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Abstract. In this paper, we analyze disjoint distributionally chaotic
abstract non-degenerate partial differential equations in Fréchet spaces,
with integer or Caputo time-fractional derivatives. We present several
illustrative examples and applications of our established results.
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1. Introduction and preliminaries

Linear topological dynamics of continuous operators in Banach and Fréchet
spaces is an extremely popular field of functional analysis. Basic information
about this subject can be obtained by consulting the monographs [1] by F.
Bayart, E. Matheron and [16] by K.-G. Grosse-Erdmann, A. Peris.

The notion of distributional chaos was introduced by B. Schweizer and J.
Smı́tal in [29] (1994) for interval maps and after that seriously reconsidered by a
great number of authors including P. Oprocha [28] (2009). For linear continuous
operators in Banach spaces, distributional chaos was firstly considered by J.
Duan et al [14] (1999). N. C. Bernardes Jr. et al [5] (2013) were the first who
systematically analyzed distributional chaos for linear continuous operators in
Fréchet spaces (cf. also the reserach study of J. A. Conejero et al [10] (2016)
for a correspoding study of linear not necessarily continuous operators). Some
specific properties of distributionally chaotic operators in Banach spaces have
been recently investigated by N. C. Bernardes Jr. et al [6] (2018).

Disjoint hypercyclic linear operators were introduced independently by L.
Bernal–González [4] (2007) and J. Bès, A. Peris [8] (2007). Similar concepts,
like disjoint mixing property and disjoint supercyclicity, have been analyzed
by a great number of authors after that (for further information about disjoint
hypercyclic operators and their generalizations, we refer the reader to [7], [18],
[27] and references cited therein.

The main aim of this paper is to continue our recent research study [18]
of disjoint distributional chaos in Fréchet spaces by investigating the abstract
partial differential equations in Fréchet spaces with integer or Caputo time-
fractional derivatives (concerning distributional chaos in metric and Fréchet
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spaces, one may refer e.g. to [3], [6], [28] and references cited therein). We fo-
cus our attention to the analysis of disjoint distributionally chaotic integrated
C-semigroups, as a rather general concept for the investigations of abstract
partial differential equations of the first order. We also consider disjoint distri-
butionally chaotic properties of abstract time-fractional differential equations
with Caputo derivatives; strictly speaking, we analyze disjoint distributional
chaos for ζ-times C-regularized resolvent families (ζ ∈ (0, 2) \ {1}). For the
sake of brevity, we consider only non-degenerate abstract partial differential
equations here (for topological dynamics of abstract degenerate partial differ-
ential equations, the reader may consult our joint paper with V. Fedorov [15],
the forthcoming monograph [25] and references cited therein).

The organization and main ideas of this paper can be described as fol-
lows. After giving some necessary explanations about the notation and general
framework we are working in, we collect the basic material about integrated C-
semigroups and ζ-times C-regularized resolvent families in two separate subsec-
tions, Subsection 1.1 and Subsection 1.2. The second section of the paper is de-
voted to the study of disjoint distributional chaos for integrated C-semigroups,
while the third section of the paper is devoted to the study of disjoint distri-
butional chaos for ζ-times C-regularized resolvent families (ζ ∈ (0, 2) \ {1}).
Although not used explicitly, as for single operators [18], we also provide defi-
nitions of disjoint distributinally near to zero vectors, disjoint distributionally
unbounded vectors and disjoint distributionally irregular vectors for these solu-
tion operator families. Without any doubt, the main result of paper is Theorem
2.3, which provides an efficient tool for proving several other structural results
of ours. In addition to the above, a great deal of illustrative examples and
applications is presented.

We use the standard notation in the sequel. By X and Y we denote two
non-trivial Fréchet spaces over the same field of scalars K ∈ {R,C} and assume
that the topologies of X and Y are induced by the fundamental systems (pn)n∈N
and (pYn )n∈N of increasing seminorms, respectively (separability of X and Y will
be assumed a priori in future). The translation invariant metric d : X ×X →
[0,∞), defined by

(1.1) d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ X,

satisfies the following properties: d(x+u, y+v) ≤ d(x, y)+d(u, v), x, y, u, v ∈
X; d(cx, cy) ≤ (|c|+1)d(x, y), c ∈ K, x, y ∈ X, and d(αx, βx) ≥ |α−β|

1+|α−β|d(0, x),

x ∈ X, α, β ∈ K. Define the translation invariant metric dY : Y × Y → [0,∞)
by replacing pn(·) with pYn (·) in (1.1). If (X, ‖ · ‖) or (Y, ‖ · ‖Y ) is a Banach
space, then it will be assumed that the distance of two elements x, y ∈ X
(x, y ∈ Y ) is given by d(x, y) := ‖x − y‖ (dY (x, y) := ‖x − y‖Y ). Keeping in
mind this assumtation, our structural results clarified in Fréchet spaces remain
true in the case that X or Y is a Banach space.

We assume that N ∈ N and N ≥ 2. Then the fundamental system of

increasing seminorms (pY
N

n )n∈N, where pY
N

n (x1, ···, xN ) :=
∑N
j=1 p

Y
n (xj), n ∈ N
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(xj ∈ Y for 1 ≤ j ≤ N), induces the topology on the Fréchet space Y N . The
translation invariant metric

dY N (~x, ~y) :=

∞∑
n=1

1

2n
pn(~x− ~y)

1 + pn(~x− ~y)
, ~x, ~y ∈ Y N ,

is strongly equivalent with the metric

dY N (~x, ~y) := max
1≤j≤N

dY (xj , yj), ~x = (x1, ···, xN ) ∈ Y N , ~y = (y1, ···, yN ) ∈ Y N .

In the case that Y is a Banach space, then Y N is likewise a Banach space and,
in this case, it will be assumed that the distance in Y N is given by dY N (~x, ~y) =
max1≤j≤N ‖xj − yj‖Y , ~x ∈ Y N , ~y ∈ Y N .

Suppose that C ∈ L(X) is injective and A is a closed linear operator with
domain and range contained in X. By D(A), R(A), N(A) and σp(A) we denote
the domain, range, kernel space and the point spectrum of A, respectively. Set
pCn (x) := pn(C−1x), n ∈ N, x ∈ R(C). Then pCn (·) is a seminorm on R(C) and
the calibration (pCn )n∈N induces a Fréchet locally convex topology on R(C); we
denote this space simply by [R(C)]. Let us recall that [R(C)] is separable since
X is as well as that [R(C)] is a Banach space (complex Hilbert space) provided
that X is. Recall that the C-resolvent set of A, denoted by ρC(A), is defined
by

ρC(A) :=
{
λ ∈ K : λ−A is injective and (λ−A)−1C ∈ L(X)

}
.

Set, finally, C+ := {z ∈ C : <z > 0}, C− := {z ∈ C : <z < 0}, R+ :=
(0,∞), R− := (−∞, 0), K+ := {C+, R+}, K− := {C−, R−}, Σα := {z ∈ C :
z 6= 0, | arg(z)| < α} (α ∈ (0, π]), dse := inf{k ∈ Z : s ≤ k} and Nn := {1, ···, n}
(s ∈ R, n ∈ N), gζ(t) := tζ−1/Γ(ζ) (t > 0, ζ > 0) and recall that the upper
density of a set D ⊆ [0,∞) is defined by

dens(D) := lim sup
t→+∞

m(D ∩ [0, t])

t
,

where m denotes the Lebesgue measure on [0,∞).
We need the following notion from [18]:

Definition 1.1. Suppose that, for every j ∈ NN and k ∈ N, Aj,k : D(Aj,k) ⊆
X → Y is a linear operator and X̃ is a closed linear subspace of X. Then we
say that the sequence ((Aj,k)k∈N)1≤j≤N is disjoint X̃-distributionally chaotic,

(d, X̃)-distributionally chaotic for short, iff there exist an uncountable set S ⊆⋂N
j=1

⋂∞
k=1D(Aj,k) ∩ X̃ and σ > 0 such that for each ε > 0 and for each pair

x, y ∈ S of distinct points we have

dens

( ⋂
j∈NN

{
k ∈ N : dY

(
Aj,kx,Aj,ky

)
≥ σ

})
= 1, and

dens

( ⋂
j∈NN

{
k ∈ N : dY

(
Aj,kx,Aj,ky

)
< ε
})

= 1.



142 Marko Kostić

The sequence ((Aj,k)k∈N)1≤j≤N is said to be densely (d, X̃)-distributionally

chaotic iff S can be chosen to be dense in X̃. A finite sequence (Aj)1≤j≤N
of closed linear operators on X is said to be (densely) X̃-distributionally
chaotic iff the sequence ((Aj,k ≡ Akj )k∈N)1≤j≤N is. The set S is said to

be (d, σX̃)-scrambled set ((d, σ)-scrambled set in the case that X̃ = X) of

((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ); in the case that X̃ = X, then we also say that
the sequence ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ) is disjoint distributionally chaotic,
d-distributionally chaotic for short.

1.1. Integrated C-semigroups

The following definition is fundamental in the theory of abstract ill-posed
differential equations of first order (cf. [22, 19] for more details on the subject):

Definition 1.2. Suppose that α ≥ 0 and A is a closed linear operator. If there
exists a strongly continuous operator family (Sα(t))t≥0 ⊆ L(X) such that:

(i) Sα(t)A ⊆ ASα(t), t ≥ 0,

(ii) Sα(t)C = CSα(t), t ≥ 0,

(iii) for all x ∈ X and t ≥ 0:
∫ t

0
Sα(s)x ds ∈ D(A) and

A

t∫
0

Sα(s)x ds = Sα(t)x− gα+1(t)Cx,

then it is said that A is a subgenerator of a (global) α-times integrated C-
semigroup (Sα(t))t≥0.

If α = 0, then (S0(t))t≥0 is also said to be a C-regularized semigroup
with subgenerator A (we refer the reader to [22] for definition of an entire
C-regularized group and its integral generator (subgenerator)). The integral
generator of (Sα(t))t≥0 is defined by

Â :=

{
(x, y) ∈ X ×X : Sα(t)x− gα+1(t)Cx =

t∫
0

Sα(s)y ds, t ≥ 0

}
.

Let us recall that the integral generator of (Sα(t))t≥0 is a closed linear operator
which extends any subgenerator of (Sα(t))t≥0. Furthermore, for any subgener-

ator A of (Sα(t))t≥0, the following equality holds Â = C−1AC.
Denote by Z1(A) the space consisting of those elements x ∈ X for which

there exists a unique X-valued continuous mapping satisfying
∫ t

0
u(s, x) ds ∈

D(A) and A
∫ t

0
u(s, x) ds = u(t, x) − x, t ≥ 0, i.e., the unique mild solution of

the corresponding Cauchy problem (ACP1) :

(ACP1) : u′(t) = Au(t), t ≥ 0, u(0) = x.
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If A is a subgenerator (the integral generator) of a global α-times integrated C-
semigroup (Sα(t))t≥0, then there is only one (trivial) mild solution of (ACP1)
with x = 0, so that Z1(A) is a linear subspace of X. Moreover, for every number
β > α, the operator A is a subgenerator (the integral generator) of a global
β-times integrated C-semigroup (Sβ(t) ≡ (gβ−α ∗ Sα·)(t))t≥0. As it is well
known, the space Z1(A) consists exactly of those elements x ∈ X for which the
mapping t 7→ C−1Sdαe(t)x, t ≥ 0 is well defined and dαe-times continuously
differentiable on [0,∞); see e.g. [22]. As it is usually done in the theory of
C-distribution semigroups, we set

G(ϕ)x := (−1)dαe
∞∫

0

ϕ(dαe)(t)Sdαe(t)x dt, ϕ ∈ DK, x ∈ X

and

G
(
δt
)
x :=

ddαe

dtdαe
C−1Sdαe(t)x, t ≥ 0, x ∈ Z1(A);

here DK denotes the space of K-valued smooth test functions with compact
support contained in K. Then the following holds: G(δt)(Z1(A)) ⊆ Z1(A), t ≥
0, G(δt)C ⊆ CG(δt), t ≥ 0 and

(1.2) G
(
δs
)
G
(
δt
)
x = G

(
δt+s

)
x, t, s ≥ 0, x ∈ Z1(A).

Is is also known that the solution space Z1(A) is independent of the choice of
(Sα(t))t≥0 in the following sense: If C1 ∈ L(X) is another injective operator
with C1A ⊆ AC1, γ ≥ 0, x ∈ X and A is a subgenerator (the integral generator)
of a global γ-times integrated C1-semigroup (Sγ(t))t≥0, then the mapping t 7→
C−1Sdαe(t)x, t ≥ 0 is well defined and dαe-times continuously differentiable on

[0,∞) iff the mapping t 7→ C−1
1 Sdγe(t)x, t ≥ 0 is well defined and dγe-times

continuously differentiable on [0,∞). In this case, we have u(t;x) := G(δt)x =
ddγe

dtdγe
C−1

1 Sdγe(t)x, t ≥ 0 is a unique mild solution of the corresponding Cauchy
problem (ACP1).

The notions of exponential equicontinuity and analyticity of integrated C-
semigroups are well known; the basic results about integrated C-cosine func-
tions can be found in [22, 19], as well.

1.2. ζ-Times C-regularized resolvent families (ζ ∈ (0, 2) \ {1})

The following definition has been introduced by M. Li, Q. Zheng and J.
Zhang in [26] (see [25, 22, 19] for more details about abstract time-fractional
differential equations):

Definition 1.3. Suppose that ζ > 0 and A is a closed linear operator on X.
A strongly continuous operator family (Rζ(t))t≥0 is said to be a ζ-times C-
regularized resolvent family having A as a subgenerator iff the following holds:

(i) Rζ(t)A ⊆ ARζ(t), t ≥ 0, Rζ(0) = C and CA ⊆ AC,

(ii) Rζ(t)C = CRζ(t), t ≥ 0 and
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(iii) Rζ(t)x = Cx+
∫ t

0
gζ(t− s)ARζ(s)x ds, t ≥ 0, x ∈ D(A).

In the case C = I, then we also say that (Rζ(t))t≥0 is a ζ-times regularized
resolvent family with subgenerator A.

The integral generator of (Rζ(t))t≥0 is defined by

Â :=

{
(x, y) ∈ X ×X : Rζ(t)x− Cx =

t∫
0

gζ(t− s)Rζ(s)y ds for all t ≥ 0

}
,

and it is a closed linear operator which extends any subgenerator of (Rζ(t))t≥0.

Let m := dζe. The Caputo fractional derivative Dζ
tu(t) is defined for those

functions u ∈ Cm−1([0,∞) : X) for which gm−ζ ∗ (u −
∑m−1
k=0 ukgk+1) ∈

Cm([0,∞) : X), by

Dζ
tu(t) :=

dm

dtm

[
gm−ζ ∗

(
u−

m−1∑
k=0

ukgk+1

)]
.

The abstract evolution equation

Dζ
tu(t) = Au(t), t > 0, u(0) = x, u(k)(0) = 0, k = 1, · · ·,m− 1,(1.3)

is well posed in the sense of [2, Definition 2.2] iff the abstract Volterra equation

(1.4) u(t;x) = x+

t∫
0

gζ(t− s)Au(s;x) ds, t ≥ 0,

is well posed in the usual sense ([22]). Suppose that A is a subgenerator of an
ζ-times C-regularized resolvent family (Rζ(t))t≥0, and

(1.5) Rζ(t)x = Cx+A

t∫
0

gζ(t− s)Rζ(s)x ds, t ≥ 0, x ∈ X.

Denote by Zζ(A) the set consisting of those vectors x ∈ X such that Rζ(t)x ∈
R(C), t ≥ 0 and the mapping t 7→ C−1Rζ(t)x, t ≥ 0 is continuous. Then
R(C) ⊆ Zζ(A), and x ∈ Zζ(A) iff there exists a unique strong solution of (1.4);
if this is the case, the unique strong solution of (1.4) is given by u(t;x) =
C−1Rζ(t)x, t ≥ 0. In the sequel, we assume the validity of (1.5) a priori.

Denote by Eβ(z) the Mittag-Leffler function Eβ(z) :=
∑∞
n=0

zn

Γ(βn+1) , z ∈ C,
where β > 0. Suppose, further, that ζ ∈ (0, 2) \ {1} and l ∈ N \ {1}. We will
use the following asymptotic formulae for the Mittag-Leffler functions ([2]):

(1.6) Eζ(z) =
1

ζ
ez

1/ζ

+ εζ(z), | arg(z)| < ζπ/2,
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and

(1.7) Eζ(z) = εζ(z), | arg(−z)| < π − ζπ/2,

where

(1.8) εζ(z) =

l−1∑
n=1

z−n

Γ(1− ζn)
+O(|z|−l), |z| → ∞.

2. Disjoint distributionally chaotic properties of abstract
PDEs of the first order

In [18], we have introduced and analyzed twelve different types of disjoint
distributional chaos for multivalued linear operators in Fréchet spaces. For the
sake of simplicity, we will consider here only one type of disjoint distributional
chaos for integrated C-semigroups, disjoint distributional chaos of type 1. This
is the most intriguing type of disjoint distributional chaos considered in [18]
because it is the strongest one and implies all others (we will not particularly
emphasize further that this is disjoint distributional chaos of type 1):

Definition 2.1. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN and
let (Sαj (t))t≥0 be a global αj-times integrated Cj-semigroup with the integral

generator Aj (j ∈ NN ). Suppose that X̃ is a closed linear subspace of X.
Denote by t 7→ Gj(δt)x, t ≥ 0 the unique mild solution of the corresponding
Cauchy problem (ACP1), with the operator A replaced by Aj therein (j ∈ NN ).

Then we say that ((Sαj (t))t≥0)1≤j≤N are disjoint X̃-distributionally chaotic,

(d, X̃)-distributionally chaotic in short, iff there exist an uncountable set S ⊆⋂N
j=1 Z1(Aj)∩ X̃ and σ > 0 such that for each ε > 0 and for each pair x, y ∈ S

of distinct points we have that for each j ∈ NN and t ≥ 0 we have that

dens

( ⋂
j∈NN

{
t ≥ 0 : dY

(
Gj(δt)x,Gj(δt)y

)
≥ σ

})
= 1, and

dens

( ⋂
j∈NN

{
t ≥ 0 : dY

(
Gj(δt)x,Gj(δt)y

)
< ε
})

= 1.

The sequence (Sαj (t))t≥0 is said to be densely (d, X̃)-distributionally chaotic

iff S can be chosen to be dense in X̃. The set S is said to be (d, σX̃)-scrambled

set ((d, σ)-scrambled set in the case that X̃ = X) of ((Sαj (t))t≥0)1≤j≤N ; in

the case that X̃ = X, then we also say that the sequence ((Sαj (t))t≥0)1≤j≤N is
(densely) disjoint distributionally chaotic, (densely) d-distributionally chaotic
in short.

Now we introduce the notion of disjoint distributionally irregular vectors
for integrated C-semigroups:
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Definition 2.2. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN and
let (Sαj (t))t≥0 be a global αj-times integrated Cj-semigroup with the integral

generator Aj (j ∈ NN ). Suppose that X̃ is a closed linear subspace of X,

m ∈ N and x ∈
⋂N
j=1 Z1(Aj) ∩ X̃. Denote by t 7→ Gj(δt)x, t ≥ 0 the unique

mild solution of the corresponding Cauchy problem (ACP1), with the operator
A replaced by Aj therein (j ∈ NN ). Then we say that:

(i) x is disjoint distributionally near to 0 for ((Sαj (t))t≥0)1≤j≤N iff there

exists A ⊆ [0,∞) such that Dens(A) = 1 and lims→∞,s∈AGj(δs)x = 0
for all j ∈ NN ;

(ii) x is disjoint distributionallym-unbounded for ((Sαj (t))t≥0)1≤j≤N iff there

exists B ⊆ [0,∞) such thatDens(B) = 1 and lims→∞,s∈B pm(Gj(δs)x) =
0 for all j ∈ NN ; x is disjoint distributionally unbounded for the tuple
((Sαj (t))t≥0)1≤j≤N iff there exists q ∈ N such that x is disjoint distribu-
tionally q-unbounded for ((Sαj (t))t≥0)1≤j≤N ;

(iii) x is a disjoint X̃-distributionally irregular vector for ((Sαj (t))t≥0)1≤j≤N
(disjoint distributionally irregular vector for ((Sαj (t))t≥0)1≤j≤N simply,

in the case that X̃ = X) iff x is both disjoint distributionally near to 0
and disjoint distributionally unbounded.

The following important result is a continuous analogue of [18, Theorem
4.3]. It also provides an extension of [10, Theorem 4.1] for disjoint distributional
chaos:

Theorem 2.3. Suppose that X0 is a dense linear subspace of X, (Tj(t))t≥0 ⊆
L(X,Y ) is a strongly continuous operator family for each j ∈ NN , as well as:

(a) limt→∞ Tj(t)x = 0, x ∈ X0, j ∈ NN ,

(b) there exist x ∈ X, m ∈ N and a set B ⊆ [0,∞) such that Dens(B) = 1,
and limt→∞,t∈B pm(Tj(t)x) =∞ for each j ∈ NN , resp.
limt→∞,t∈B ‖Tj(t)x‖ =∞ for each j ∈ NN , if X is a Banach space.

Then there exist a dense linear subspace S of X and a number σ > 0 such that
for each ε > 0 and for each pair x, y ∈ S of distinct points we have that

Dens

( ⋂
j∈NN

{
s ≥ 0 : dY

(
Tj(s)x, Tj(s)y

)
≥ σ

})
= 1

and

Dens

( ⋂
j∈NN

{
s ≥ 0 : dY

(
Tj(s)x, Tj(s)y

)
< ε
})

= 1.

Proof. The proof is very similar to those of [5, Theorem 15] and [10, Theorem
4.1], so that we will only outline the main points of the proof. Consider first
the case in which X and Y are Frechét spaces. If so, the family (Tj(t))t≥0 ⊆
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L(X,Y ) is locally equicontinuous for all j ∈ NN . Hence, for every l, n ∈ N,
there exist cl,n > 0 and al,n ∈ N such that pYl (Tj(t)x) ≤ cl,npal,n(x), x ∈ X,
t ∈ [0, n], j ∈ NN . Suppose, for the time being, that:

(2.1) pYk (Tj(t)x) ≤ pk+dte(x), x ∈ X, t ≥ 0, k ∈ N, j ∈ NN .

We may assume that m = 1. Then there exist a sequence (xk)k∈N in X0 such
that pk(xk) ≤ 1, k ∈ N and a strictly increasing sequence of positive real
numbers (tk)k∈N tending to infinity such that:

Dens
({

1 ≤ s ≤ tk : p1

(
Tj(s)xk

)
> k2k

})
≥ tk

(
1− k−2

)
and

Dens
({

1 ≤ s ≤ tk : pk
(
Tj(s)xl

)
< k−1

})
≥ tk

(
1− k−2

)
, l = 1, · · ·, k − 1,

for any j ∈ NN . Furthermore, it is clear that there is a strictly increasing
sequence (rs)s∈N of positive integers satisfying that:

rs+1 ≥ 1 + rs + dtrs+1e, s ∈ N.

Arguing as in [5, Theorem 15], we get that there exists a dense linear sub-
space S of X such that, for every x ∈ S, there exist two sets Ax, Bx ⊆
[0,∞) such that Dens(A) = Dens(B) = 1, limt→∞,t∈Ax Tj(t)x = 0 and
limt→∞,t∈Bx p1(Tj(t)x) =∞. Now the final conlusion of the theorem follows as
in the discrete case. Finally, a few words about the process of renorming. Intro-
ducing recursively the following fundamental system of increasing seminorms
p′n(·) (n ∈ N) on X :

p′1(x) ≡ p1(x), x ∈ X,
p′2(x) ≡ p′1(x) + c1,1pa1,1(x) + p2(x), x ∈ X,
· ··
p′n+1(x) ≡ p′n(x) + c1,npa1,n(x) + · · ·+ cn,1pan,1(x) + pn+1(x), x ∈ X,
· ··,

we may assume without loss of generality that (2.1) holds; hence, the assertion
is proved in the case that X and Y are Frechét spaces. If X or Y is a Banach
space, say Y , then we can ‘renorm’ it, by endowing Y with the following in-
creasing family of seminorms pYn (y) := n‖y‖Y (n ∈ N, y ∈ Y ), which turns the
space Y into a linearly and topologically homeomorphic Fréchet space. This
completes the proof of the theorem.

It is clear that Theorem 2.3 can be directly applied to strongly continuous
semigroups and thus provides a great number of concrete examples of disjoint
distributionally chaotic single operators (see [22, Chapter 3] and [11] for more
details). In the remaining part of paper, we will primarily examine possible
applications of Theorem 2.3 to the abstract ill-posed abstract Cauchy problems.
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For any injective operator C ∈ L(X), any closed linear operator A commut-
ing with C and any positive integer n ∈ N, we endow the space C(D(An)) with
the following family of seminorms pm,n(Cx) := pm(x)+pm(Ax)+···+pm(Anx),
m ∈ N, x ∈ D(An) (n ∈ N). Of course, if X is a Banach space, then
the space C(D(An)) carries the topology induced by the norm ‖Cx‖n :=
‖x‖+ ‖Ax‖+ · · ·+ ‖Anx‖, x ∈ D(An). Denote this space by [C(D(An))].

Now we will reconsider the assertion of [10, Theorem 5.4] for disjoint dis-
tributional chaos:

Theorem 2.4. Suppose that αj ≥ 0, tj > 0 and Aj subgenerates a global αj-
times integrated Cj-semigroup (Sαj (t))t≥0 on X (j ∈ NN ). Let nj := dαje
for any j ∈ NN , let C ∈ L(X) be injective, and let [R(C)] be continuously
embedded in the space [Cj(D(A

nj
j ))] for all j ∈ NN . Furthermore, suppose that

the following conditions hold:

(i) There exists a dense subset X ′0 of [R(C)] such that limt→∞Gj(δt)x = 0,
x ∈ X ′0, j ∈ NN .

(ii) There exist x ∈ R(C) and m ∈ N such that limt→∞ pm(Gj(δt)x) = ∞,
j ∈ NN (limt→∞ ‖Gj(δt)x‖ =∞, j ∈ NN in the case that X is a Banach
space).

Then ((Sαj (t))t≥0)1≤j≤N and the operators G1(δt1), G2(δt2), · · ·, GN (δtN ) are
disjoint distributionally chaotic; if R(C) is dense in X, then ((Sαj (t))t≥0)1≤j≤N
and the operators G1(δt1), G2(δt2), · · ·, GN (δtN ) are densely disjoint distribu-
tionally chaotic.

Proof. It is clear that [R(C)] is separable. Let us recall that Cj(D(A
nj
j )) ⊆

Z1(Aj) for all j ∈ NN ; furthermore, if x = Cjy ∈ Cj(D(A
nj
j )), then for every

t ≥ 0 we have:

Gj
(
δt
)
x = Sαj (t)A

nj
j y +

nj−1∑
i=0

tnj−i−1

(nj − i− 1)!
CjA

nj−1−iy, j ∈ NN .

Since [R(C)] is continuously embedded in the space [Cj(D(A
nj
j ))] for all j ∈

NN , we have that, for every t ≥ 0, the mapping G(δt) : [R(C)] → X is linear
and continuous. Furthermore, the family (G(δt))t≥0 ⊆ L([R(C)], X) is strongly
continuous. We define Tj,k ≡ G(δktj ) : [R(C)] → X (j ∈ NN , k ∈ N). Then
((Tj,k)k∈N)1≤j≤N ⊆ L([R(C)], X) and (1.2) yields that Tj,kx = Gj(δtj )

kx,
x ∈ R(C). Now an application of [18, Theorem 4.4] yields that the opera-
tors G1(δt1), G2(δt2), · · ·, GN (δtN ) are disjoint distributionally chaotic, while
an application of Theorem 2.3 yields that ((Sαj (t))t≥0)1≤j≤N are disjoint dis-
tributionally chaotic. Finally, if R(C) is dense in X, then it almost triv-
ially follows from the foregoing that ((Sαj (t))t≥0)1≤j≤N and the operators
G1(δt1), G2(δt2), · · ·, GN (δtN ) are densely disjoint distributionally chaotic.

Remark 2.5. (i) If λj ∈ ρCj (Aj) for all j ∈ NN , then the choice C :=∏N
j=1 Cj((λj −Aj)−1Cj)

n can always be made.
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(ii) If λj ∈ σp(Aj) and Ajx = λjx for some x ∈ X \ {0} and j ∈ NN , then
x ∈ Z1(Aj) and Gj(δt)x = eλjtx, t ≥ 0. In particular, limt→∞Gj(δt)x =
0 if λ ∈ K−, and there exists m ∈ N such that limt→∞ pm(Gj(δt)x) =∞
(limt→∞ ‖Gj(δt)x‖ =∞ in the case that X is a Banach space), if λ ∈ K+.

(iii) Assume now that all requirements of Theorem 2.4 stated before the
formulation of (i)-(iii) hold true, as well as that X0 := {Cx : (∀j ∈
NN ) (∃λj,− ∈ K−)AjCx = λj,−Cx}. Suppose that

(a) X̃ := X0
[R(C)]

is non-trivial subspace of [R(C)], and

(b) there exist a vector Cx ∈ X̃ and the scalars λj,+ ∈ K+ such that
AjCx = λj,+Cx for all j ∈ NN .

Repeating literally the arguments given in the proof of Theorem 2.4, with
the spaces [R(C)] and X ′0 replaced with the spaces X̃ and X0 therein,
we get that ((Sαj (t))t≥0)1≤j≤N and the operators G1(δt1), G2(δt2), · ·
·, GN (δtN ) are disjoint X̃-distributionally chaotic. The question whether
we can make a choice X̃ = R(C) has an affirmative answer in the case that
the operators Aj have nice supplies of eigenfunctions (see e.g. the proof
of Desch-Schappacher-Webb criterion for strongly continuous semigroups
[13, Theorem 3.1], as well as Example 2.6 below).

The interested reader may try to formulate an analogue of [10, Theorem
5.9] for disjoint distributional chaos of entire C-regularized groups.

We proceed by providing two illustrative examples.

Example 2.6. ([12]) Assume that K = C, ω1, ω2, Vω2,ω1
, Qj(z), Qj(B), hµ and

X possess the same meaning as in [12, Section 5], as well as that the number
L ∈ N is sufficiently large and takes the role of number N from this section.
Let tj > 0 and let the following two conditions hold:

(A) there exists a non-empty subset Ω′ of int(Vω2,ω1) which has a cluster point
in int(Vω2,ω1

) and satisfies that, for every z ∈ Ω′ and for every j ∈ NN ,
we have Qj(z) ∈ C−;

(B) there exists z ∈ int(Vω2,ω1
) such that, for every j ∈ NN , we have Qj(z) ∈

C+.

Then ±Qj(B)hµ = ±Qj(µ)hµ, e
−(−B2)Lhµ = e−(−µ2)Lhµ, µ ∈ int(Vω2,ω1

)

and the operator Qj(B) is the integral generator of the C ≡ (e−(−z2)L)(B)-

regularized semigroup (WQj (t) ≡ z 7→ etQj(z)e−(−z2)L)(B))t≥0 on X (j ∈
NN ). Furthermore, the set R(C) is dense in X. The validity of (A)-(B) yields
that Theorem 2.4 and Remark 2.5(iii) can be applied, showing that the C-
regularized semigroups ((WQj (t))t≥0)1≤j≤N and the operators

et1Q(B), et2Q(B), · · · , etNQ(B) are densely disjoint distributionally chaotic.

Example 2.7. (cf. [9, Example 2.13]) Let us assume that ζ ≥ 0, −A /∈
L(X), −A generates an exponentially equicontinous ζ-times integrated co-
sine function (Cζ(t))t≥0, N ∈ N, N ≥ 2 and Pj(z) =

∑nj
i=0 ai,jz

i is a non-
zero complex polynomial with anj ,j > 0 (j ∈ NN ). Assume, further, that
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there are an open connected subset Ω of C and an analytic mapping f :
Ω → X \ {0} such that σp(−A) ⊇ Ω and f(λ) ∈ N(−A − λ) \ {0}, λ ∈ Ω
(e.g., let a > 0, let ρ(x) := e−a|x|, x ∈ R, X := Lpρ(R), D(B) := {f ∈
X | f(·) is loc. abs. continuous, f ′ ∈ E

}
and Af := f ′, f ∈ D(B); then A gen-

erates C0-group on X and the above holds with A = −B2, Ω = {z2 : |<z| < a}
and f(z2) = ez· for |<z| < a; cf. [13] for the notion).

Set A :=
(

0 I
−A 0

)
, and suppose further that Ω′ is a non-empty open con-

nected subset of C such that λ2 ∈ Ω for all λ ∈ Ω′. Define F : Ω′ →
(X×X)\{(0, 0)} by F (λ) := [f(λ2) λf(λ2)]T , λ ∈ Ω′. Then we know that F (·)
is analytic, σp(A) ⊇ Ω′ and F (λ) ∈ N(A−λ) \ {(0, 0)}, λ∈Ω′. Further on, the
operator A generates an exponentially equicontinuous (ζ + 1)-times integrated
semigroup (Sζ+1(t))t≥0 in X ×X, which is given by

Sζ+1(t) :=

( ∫ t
0
Cζ(s) ds

∫ t
0
(t− s)Cζ(s) ds

Cζ(t)− gζ+1(t)C
∫ t

0
Cζ(s) ds

)
, t ≥ 0.

On the other hand, the operator A2 generates an exponentially equicontinuous,
analytic (ζ/2)-times integrated semigroup of angle π/2. Set Q1(z) := z and
Qj(z) := −Pj(−z2) (z ∈ C, 2 ≤ j ≤ N), as well as Aj := Qj(A). Then
the operator Aj generates an exponentially equicontinuous, analytic η-times
integrated semigroup (Sjη(t))t≥0 of angle π/2, for 2 ≤ j ≤ N . Suppose that
the conditions (A) and (B) hold with the set int(Vω2,ω1

) replaced by the set Ω′.
These conditions ensure that Theorem 2.4 and Remark 2.5(iii) are applicable,
so that the integrated semigroups (Sζ+1(·), (Sjη(·))2≤j≤N ) are densely disjoint
distributionally chaotic, which also holds for corresponding tuples of single
operators.

Finally, at the end of this section, we would like to propose an interesting
problem for our readers:

Example 2.8. (cf. also [19, Example 3.1.35(i)], [20, Example 38] and [10, Ex-
ample 5.12, Example 5.13]). Let us assume that n ∈ N, ρ(t) := 1

t2n+1 , t ∈ R,
Af := f ′, D(A) := {f ∈ C0,ρ(R) : f ′ ∈ C0,ρ(R)}, Xn := (C0,ρ(R))n+1,
D(An) := D(A)n+1 and An(f1, · · ·, fn+1) := (Af1 +Af2, Af2 +Af3, · · ·, Afn +
Afn+1, Afn+1), (f1, · · ·, fn+1) ∈ D(An). Then we already know that ±An gen-
erate global polynomially bounded n-times integrated semigroups (Sn,±(t))t≥0,
and neither An nor −An generates a local (n− 1)-times integrated semigroup.
By [19, Proposition 2.1.17], the above implies that A2

n generates a polyno-
mially bounded n-times integrated cosine function (Cn(t) ≡ 1/2(Sn,+(t) +
Sn,−(t)))t≥0. Due to [19, Corollary 2.4.9], we have that A2

n generates a poly-
nomially bounded (n/2)-times integrated semigroup (Sn/2(t))t≥0. We would
like to ask whether (Sn/2(t))t≥0 is densely disjoint distributionally chaotic
and whether (Sn,±(t))t≥0 and (Sn/2(t))t≥0 are densely disjoint distribution-
ally chaotic.
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3. Disjoint distributionally chaotic properties of abstract
fractional PDEs

Let us recall that ζ ∈ (0, 2) \ {1}. We start this section by providing ana-
logues of Definition 2.1 and Definition 2.2 for fractional resolvent families:

Definition 3.1. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN
and let (Rj(t))t≥0 be a global ζ-times Cj-regularized resolvent family with

the integral generator Aj (j ∈ NN ). Suppose that X̃ is a closed linear sub-
space of X. Let Zj,ζ(Aj) the set consisting of those vectors x ∈ X such that
Rj(t)x ∈ R(Cj), t ≥ 0 and the mapping t 7→ C−1

j Rj(t)x, t ≥ 0 is continu-

ous. Denote by t 7→ C−1
j Rj(t)x, t ≥ 0 the unique mild solution of the corre-

sponding Cauchy problem (1.3), with the operator A replaced by Aj therein

(j ∈ NN ). Then we say that ((Rj(t))t≥0)1≤j≤N are disjoint X̃-distributionally

chaotic, (d, X̃)-distributionally chaotic in short, iff there exist an uncountable

set S ⊆
⋂N
j=1 Zj,ζ(Aj) ∩ X̃ and σ > 0 such that for each ε > 0 and for each

pair x, y ∈ S of distinct points we have that for each j ∈ NN and t ≥ 0 we
have that

dens

( ⋂
j∈NN

{
t ≥ 0 : dY

(
C−1
j Rj(t)x,C

−1
j Rj(t)y

)
≥ σ

})
= 1, and

dens

( ⋂
j∈NN

{
t ≥ 0 : dY

(
C−1
j Rj(t)x,C

−1
j Rj(t)y

)
< ε
})

= 1.

The sequence ((Rj(t))t≥0)1≤j≤N is said to be densely (d, X̃)-distributionally

chaotic iff S can be chosen to be dense in X̃. The set S is said to be (d, σX̃)-

scrambled set ((d, σ)-scrambled set in the case that X̃ = X) of the tuple
((Rj(t))t≥0)1≤j≤N ; in the case that X̃ = X, then we also say that the sequence
((Rj(t))t≥0)1≤j≤N is (densely) disjoint distributionally chaotic, (densely) d-
distributionally chaotic in short.

Definition 3.2. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN and let
(Rj(t))t≥0 be a global ζ-times Cj-regularized resolvent family with the integral

generator Aj (j ∈ NN ). Suppose that X̃ is a closed linear subspace of X. Let
Zj,ζ(Aj) be defined as above, and let t 7→ C−1

j Rj(t)x, t ≥ 0 be the unique
mild solution of the corresponding Cauchy problem (1.3), with the operator A

replaced by Aj therein (j ∈ NN ). Let m ∈ N and x ∈
⋂N
j=1 Zj,ζ(Aj)∩ X̃. Then

we say that:

(i) x is disjoint distributionally near to 0 for ((Rj(t))t≥0)1≤j≤N iff there exists
A ⊆ [0,∞) such that Dens(A) = 1 and lims→∞,s∈A C

−1
j Rj(s)x = 0 for

all j ∈ NN ;

(ii) x is disjoint distributionally m-unbounded for ((Rj(t))t≥0)1≤j≤N iff there
exists a set B ⊆ [0,∞) satisfying that Dens(B) = 1 and

lim
s→∞,s∈B

pm
(
C−1
j Rj(s)x

)
= 0
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for all j ∈ NN ; x is disjoint distributionally unbounded for the tuple
((Rj(t))t≥0)1≤j≤N iff there exists q ∈ N such that x is disjoint distribu-
tionally q-unbounded for ((Rj(t))t≥0)1≤j≤N ;

(iii) x is a disjoint X̃-distributionally irregular vector for ((Rj(t))t≥0)1≤j≤N
(disjoint distributionally irregular vector for ((Rj(t))t≥0)1≤j≤N simply,

in the case that X̃ = X) iff x is both disjoint distributionally near to 0
and disjoint distributionally unbounded.

Concerning disjoint distributional chaos of abstract time-fractional differen-
tial equations, the theoretical aspects are basically the same as for the abstract
differential equations of the first order and almost anything reasonable relies on
possible applications of Theorem 2.3. Here we will formulate only one simple
result regarding this theme:

Theorem 3.3. Let αj ≥ 0, tj > 0, let Cj ∈ L(X) be injective for all j ∈ NN ,
and let (Rj(t))t≥0 be a global ζ-times Cj-regularized resolvent family with the
integral generator Aj (j ∈ NN ). Let for each i, j ∈ NN such that i 6= j,
we have CiAj ⊆ AjCi, CiRj(t) = Rj(t)Ci, t ≥ 0 and Rj(t)Ai ⊆ AiRj(t),

t ≥ 0. Set C :=
∏N
j=1 Cj . Then (Rj(t) ≡ Rj(t)

∏
1≤i≤N,i6=j Ci)t≥0 is a global

ζ-times C-regularized resolvent family with the integral generator Aj (j ∈ NN ).
Suppose, further, that there exists a dense linear subspace X0 of X such that
the following holds:

(a) limt→∞Rj(t)x = 0, x ∈ X0, j ∈ NN ,

(b) there exist x ∈ X and m ∈ N such that limt→∞ pm(Rj(t)x) =∞ for each
j ∈ NN , resp. limt→∞ ‖Rj(t)x‖ =∞ for each j ∈ NN , if X is a Banach
space.

Then ((Rj(t))t≥0)1≤j≤N and the operators C−1R1(t1), C−1R2(t), ···, C−1RN (tN )
are disjoint distributionally chaotic; if, moreover, R(C) is dense in X, then
((Rj(t))t≥0)1≤j≤N and the operators C−1R1(t1), C−1R2(t2), · · ·, C−1RN (tN )
are densely disjoint distributionally chaotic.

Proof. Since for each i, j ∈ NN such that i 6= j, we have CiAj ⊆ AjCi,
CiRj(t) = Rj(t)Ci, t ≥ 0 and Rj(t)Ai ⊆ AiRj(t), t ≥ 0, it follows immedi-
ately from definition that (Rj(t))t≥0 is a global ζ-times C-regularized resolvent
family with the integral generator Aj (j ∈ NN ), where C is defined as above.
Now the final conclusion follows from Theorem 2.3, by considering the sequence
((C−1Rj(t))t≥0)1≤j≤N of strongly continuous families consisting of linear con-
tinuous mappings between the spaces [R(C)] and X.

Now we will provide two illustrative applications of Theorem 3.3, in which
the regularizing operator C is the identity operator (for general C, we can
modify Example 2.6; see also [21, Example 2.5(iv)]):
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Example 3.4. ([13], [21]) Let a, b, c > 0, ζ ∈ (1, 2), c < b2

2a < 1 and

Λ :=

{
λ ∈ C :

∣∣∣∣∣λ− c+
b2

4a

∣∣∣∣∣ ≤ b2

4a
, =(λ) 6= 0 if <(λ) ≤ c− b2

4a

}
.

Then the operator −A with domain D(−A) = {f ∈ W 2,2([0,∞)) : f(0) = 0},
generates an analytic strongly continuous semigroup of angle π

2 in the space
X = L2([0,∞)); the same holds in the case that the operator −A acts on
X = L1([0,∞)) with domain D(−A) = {f ∈W 2,1([0,∞)) : f(0) = 0}. In both

cases, −Λ ⊆ σp(A). Suppose that θ ∈ (ζ π2 − π, π − ζ
π
2 ) and Pj(z) =

n∑
l=0

al,jz
l

is a non-constant complex polynomial such that al,n > 0 and the following two
conditions hold:

(A)’ there exists a non-empty subset Ω′ of −Λ which has a cluster point in
−Λ and satisfies that, for every z ∈ Ω′ and for every j ∈ NN , we have
−eiθPj(z) /∈ Σζπ/2;

(B)’ there exists z ∈ −Λ such that, for every j ∈ NN , we have −eiθPj(z) ∈
Σζπ/2.

We know that the operator −eiθPj(A) is the integral generator of an expo-
nentially bounded, analytic ζ-times regularized resolvent family (Rζ,θ,Pj (t))t≥0

of angle π−|θ|
ζ − π

2 ; cf. [22] for the notion. Here, the requirements needed
for applying Theorem 3.3 are satisfied, which can be verified with the help of
asymptotic expansion formuale (1.6)-(1.8) and the conditions (A)’-(B)’. As a
consequence, we have that ((Rζ,θ,Pj (t))t≥0)1≤j≤N are densely disjoint distribu-
tionally chaotic.

(ii) ([17], [21]) Let X be a symmetric space of non-compact type and rank one,
let p > 2, let the parabolic domain Pp and the positive real number cp possess

the same meaning as in [17], and let P j(z) =
n∑
l=0

al,jz
l, z ∈ C be a non-constant

complex polynomial with al,n > 0 (j ∈ NN ). Suppose that ζ ∈ (1, 2), π −
n arctan |p−2|

2
√
p−1
−ζ π2 > 0 and θ ∈ (n arctan |p−2|

2
√
p−1

+ζ π2 −π, π−n arctan |p−2|
2
√
p−1
−

ζ π2 ). We know that −eiθP j(∆\
X,p) is the integral generator of an exponentially

bounded, analytic ζ-times regularized resolvent family (Rζ,θ,P j (t))t≥0 of angle
1
ζ (π−n arctan |p−2|

2
√
p−1
−ζ π2 −|θ|), for any j ∈ NN . Using the fact that int(Pp) ⊆

σp(∆
\
X,p), the validity of conditions (A)’-(B)’ with the set −Λ and polynomials

−eiθPj(z) replaced therein with the set int(Pp) and polynomials −eiθP j(z)
ensures that (Rζ,θ,P j (t))t≥0 are densely disjoint distributionally chaotic.

We close the paper with the observation that distributionally chaotic prop-
erties of abstract multi-term fractional differential equations have been con-
sidered by the author in [23]. Applying Theorem 2.3, we can simply deduce
several extensions of results established in this section for corresponding frac-
tional resolvent operator families governing solutions of such equations.
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In [15] and [24], we have followed slightly different approaches to the con-
cepts of disjoint hypercyclicity, disjoint topologically mixing property and the
usual distributional chaos for abstract (multi-term) fractional differential equa-
tions. Disjoint distributionally chaotic solutions of such equations can be ana-
lyzed by following this approach, as well. Related results will appear somewhere
else.
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