrafilter U on X such that T = U ∪ {C ⊆ X : C ⊆ B}.

Theorem 4.5. [2] k((X,T)) = 2 if and only if (X,T) is a non-discrete door
space.

Theorem 4.6. [2] If (X,T) is a Q-space, then k((X,T)) = 3 if and only if
(X,T) is not a door space and every neutral set has clopen interior or closure.

Theorem 4.7. [2] Let (X,T) be a space with two disjoint open sets U, V each
containing nowhere dense singletons. Then k((X,T)) > 4.

5. Finite degenerated spaces

For finite OI-spaces we have the following simple characterization.

Theorem 5.1. [2] Let X be a finite set. (X,T) is an OI-space if and only if
every nonempty open set in this space contains an isolated point.

Proof. (⇒) If U = {x}, then x is an isolated point of U . Suppose U =
{x1, . . . , xn} ⊆ X, with n > 2, is an open set in the OI-space (X,T), and that
every point of U is non-isolated. Since (X,T) is an OI-space, this implies that
every singleton in U is a nowhere dense set. From Cl(U) = Cl({x1, . . . , xn−1})∪
Cl({xn}), it follows that Int(Cl(U)) ⊆ Cl({x1, . . . , xn−1}) ∪ Int(Cl({xn})) =
Cl({x1, . . . , xn−1}). Continuing with this process, we would eventually get
Int(Cl(U)) ⊆ Int(Cl({x1})) = ∅. But, this would lead to U = Int(U) ⊆
Int(Cl(U)) = ∅, which is a contradiction.

(⇐) Let the space (X,T) satisfy the given condition, and let D ⊆ X be a
dense set. For every nonempty open set U ⊆ X there exists an isolated point
x ∈ U and, since {x} is an open set, it follows that D ∩ {x} 6= ∅, which means
x ∈ D. Therefore, x ∈ Int(D), whence Int(D) ∩ U 6= ∅, so Int(D) is a dense
set.
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Theorem 5.2. [4] Every finite nonempty open set in a T0-space contains an
isolated point.

Corollary 5.3. Every finite T0-space is an OI-space.

It is well known fact that every finite T1-space is discrete. From the pre-
vious corollary we conclude that every finite T0-space is also a degenerated
space. In fact, the majority of finite topological spaces are degenerated, which
is illustrated by the following example.

Example 5.4. On the set X = {a} there is only one topology T1 = {∅, {a}},
and the space (X,T1) is discrete. On the set X = {a, b} there are 4 topologies
and 3 non-homeomorphic topologies. All of these spaces are degenerated (Table
2).

Table 2: Non homeomorphic topologies on the set X = {a, b}

Topology Type of the space k(X) K(X)
T1 = {∅, X} P -space 3 3
T2 = {∅, {a}, X} Q-space 2 4
T3 = P (X) discrete space 1 1

On the set X = {a, b, c} there are 29 topologies and 9 non-homeomorphic
topologies. All of these spaces are degenerated (Table 3).

Table 3: Non homeomorphic topologies on the set X = {a, b, c}

Topology Type of the space k(X) K(X)
T1 = {∅, X} P -space 3 3
T2 = {∅, {c}, X} Q-space 3 4
T3 = {∅, {a, b}, X} ED-space 3 5
T4 = {∅, {c}, {a, b}, X} P -space 3 3
T5 = {∅, {c}, {b, c}, X} Q-space 3 4
T6 = {∅, {c}, {a, c}, {b, c}, X} Q-space 2 4
T7 = {∅, {a}, {b}, {a, b}, X} OI-space 2 5
T8 = {∅, {b}, {c}, {a, b}, {b, c}, X} Q-space 2 4
T9 = P (X) discrete space 1 1

On the set X = {a, b, c, d} there are 355 topologies and 33 non-homeomo-
rphic topologies. The only non-degenerated space is (X,T14). (Table 4).

Let us notice that all topological spaces from the previous example are either
degenerated or non-full. In [4] it is shown that every finite, non-degenerated,
full space must have at least 7 elements. In this paper an example of the full
K-space (X,T) is given, where X = {a, b, c, d, e, f, g} and T is the topology
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Table 4: Non homeomorphic topologies on the set X = {a, b, c, d}

Topology Type of the space k(X) K(X)
T1 = {∅, X} P -space 3 3
T2 = {∅, {a, b, c}, X} ED-space 3 5
T3 = {∅, {a}, X} Q-space 3 4
T4 = {∅, {a}, {a, b, c}, X} Q-space 3 4
T5 = {∅, {a, b}, X} ED-space 3 5
T6 = {∅, {a, b}, {a, b, c}, X} ED-space 3 5
T7 = {∅, {a}, {a, b}, X} Q-space 3 4
T8 = {∅, {a}, {b}, {a, b}, X} OI-space 3 5
T9 = {∅, {a, b, c}, {d}, X} P -space 3 3
T10 = {∅, {a}, {a, b, c}, {a, d}, X} Q-space 3 4
T11 = {∅, {a}, {a, b, c}, {d}, {a, d}, X} Q-space 3 4
T12 = {∅, {a}, {b, c}, {a, b, c}, {a, d}, X} ED-space 4 5
T13 = {∅, {a, b}, {a, b, c}, {a, b, d}, X} ED-space 3 5
T14 = {∅, {a, b}, {c}, {a, b, c}, X} K-space 4 7
T15 = {∅, {a, b}, {c}, {a, b, c}, {a, b, d}, X} ED-space 3 5
T16 = {∅, {a, b}, {c}, {a, b, c}, {d}, {a, b, d}, {c, d}, X} P -space 3 3
T17 = {∅, {b, c}, {a, d}, {a, b, c, d}} P -space 3 3
T18 = {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, X} Q-space 3 4
T19 = {∅, {a}, {a, b}, {a, c}, {a, b, c}, X} Q-space 3 4
T20 = {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, X} OI-space 4 5
T21 = {∅, {a}, {a, b}, {a, b, c}, X} Q-space 3 4
T22 = {∅, {a}, {b}, {a, b}, {a, b, c}, X} OI-space 3 5
T23 = {∅, {a}, {a, b}, {c}, {a, c}, {a, b, c}, {a, b, d}, X} Q-space 3 4
T24 = {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, X} Q-space 3 4
T25 = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X} OI-space 3 5
T26 = {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, X} OI-space 3 5
T27 = {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, X} Q-space 4 4
T28 = {∅, {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X} Q-space 2 4
T29 = {∅, {a}, {b}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X} Q-space 2 4
T30 = {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, X} OI-space 2 5
T31 = {∅, {a}, {b}, {a, b}, {c}, {a, c}, {a, d}, {a, b, c}, {b, c}, {a, b, d}, {a, c, d}, X} Q-space 2 4
T32 = {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, X} OI-space 2 5
T33 = P (X) discrete space 1 1

generated by the base B = {{a}, {g}, {a, b}, {f, g}, {c, e}, {a, b, c, d, e, f, g}}. It
is easy to check that for the set A = {a, c, f} it holds that

Int(A) = {a},
Cl(A) = {a, b, c, d, e, f},
Cl(Int(A)) = {a, b, d},
Int(Cl(A)) = {a, b, c, e},
Int(Cl(Int(A))) = {a, b},
Cl(Int(Cl(A))) = {a, b, c, d, e}.
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